
Mathematical Biosciences and Engineering, 2019, 16(2): 10211033. doi: 10.3934/mbe.2019048
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A parameterized shiftsplitting preconditioner for saddle point problems
1 College of Science, Zhengzhou University of Aeronautics, Zhengzhou, Henan, 450015, P. R. China
2 College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
3 Henan province Synergy Innovation Center of Aviation economic development, Zhengzhou, Henan, 450015, P. R. China
4 School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, 650091, P. R. China
Received: , Accepted: , Published:
Special Issues: Optimization methods in Intelligent Manufacturing
References
1. M. Arioli, I. S. Du and P. P. M. de Rijk, On the augmented system approach to sparse leastsquares problems, Numer. Math., 55 (1989), 667–684.
2. Z. Z. Bai, B. N. Parlett and Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), 1–38.
3. Z. Z. Bai and Z. Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), 2900–2932.
4. Z. Z. Bai and X. Yang, On HSSbased iteration methods for weakly nonlinear systems, Appl. Numer. Math., 59 (2009), 2923–2936.
5. Z. Z. Bai, G. H. Golub and K. N. Michael, On inexact hermitian and skewHermitian splitting methods for nonHermitian positive definite linear systems, Linear Algebra Appl., 284 (2008), 413–440.
6. Z. Z. Bai, Several splittings for nonHermitian linear systems, Science in China, Series A: Math., 51 (2008), 1339–1348.
7. Z. Z. Bai, G. H. Golub, L. Z. Lu and J. F. Yin, BlockTriangular and skewHermitian splitting methods for positive definite linear systems, SIAM J. Sci. Comput., 26 (2005), 844–863.
8. Z. Z. Bai, G. H. Golub and M. K.Ng, Hermitian and skewHermitian splitting methods for non Hermitian positive definite linear systems, SIAM J. Matrix Anal. A., 24 (2003), 603–626.
9. Z. Z. Bai, G. H. Golub and M. K. Ng, On successiveoverrelaxation acceleration of the Hermitian and skewHermitian splitting iteration. Available from: http://www.sccm.stanford.edu/wrap/pubtech. html.
10. Z. Z. Bai, G. H. Golub and C. K. Li, Optimal parameter in Hermitian and skewHermitian splitting method for certain twoby two block matrices, SIAM J. Sci. Comput., 28 (2006), 28:583–603.
11. Z. Z. Bai, G. H. Golub and M. K. Ng, On successiveoverrelaxation acceleration of the Hermitian and skewHermitian splitting iterations, Numer. Linear Algebra Appl., 14 (2007), 319–335.
12. Z. Z. Bai, G. H. Golub and J. Y. Pan, Preconditioned Hermitian and skewHermitian splitting methods for nonHermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1–32.
13. Z. Z. Bai and M. K. Ng, On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput., 26 (2005), 1710–1724.
14. Z. Z. Bai, M. K. Ng and Z. Q.Wang, Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31 (2009), 410–433.
15. Z. Z. Bai, Optimal parameters in the HSSlike methods for saddlepoint problems, Numer. Linear Algebra Appl., 16 (2009), 447–479.
16. Z. Z. Bai, J. F. Yin and Y. F. Su, A shiftsplitting preconditioner for nonHermitian positive definite matrices, J. Comput. Math., 24 (2006), 539–552.
17. Z. Z. Bai, G. H. Golub and J. Y. Pan, Preconditioned Hermitian and skewHermitian splitting methods for nonHermitian positive semidefinite linear systems. Technical Report SCCM0212, Scientific Computing and Computational Mathematics Program, Department of Computer Science, Stanford University, Stanford, CA, 2002.
18. Z. Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Comput., 87 (2010), 93–111.
19. Y. Cao, J. Du and Q. Niu, Shiftsplitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272 (2014), 239–250.
20. Y. Cao, L. Q. Yao and M. Q. Jiang, A modified dimensional split preconditioner for generalized saddle point problems, J. Comput. Appl. Math., 250 (2013), 70–82.
21. Y. Cao, L. Q. Yao, M. Q. Jiang and Q. Niu, A relaxed HSS preconditioner for saddle point problems from meshfree discretization, J. Comput. Math., 31 (2013), 398–421.
22. C. R. Chen and C. F. Ma, A generalized shiftsplitting preconditioner for saddle point problems, Appl. Math. Lett., 43 (2015), 49–55.
23. F. Chen and Y. L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput., 206 (2008), 765–771.
24. L. B. Cui, C. Chen, W. Li and M.K. Ng, An eigenvalue problem for even order tensors with its applications, Linear Multilinear Algebra, 64 (2016), 602–621.
25. L. B. Cui, W. Li and M. K. Ng, Primitive tensors and directed hypergraphs, Linear Algebra Appl., 471 (2015), 96–108.
26. L. B. Cui, C. X. Li and S. L. Wu, The relaxation convergence of multisplitting AOR method for linear complementarity problem, Linear Multilinear Algebra, DOI: 10.1080/03081087.2018.1511680.
27. L. B. Cui and Y. S. Song, On the uniqueness of the positive Zeigenvector for nonnegative tensors, J. Comput. Appl. Math., 352 (2019), 72C78.
28. M. T. Darvishi and P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput., 183 (2006), 409–415.
29. H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for NavierStokes equations, SIAM J. Sci. Comput., 17 (1996), 33–46.
30. H. Elman and G. H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31 (1994), 1645–1661.
31. B. Fischer, A. Ramage, D. J. Silvester and A. J.Wathen, Minimum residual methods for augmented systems, BIT, 38 (1998), 527–543.
32. G. H. Golub, X. Wu and J. Y. Yuan, SORlike methods for augmented systems, BIT, 55 (2001), 71–85.
33. M. Q. Jiang and Y. Cao, On local Hermitian skewHermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 231 (2009), 973–982.
34. X.Y. Li, L. Gao, Q. K. Pan, L. Wan and K. M. Chao, An e ective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop, IEEE Transactions on Systems, Man and Cybernetics: Systems, 2018, DOI 10.1109/TSMC.2018.2881686.
35. X. Y. Li, C. Lu, L. Gao, S. Q. Xiao and L.Wen, An E ective MultiObjective Algorithm for Energy Efficient Scheduling in a RealLife Welding Shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409.
36. X. Y. Li and L. Gao, An E ective Hybrid Genetic Algorithm and Tabu Search for Flexible Job Shop Scheduling Problem, Int. J. Prod. Econ., 174 (2016), 93–110.
37. X. F. Peng and W. Li, On unsymmetric block overrelaxationtype methods for saddle point, Appl. Math. Comput., 203 (2008), 660–671.
38. C. H. Santos, B. P. B. Silva and J. Y. Yuan, Block SOR methods for rank deficient least squares problems, J. Comput. Appl. Math., 100 (1998), 1–9.
39. H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, 2003.
40. L. Wang and Z. Z. Bai, Convergence conditions for splitting iteration methods for nonHermitian linear systems, Linear Algebra Appl., 428 (2008), 453–468.
41. S. Wright, Stability of augmented system factorizations in interiorpoint methods, SIAM J. Matrix Anal. Appl., 18 (1997), 191–222.
42. S. L.Wu, T. Z. Huang and X. L. Zhao, A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math., 228 (2009), 424–433.
43. D. M. Young, Iteratin Solution for Large Systems, Academic Press, New York, 1971.
44. J. Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 66 (1996), 571–584.
45. J. Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient method for generalized least squares problems, J. Comput. Appl. Math., 71 (1996), 287–297.
46. G. F. Zhang and Q. H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 1 (2008), 51–58.
47. L. T. Zhang, A new preconditioner for generalized saddle matrices with highly singular(1,1) blocks, Int. J. Comput. Math., 91 (2014), 2091–2101.
48. L. T. Zhang, T. Z. Huang, S. H. Cheng and Y. P. Wang, Convergence of a generalized MSSOR method for augmented systems, J. Comput. Appl. Math., 236 (2012), 1841–1850.
49. B. Zheng, Z. Z. Bai and X. Yang, On semiconvergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 431 (2009), 808–817.
50. Y. Z. Zhou, W. C. Yi, L. Gao and X. Y. Li, Adaptive di erential evolution with sorting crossover rate for continuous optimization problems, IEEE T. Cybernetics, 47 (2017), 2742–2753.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)