Citation: Irakli Loladze. Iterative chemostat: A modelling framework linking biosynthesis to nutrient cycling on ecological and evolutionary time scales[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 990-1004. doi: 10.3934/mbe.2019046
[1] | T. H. Chrzanowski and J. P. Grover, Element content of Pseudomonas fluorescens varies with growth rate and temperature: a replicated chemostat study addressing ecological stoichiometry, Limnol. Oceanogr., 53 (2008), 1242–1251. |
[2] | C. T. Codeço and J. P. Grover, Competition along a spatial gradient of resource supply: a microbial experimental model, Am. Nat., 157 (2001), 300–315. |
[3] | S. J. Daines, J. R. Clark and T. M. Lenton, Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N : P ratio, Ecol. Lett., 17 (2014), 414–425. |
[4] | P. De Leenheer and H. Smith, Feedback control for chemostat models, J. Math. Biol., 46 (2003), 48–70. |
[5] | O. Diekmann, A beginners guide to adaptive dynamics, Summer School on Mathematical Biology, (2004), 63–100. |
[6] | P. G. Falkowski and C. S. Davis, Natural proportions, Nature, 431 (2004), 131. |
[7] | S. A. Geritz, G. Mesze and J. A. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. ecol., 12 (1998), 35-57. |
[8] | J. Grosse, A. Burson, M. Stomp, J. Huisman and H. T. S. Boschker, From ecological stoichiometry to biochemical composition: Variation in N and P supply alters key biosynthetic rates in marine phytoplankton, Front. Microbiol., 8 (2017), 1–11. |
[9] | H. Guo and L. Chen, Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control, J. Theor. Biol., 260 (2009), 502–509. |
[10] | C. A. Klausmeier, Successional state dynamics: a novel approach to modeling nonequilibrium foodweb dynamics, J. Theor. Biol., 262 (2010), 584–595. |
[11] | C. A. Klausmeier, E. Litchman, T. Daufresne and S. A. Levin, Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton, Nature, 429 (2004), 171–174. |
[12] | I. Loladze and J. J. Elser, The origins of the Redfield nitrogen to phosphorus ratio are in a homoeostatic protein to rRNA ratio, Ecol. lett., 14 (2011), 244–250. |
[13] | S. J. Pirt and W. M. Kurowski, An extension of the theory of the chemostat with feedback of organisms. Its experimental realization with a yeast culture, J. Gen. Microbiol., 63 (1970), 357–366. |
[14] | A. C. Redfield, On the proportions of organic derivatives in sea water and their relations to the composition of plankton, James Johnstone Memorial Volume, Univ. Liverpool, (1934) 176–192. |
[15] | S. Rinaldi and M. Scheffer, Geometric analysis of ecological models with slow and fast processes, Ecosystems, 3 (2000), 507–521. |
[16] | H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge university press, 1995. |
[17] | R. W. Sterner and J. J. Elser, Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere, Princeton University Press, 2002. |
[18] | T. Tyrrell, The relative influences of nitrogen and phosphorus on oceanic primary production, Nature, 400 (1999), 525–531. |
[19] | T. S. Weber and C. Deutsch, Ocean nutrient ratios governed by plankton biogeography, Nature, 467 (2010), 550–554. |