Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

On the continuity of the function describing the times of meeting impulsive set and its application

. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China

The properties of the limit sets of orbits of planar impulsive semi-dynamic system strictly depend on the continuity of the function, which describes the times of meeting impulsive sets. In this note, we will show a more realistic counter example on the continuity of this function which has been proven and widely used in impulsive dynamical system and applied in life sciences including population dynamics and disease control. Further, what extra condition should be added to guarantee the continuity of the function has been addressed generally, and then the applications and shortcomings have been discussed when using the properties of this function.

  Article Metrics

Keywords Impulsive semi-dynamical system; Poincaré map; continuity; state-dependent feedback control; counter example

Citation: Sanyi Tang, Wenhong Pang. On the continuity of the function describing the times of meeting impulsive set and its application. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1399-1406. doi: 10.3934/mbe.2017072


  • [1] E. M. Bonotto,M. Federson, Limit sets and the Poincare Bendixson theorem in impulsive semidynamical systems, J. Differ. Equ., 244 (2008): 2334-2349.
  • [2] K. Ciesielski, On semicontinuity in impulsive dynamical systems, Bulletin of The Polish Academy of Sciences Mathematics, 52 (2004): 71-80.
  • [3] G. B. Ermentrout,N. Kopell, Multiple pulse interactions and averaging in systems of coupled neural oscillators, J. Math. Biol., 29 (1991): 195-217.
  • [4] R. A. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961): 445-466.
  • [5] G. Gabor, The existence of viable trajectories in the state-dependent impusive systems, Nonlinear Anal. TMA, 72 (2010): 3828-3836.
  • [6] G. Gabor, Viable periodic solutions in state-dependent impulsive problems, Collect. Math., 66 (2015): 351-365.
  • [7] P. Goel,B. Ermentrout, Synchrony, stability, and firing patterns in pulse-coupled oscillators, Physica D, 163 (2002): 191-216.
  • [8] M. Z. Huang,J. X. Li,X. Y. Song,H. J. Guo, Modeling impulsive injections of insulin: Towards aritificial pancreas, SIAM J. Appl. Math., 72 (2012): 1524-1548.
  • [9] S. K. Kaul, On impulsive semidynamical systems, J. Math. Anal. Appl., 150 (1990): 120-128.
  • [10] J. H. Liang,S. Y. Tang,J. J. Nieto,R. A. Cheke, Analytical methods for detecting pesticide switches with evolution of pesticide resistance, Math. Biosci., 245 (2013): 249-257.
  • [11] B. Liu, Y. Tian and B. L. Kang, Dynamics on a Holling Ⅱ predator-prey model with state-dependent impulsive control, International J. Biomath. , 5 (2012), 1260006, 18 pp.
  • [12] L. F. Nie,Z. D. Teng,L. Hu, The dynamics of a chemostat model with state dependent impulsive effects, Int. J. Bifurcat. Chaos, 21 (2011): 1311-1322.
  • [13] J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment, Bull. Math. Biol., 58 (1996): 425-447.
  • [14] B. Shulgin,L. Stone,Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60 (1998): 1123-1148.
  • [15] L. Stone,B. Shulgin,Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Model., 31 (2000): 207-215.
  • [16] K. B. Sun,Y. Tian,L. S. Chen,A. Kasperski, Nonlinear modelling of a synchronized chemostat with impulsive state feedback control, Math. Comput. Modelling, 52 (2010): 227-240.
  • [17] S. Y. Tang,R. A. Cheke, State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005): 257-292.
  • [18] S. Y. Tang,R. A. Cheke, Models for integrated pest control and their biological implications, Math. Biosci., 215 (2008): 115-125.
  • [19] S. Y. Tang,L. S. Chen, Modelling and analysis of integrated pest management strategy, Discrete Contin. Dyn. Syst. B, 4 (2004): 759-768.
  • [20] S. Y. Tang,J. H. Liang,Y. S. Tan,R. A. Cheke, Threshold conditions for interated pest management models with pesticides that have residual effects, J. Math. Biol., 66 (2013): 1-35.
  • [21] S. Y. Tang, W. H. Pang, R. A. Cheke and J. H. Wu, Global dynamics of a state-dependent feedback control system, Advances in Difference Equations, 2015 (2015), 70pp.
  • [22] S. Y. Tang,G. Y. Tang,R. A. Cheke, Optimum timing for integrated pest management: Modeling rates of pesticide application and natural enemy releases, J. Theor. Biol., 264 (2010): 623-638.
  • [23] S. Y. Tang,B. Tang,A. L. Wang,Y. N. Xiao, Holling Ⅱ predator-prey impulsive semi-dynamic model with complex Poincare map, Nonlinear Dynamics, 81 (2015): 1575-1596.
  • [24] S. Y. Tang,Y. N. Xiao,L. S. Chen,R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bull. Math. Biol., 67 (2005): 115-135.


This article has been cited by

  • 1. Qianqian Zhang, Biao Tang, Sanyi Tang, Vaccination threshold size and backward bifurcation of SIR model with state-dependent pulse control, Journal of Theoretical Biology, 2018, 10.1016/j.jtbi.2018.07.010
  • 2. Sanyi Tang, Xuewen Tan, Jin Yang, Juhua Liang, Periodic Solution Bifurcation and Spiking Dynamics of Impacting Predator–Prey Dynamical Model, International Journal of Bifurcation and Chaos, 2018, 28, 12, 1850147, 10.1142/S021812741850147X
  • 3. Juhua Liang, Qian Yan, Changcheng Xiang, Sanyi Tang, A reaction-diffusion population growth equation with multiple pulse perturbations, Communications in Nonlinear Science and Numerical Simulation, 2019, 10.1016/j.cnsns.2019.02.015
  • 4. Tianyu Cheng, Sanyi Tang, Robert A. Cheke, Threshold Dynamics and Bifurcation of a State-Dependent Feedback Nonlinear Control Susceptible–Infected–Recovered Model1, Journal of Computational and Nonlinear Dynamics, 2019, 14, 7, 10.1115/1.4043001
  • 5. Sanyi Tang, Changtong Li, Biao Tang, Xia Wang, Global dynamics of a nonlinear state-dependent feedback control ecological model with a multiple-hump discrete map, Communications in Nonlinear Science and Numerical Simulation, 2019, 79, 104900, 10.1016/j.cnsns.2019.104900
  • 6. Qian Li, Yanni Xiao, Dynamical Behavior and Bifurcation Analysis of the SIR Model with Continuous Treatment and State-Dependent Impulsive Control, International Journal of Bifurcation and Chaos, 2019, 29, 10, 1950131, 10.1142/S0218127419501311
  • 7. Xiyin Liang, Yongzhen Pei, Jianguo Tan, Yunfei Lv, Optimal parameter selection problem of the state dependent impulsive differential equations, Nonlinear Analysis: Hybrid Systems, 2019, 34, 238, 10.1016/j.nahs.2019.07.001
  • 8. Qianqian Zhang, Biao Tang, Tianyu Cheng, Sanyi Tang, Bifurcation Analysis of a Generalized Impulsive Kolmogorov Model With Applications to Pest and Disease Control, SIAM Journal on Applied Mathematics, 2020, 80, 4, 1796, 10.1137/19M1279320

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Sanyi Tang, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved