Mathematical Biosciences and Engineering, 2015, 12(4): 841-858. doi: 10.3934/mbe.2015.12.841.

Primary: 92C50, 92B05; Secondary: 37N25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics

1. School of Mathematics and Statistics, University of Sydney, Sydney, NSW
2. Weill Cornell Medical College, New York, NY
3. Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791
4. Department of Bioengineering, College of Engineering, Hanyang University, Seoul
5. Department of Mathematics and Computer Science, University of Richmond, Richmond, VA

The past century's description of oncolytic virotherapy as a cancer treatment involving specially-engineered viruses that exploit immune deficiencies to selectively lyse cancer cells is no longer adequate. Some of the most promising therapeutic candidates are now being engineered to produce immunostimulatory factors, such as cytokines and co-stimulatory molecules, which, in addition to viral oncolysis, initiate a cytotoxic immune attack against the tumor.
   This study addresses the combined effects of viral oncolysis and T-cell-mediated oncolysis. We employ a mathematical model of virotherapy that induces release of cytokine IL-12 and co-stimulatory molecule 4-1BB ligand. We found that the model closely matches previously published data, and while viral oncolysis is fundamental in reducing tumor burden, increased stimulation of cytotoxic T cells leads to a short-term reduction in tumor size, but a faster relapse.
   In addition, we found that combinations of specialist viruses that express either IL-12 or 4-1BBL might initially act more potently against tumors than a generalist virus that simultaneously expresses both, but the advantage is likely not large enough to replace treatment using the generalist virus. Finally, according to our model and its current assumptions, virotherapy appears to be optimizable through targeted design and treatment combinations to substantially improve therapeutic outcomes.
  Figure/Table
  Supplementary
  Article Metrics

Keywords co-stimulatory molecules; adenovirus; ordinary differential equations model.; mathematical model; cytokines; Oncolytic virotherapy

Citation: Peter S. Kim, Joseph J. Crivelli, Il-Kyu Choi, Chae-Ok Yun, Joanna R. Wares. Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics. Mathematical Biosciences and Engineering, 2015, 12(4): 841-858. doi: 10.3934/mbe.2015.12.841

References

  • 1. J. Theor. Biol., 225 (2003), 257-274.
  • 2. PLoS Comput. Biol., 7 (2011), e1001085.
  • 3. J. Theor. Biol., 252 (2008), 109-122.
  • 4. Mol. Cancer, 12 (2013), p103.
  • 5. Bull. Math. Biol., 72 (2010), 469-489.
  • 6. Oncoimmunology, 1 (2012), 9-17.
  • 7. Immunity, 21 (2004), 341-347.
  • 8. Cancer Res., 61 (2001), 5453-5460.
  • 9. J. Virol., 75 (2001), 10663-10669.
  • 10. Clin. Cancer Res., 13 (2007), 4677-4685.
  • 11. Cancer Gene Ther., 16 (2009), 873-882.
  • 12. Bull. Math. Biol., 73 (2011), 2-32.
  • 13. Expert Rev. Vaccines, 12 (2013), 1155-1172.
  • 14. Cancer Res., 66 (2006), 2314-2319.
  • 15. J. Virol., 74 (2000), 2895-2899.
  • 16. Cell, 144 (2011), 646-674.
  • 17. Mol. Ther., 18 (2010), 264-274.
  • 18. J. Virol., 80 (2006), 3549-3558.
  • 19. Future Oncol., 6 (2010), 941-949.
  • 20. J. Theor. Biol., 263 (2010), 530-543.
  • 21. PLoS ONE, 5 (2010), e15482.
  • 22. Nat. Commun., 4 (2013), p1974.
  • 23. Mol. Ther., 18 (2010), 888-895.
  • 24. Eur. Rev. Med. Pharmacol. Sci., 17 (2013), 2145-2158.
  • 25. Gene Ther., 15 (2008), 247-256.
  • 26. J. Theor. Biol., 239 (2006), 334-350.
  • 27. Mol. Ther., 19 (2011), 1008-1016.
  • 28. Clin. Cancer Res., 15 (2009), 2352-2360.
  • 29. Gene Ther., 19 (2012), 543-549.
  • 30. Nat. Biotechnol., 30 (2012), 658-670.
  • 31. Clin. Cancer Res., 18 (2012), 6679-6689.
  • 32. Nat. Immunol., 2 (2001), 423-429.
  • 33. Nat. Immunol., 1 (2000), 47-53.
  • 34. Mol. Cancer Ther., 5 (2006), 362-366.
  • 35. Cancer Res., 61 (2001), 3501-3507.
  • 36. Math. Biosci. Eng., 10 (2013), 939-957.
  • 37. PLoS ONE, 4 (2009), e4271.
  • 38. N. Engl. J. Med., 369 (2013), 122-133.
  • 39. Hum. Gene Ther., 8 (1997), 37-44.
  • 40. Bull. Math. Biol., 66 (2004), 605-625.
  • 41. Neoplasia, 15 (2013), 591-599.

 

This article has been cited by

  • 1. Syndi Barish, Michael F. Ochs, Eduardo D. Sontag, Jana L. Gevertz, Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy, Proceedings of the National Academy of Sciences, 2017, 114, 31, E6277, 10.1073/pnas.1703355114
  • 2. Khaphetsi Joseph Mahasa, Amina Eladdadi, Lisette de Pillis, Rachid Ouifki, Dominik Wodarz, Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach, PLOS ONE, 2017, 12, 9, e0184347, 10.1371/journal.pone.0184347
  • 3. R. Eftimie, G. Eftimie, Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics, Letters in Biomathematics, 2018, 5, 1, 70, 10.1080/23737867.2018.1430518
  • 4. Sarah Inglesfield, Aleksandra Jasiulewicz, Matthew Hopwood, James Tyrrell, George Youlden, Maria Mazon-Moya, Owain R. Millington, Serge Mostowy, Sara Jabbari, Kerstin Voelz, Alexander Idnurm, Robust Phagocyte Recruitment Controls the Opportunistic Fungal Pathogen Mucor circinelloides in Innate Granulomas In Vivo, mBio, 2018, 9, 2, e02010-17, 10.1128/mBio.02010-17
  • 5. Adrianne L. Jenner, Chae-Ok Yun, Arum Yoon, Adelle C. F. Coster, Peter S. Kim, Modelling combined virotherapy and immunotherapy: strengthening the antitumour immune response mediated by IL-12 and GM-CSF expression, Letters in Biomathematics, 2018, 1, 10.1080/23737867.2018.1438216
  • 6. Dominik Wodarz, Computational modeling approaches to the dynamics of oncolytic viruses, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 3, 242, 10.1002/wsbm.1332
  • 7. Elena P. Goncharova, Julia S. Ruzhenkova, Ivan S. Petrov, Sergey N. Shchelkunov, Marina A. Zenkova, Oncolytic virus efficiency inhibited growth of tumour cells with multiple drug resistant phenotype in vivo and in vitro, Journal of Translational Medicine, 2016, 14, 1, 10.1186/s12967-016-1002-x
  • 8. Jana L. Gevertz, Peter S. Kim, Joanna R. Wares, Mentoring Undergraduate Interdisciplinary Mathematics Research Students: Junior Faculty Experiences, PRIMUS, 2017, 27, 3, 352, 10.1080/10511970.2016.1191571
  • 9. Khaphetsi Joseph Mahasa, Rachid Ouifki, Amina Eladdadi, Lisette de Pillis, Mathematical model of tumor–immune surveillance, Journal of Theoretical Biology, 2016, 404, 312, 10.1016/j.jtbi.2016.06.012
  • 10. R. Eftimie, C.K. Macnamara, Jonathan Dushoff, J.L. Bramson, D.J.D. Earn, A. Morozov, M. Ptashnyk, V. Volpert, Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System, Mathematical Modelling of Natural Phenomena, 2016, 11, 5, 65, 10.1051/mmnp/201611505
  • 11. Jana L. Gevertz, Joanna R. Wares, Developing a Minimally Structured Mathematical Model of Cancer Treatment with Oncolytic Viruses and Dendritic Cell Injections, Computational and Mathematical Methods in Medicine, 2018, 2018, 1, 10.1155/2018/8760371
  • 12. Talal Alzahrani, Raluca Eftimie, Dumitru Trucu, Multiscale Modelling of Cancer Response to Oncolytic Viral Therapy, Mathematical Biosciences, 2019, 10.1016/j.mbs.2018.12.018
  • 13. Tyler Cassidy, Antony R Humphries, A mathematical model of viral oncology as an immuno-oncology instigator, Mathematical Medicine and Biology: A Journal of the IMA, 2019, 10.1093/imammb/dqz008
  • 14. Adrianne L. Jenner, Peter S. Kim, Federico Frascoli, Oncolytic virotherapy for tumours following a Gompertz growth law, Journal of Theoretical Biology, 2019, 10.1016/j.jtbi.2019.08.002
  • 15. R. Eftimie, G. Eftimie, Investigating Macrophages Plasticity Following Tumour–Immune Interactions During Oncolytic Therapies, Acta Biotheoretica, 2019, 10.1007/s10441-019-09357-9
  • 16. Johannes P. W. Heidbuechel, Daniel Abate-Daga, Christine E. Engeland, Heiko Enderling, , Oncolytic Viruses, 2020, Chapter 21, 307, 10.1007/978-1-4939-9794-7_21

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Peter S. Kim, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved