Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : Primary: 35L60, 92C37; Secondary: 35B35, 34K20.

  • In this paper, we study an age-structured virus dynamics model with Beddington-DeAngelis infection function. An explicit formula for the basic reproductive number $\mathcal{R}_{0}$ of the model is obtained. We investigate the global behavior of the model in terms of $\mathcal{R}_{0}$: if $\mathcal{R}_{0}\leq1$, then the infection-free equilibrium is globally asymptotically stable, whereas if $\mathcal{R}_{0}>1$, then the infection equilibrium is globally asymptotically stable. Finally, some special cases, which reduce to some known HIV infection models studied by other researchers, are considered.

    Citation: Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 859-877. doi: 10.3934/mbe.2015.12.859

    Related Papers:

    [1] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250
    [2] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [3] Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155
    [4] Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044
    [5] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [6] Jinliang Wang, Xiu Dong . Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026
    [7] Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060
    [8] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [9] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [10] Bao-Zhu Guo, Li-Ming Cai . A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences and Engineering, 2011, 8(3): 689-694. doi: 10.3934/mbe.2011.8.689
  • In this paper, we study an age-structured virus dynamics model with Beddington-DeAngelis infection function. An explicit formula for the basic reproductive number $\mathcal{R}_{0}$ of the model is obtained. We investigate the global behavior of the model in terms of $\mathcal{R}_{0}$: if $\mathcal{R}_{0}\leq1$, then the infection-free equilibrium is globally asymptotically stable, whereas if $\mathcal{R}_{0}>1$, then the infection equilibrium is globally asymptotically stable. Finally, some special cases, which reduce to some known HIV infection models studied by other researchers, are considered.


    [1] PLoS Comput. Biol., 4 (2008), e1000103, 9pp.
    [2] Math. Biosci. Eng., 10 (2013), 1335-1349.
    [3] Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1999-2017.
    [4] Math. Biosci., 165 (2000), 27-39.
    [5] Theoret. Pop. Biol., 56 (1999), 65-75.
    [6] J. Theoret. Biol., 190 (1998), 201-214.
    [7] SIAM. J. Appl. Math., 73 (2013), 572-593.
    [8] SIAM J. Appl. Math., 63 (2003), 1313-1327.
    [9] Mathematical Surveys and Monographs Vol 25, American Mathematical Society, Providence, RI, 1988.
    [10] SIAM J. Math. Anal., 20 (1989), 388-395.
    [11] Appl. Math. Lett., 22 (2009), 1690-1693.
    [12] Appl. Math. Lett., 24 (2011), 1199-1203.
    [13] SIAM J. Appl. Math., 70 (2010), 2693-2708.
    [14] SIAM J. Appl. Math., 72 (2012), 25-38.
    [15] J. Theoret. Biol., 185 (1997), 389-400.
    [16] Bull. Math. Biol., 58 (1996), 367-390.
    [17] Bull. Math. Biol., 72 (2010), 1492-1505.
    [18] SIAM J. Appl. Math., 70 (2010), 2434-2448.
    [19] Electron. J. Differential Equations, 65 (2001), 1-35.
    [20] Appl. Anal., 89 (2010), 1109-1140.
    [21] SIAM J. Appl. Math., 73 (2013), 1058-1095.
    [22] Commun. Pure Appl. Anal., 3 (2004), 695-727.
    [23] Math. Biosci. Eng., 9 (2012), 819-841.
    [24] Math. Biosci. Eng., 1 (2004), 267-288.
    [25] Science, 272 (1996), 74-79.
    [26] Oxford University Press, Oxford, 2000.
    [27] SIAM Rev., 41 (1999), 3-44.
    [28] SIAM. J. Appl. Math., 67 (2007), 731-756.
    [29] Differential Integral Equations, 3 (1990), 1035-1066.
  • This article has been cited by:

    1. Xia Wang, Yijun Lou, Xinyu Song, Age-Structured Within-Host HIV Dynamics with Multiple Target Cells, 2017, 138, 00222526, 43, 10.1111/sapm.12135
    2. Honglan Zhu, Xuebing Zhang, Dynamics and Patterns of a Diffusive Prey-Predator System with a Group Defense for Prey, 2018, 2018, 1026-0226, 1, 10.1155/2018/6519696
    3. Shaoli Wang, Jiafang Zhang, Fei Xu, Xinyu Song, Dynamics of virus infection models with density-dependent diffusion and Beddington-DeAngelis functional response, 2017, 40, 01704214, 5593, 10.1002/mma.4411
    4. Yuting Cai, Chuncheng Wang, Dejun Fan, Bifurcation Analysis of a Predator–Prey Model with Age Structure, 2020, 30, 0218-1274, 2050114, 10.1142/S021812742050114X
    5. Shanjing Ren, Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse, 2017, 14, 1551-0018, 1337, 10.3934/mbe.2017069
    6. SHAOLI WANG, FEI XU, LIBIN RONG, BISTABILITY ANALYSIS OF AN HIV MODEL WITH IMMUNE RESPONSE, 2017, 25, 0218-3390, 677, 10.1142/S021833901740006X
    7. Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020
    8. Chang-Yuan Cheng, Yueping Dong, Yasuhiro Takeuchi, An age-structured virus model with two routes of infection in heterogeneous environments, 2018, 39, 14681218, 464, 10.1016/j.nonrwa.2017.07.013
    9. Shaoli Wang, Jianhong Wu, Libin Rong, A note on the global properties of an age-structured viral dynamic model with multiple target cell populations, 2017, 14, 1551-0018, 805, 10.3934/mbe.2017044
    10. Xiangming Zhang, Zhihua Liu, Periodic oscillations in age-structured ratio-dependent predator–prey model with Michaelis–Menten type functional response, 2019, 389, 01672789, 51, 10.1016/j.physd.2018.10.002
    11. Khalid Hattaf, Yu Yang, Global dynamics of an age-structured viral infection model with general incidence function and absorption, 2018, 11, 1793-5245, 1850065, 10.1142/S1793524518500651
    12. Sanhong Liu, Ran Zhang, On an Age-Structured Hepatitis B Virus Infection Model with HBV DNA-Containing Capsids, 2020, 0126-6705, 10.1007/s40840-020-01014-6
    13. Xiangming Zhang, Zhihua Liu, Hopf Bifurcation for a Susceptible-Infective Model with Infection-Age Structure, 2020, 30, 0938-8974, 317, 10.1007/s00332-019-09575-y
    14. Eric Avila-Vales, Ángel G. C. Pérez, Global properties of an age-structured virus model with saturated antibody-immune response, multi-target cells, and general incidence rate, 2021, 27, 1405-213X, 10.1007/s40590-021-00315-5
    15. STABILITY OF A STOCHASTIC SEIS MODEL WITH SATURATION INCIDENCE AND LATENT PERIOD, 2017, 7, 2156-907X, 1652, 10.11948/2017101
    16. Eric Ávila-Vales, Erika Rivero-Esquivel, Gerardo Emilio García-Almeida, Global Dynamics of a Periodic SEIRS Model with General Incidence Rate, 2017, 2017, 1687-9643, 1, 10.1155/2017/5796958
    17. Zijian Liu, Chunfang Guo, Jin Yang, Hong Li, Steady States Analysis of a Nonlinear Age-Structured Tumor Cell Population Model with Quiescence and Bidirectional Transition, 2020, 169, 0167-8019, 455, 10.1007/s10440-019-00306-9
    18. Jianhua Pang, Jing Chen, Zijian Liu, Ping Bi, Shigui Ruan, Local and Global Stabilities of a Viral Dynamics Model with Infection-Age and Immune Response, 2019, 31, 1040-7294, 793, 10.1007/s10884-018-9663-1
    19. Liming Cai, Zhaoqing Li, Chayu Yang, Jin Wang, Global analysis of an environmental disease transmission model linking within-host and between-host dynamics, 2020, 86, 0307904X, 404, 10.1016/j.apm.2020.05.022
    20. Bin Cao, Hai-Feng Huo, Hong Xiang, Global stability of an age-structure epidemic model with imperfect vaccination and relapse, 2017, 486, 03784371, 638, 10.1016/j.physa.2017.05.056
    21. Wei Chen, Nafeisha Tuerxun, Zhidong Teng, The global dynamics in a wild-type and drug-resistant HIV infection model with saturated incidence, 2020, 2020, 1687-1847, 10.1186/s13662-020-2497-2
    22. Yu Yang, Lan Zou, Yasuhiro Takeuchi, Global analysis of a multi-group viral infection model with age structure, 2020, 0003-6811, 1, 10.1080/00036811.2020.1721471
    23. Yu Yang, Yancong Xu, Global stability of a diffusive and delayed virus dynamics model with Beddington–DeAngelis incidence function and CTL immune response, 2016, 71, 08981221, 922, 10.1016/j.camwa.2016.01.009
    24. Shaoli Wang, Xinyu Song, Global properties for an age-structured within-host model with Crowley–Martin functional response, 2017, 10, 1793-5245, 1750030, 10.1142/S1793524517500309
    25. Mohamed Nor Frioui, Sofiane El-hadi Miri, Tarik Mohamed Touaoula, Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response, 2018, 58, 1598-5865, 47, 10.1007/s12190-017-1133-0
    26. Necibe Tuncer, Sunil Giri, Jacek Banasiak, Dynamics of a Vector-Borne model with direct transmission and age of infection, 2021, 16, 0973-5348, 28, 10.1051/mmnp/2021019
    27. Wei Chen, Zhidong Teng, Long Zhang, Global dynamics for a drug-sensitive and drug-resistant mixed strains of HIV infection model with saturated incidence and distributed delays, 2021, 406, 00963003, 126284, 10.1016/j.amc.2021.126284
    28. Zhongzhong Xie, Xiuxiang Liu, Global dynamics in an age-structured HIV model with humoral immunity, 2021, 14, 1793-5245, 2150047, 10.1142/S1793524521500479
    29. Zakya Sari, Tarik Mohammed Touaoula, Bedreddine Ainseba, Mathematical analysis of an age structured epidemic model with a quarantine class, 2021, 16, 0973-5348, 57, 10.1051/mmnp/2021049
    30. Lei Shi, Liping Wang, Linhe Zhu, Anwarud Din, Xiaoyan Qi, Peng Wu, Dynamics of an infection-age HIV diffusive model with latent infected cell and Beddington–DeAngelis infection incidence, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-02428-w
    31. Xiao-mei Feng, Li-li Liu, Feng-qin Zhang, Dynamical Behavior of SEIR-SVS Epidemic Models with Nonlinear Incidence and Vaccination, 2022, 38, 0168-9673, 282, 10.1007/s10255-022-1075-7
    32. Iqra Batool, Naim Bajcinca, Barbara Szomolay, Stability analysis of a multiscale model of cell cycle dynamics coupled with quiescent and proliferating cell populations, 2023, 18, 1932-6203, e0280621, 10.1371/journal.pone.0280621
    33. Jinhu Xu, Dynamic analysis of a cytokine-enhanced viral infection model with infection age, 2023, 20, 1551-0018, 8666, 10.3934/mbe.2023380
    34. Zhonghu Luo, Zijian Liu, Yuanshun Tan, Jin Yang, Huanhuan Qiu, Threshold behavior of an age-structured tumor immune model, 2023, 18, 0973-5348, 6, 10.1051/mmnp/2023001
    35. Iqra Batool, Naim Bajcinca, Stability analysis of a multiscale model including cell-cycle dynamics and populations of quiescent and proliferating cells, 2023, 8, 2473-6988, 12342, 10.3934/math.2023621
    36. Yuan Yuan, Xianlong Fu, Dynamics of an age-structured HIV model with general nonlinear infection rate, 2023, 0272-4960, 10.1093/imamat/hxad010
    37. Fatima Mahroug, Soufiane Bentout, Dynamics of a diffusion dispersal viral epidemic model with age infection in a spatially heterogeneous environment with general nonlinear function, 2023, 0170-4214, 10.1002/mma.9357
    38. Nicolò Cangiotti, Marco Capolli, Mattia Sensi, Sara Sottile, A survey on Lyapunov functions for epidemic compartmental models, 2023, 1972-6724, 10.1007/s40574-023-00368-6
    39. Yuncong Liu, Yan Wang, Daqing Jiang, Dynamic behaviors of a stochastic virus infection model with Beddington–DeAngelis incidence function, eclipse-stage and Ornstein–Uhlenbeck process, 2024, 369, 00255564, 109154, 10.1016/j.mbs.2024.109154
    40. Mengna Li, Zhanwen Yang, Numerical analysis of an age-structured model for HIV viral dynamics with latently infected T cells based on collocation methods, 2024, 03784754, 10.1016/j.matcom.2024.09.028
    41. Xiangkui Zhao, Ting Li, Extinction and persistence of a stochastic HBV model, 2025, 196, 09600779, 116339, 10.1016/j.chaos.2025.116339
    42. Nurbek Azimaqin, Xianning Liu, Yangjiang Wei, Yingke Li, Explicit Formula of the Basic Reproduction Number for Heterogeneous Age‐Structured SIR Epidemic Model, 2025, 0170-4214, 10.1002/mma.10994
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3405) PDF downloads(734) Cited by(42)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog