Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 35R30, 91D10; Secondary: 62F15, 91C99.

  • Focusing on a specific crowd dynamics situation, including real lifeexperiments and measurements, our paper targets a twofold aim: (1) wepresent a Bayesian probabilistic method to estimate the value and theuncertainty (in the form of a probability density function) ofparameters in crowd dynamic models from the experimental data; and (2)we introduce a fitness measure for the models to classify acouple of model structures (forces) according to their fitness to theexperimental data, preparing the stage for a more generalmodel-selection and validation strategy inspired by probabilistic dataanalysis. Finally, we review the essential aspects of our experimentalsetup and measurement technique.

    Citation: Alessandro Corbetta, Adrian Muntean, Kiamars Vafayi. Parameter estimation of social forces in pedestrian dynamics models via a probabilistic method[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 337-356. doi: 10.3934/mbe.2015.12.337

    Related Papers:

    [1] Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089
    [2] Qian Ding, Jian Liu, Zhiming Guo . Dynamics of a malaria infection model with time delay. Mathematical Biosciences and Engineering, 2019, 16(5): 4885-4907. doi: 10.3934/mbe.2019246
    [3] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [4] Hongying Shu, Wanxiao Xu, Zenghui Hao . Global dynamics of an immunosuppressive infection model with stage structure. Mathematical Biosciences and Engineering, 2020, 17(3): 2082-2102. doi: 10.3934/mbe.2020111
    [5] Yuting Ding, Gaoyang Liu, Yong An . Stability and bifurcation analysis of a tumor-immune system with two delays and diffusion. Mathematical Biosciences and Engineering, 2022, 19(2): 1154-1173. doi: 10.3934/mbe.2022053
    [6] Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006
    [7] Zhichao Jiang, Xiaohua Bi, Tongqian Zhang, B.G. Sampath Aruna Pradeep . Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient. Mathematical Biosciences and Engineering, 2019, 16(5): 3807-3829. doi: 10.3934/mbe.2019188
    [8] Juan Wang, Chunyang Qin, Yuming Chen, Xia Wang . Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays. Mathematical Biosciences and Engineering, 2019, 16(4): 2587-2612. doi: 10.3934/mbe.2019130
    [9] Huan Kong, Guohong Zhang, Kaifa Wang . Stability and Hopf bifurcation in a virus model with self-proliferation and delayed activation of immune cells. Mathematical Biosciences and Engineering, 2020, 17(5): 4384-4405. doi: 10.3934/mbe.2020242
    [10] Guangxun Sun, Binxiang Dai . Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting. Mathematical Biosciences and Engineering, 2020, 17(4): 3520-3552. doi: 10.3934/mbe.2020199
  • Focusing on a specific crowd dynamics situation, including real lifeexperiments and measurements, our paper targets a twofold aim: (1) wepresent a Bayesian probabilistic method to estimate the value and theuncertainty (in the form of a probability density function) ofparameters in crowd dynamic models from the experimental data; and (2)we introduce a fitness measure for the models to classify acouple of model structures (forces) according to their fitness to theexperimental data, preparing the stage for a more generalmodel-selection and validation strategy inspired by probabilistic dataanalysis. Finally, we review the essential aspects of our experimentalsetup and measurement technique.


    [1] Center for Research in Scientific Computation Tech Rep, CRSC-TR12-21, North Carolina State University, Raleigh, NC.
    [2] Mathematical Models and Methods in Applied Sciences, 22 (2012), 1230004, 29 pp.
    [3] Neurocomputing, 100 (2013), 127-133.
    [4] in Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014 (eds. A. Cunha, E. Caetano, P. Ribeiro and G. Müller), 2014, 937-944.
    [5] Transportation Research Procedia, 2 (2014), 96-104; The Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), Delft, The Netherlands, October 2014, 22-24.
    [6] in preparation, 2014.
    [7] American Journal of Physics, 14 (1946), 1-13.
    [8] Algebra of Probable Inference, Johns Hopkins University Press, 1961.
    [9] Grundlehren der mathematischen Wissenschaften, Springer, Berlin, New York, 2000.
    [10] Vol. 27, Springer-Verlag, New York, 1978.
    [11] Journal of Statistical Physics, 152 (2013), 1033-1068.
    [12] John Wiley & Sons, 2012.
    [13] Transportation Research Part C: Emerging Technologies, 37 (2013), 193-209.
    [14] Comptes Rendus Mathematique, 352 (2014), 51-54.
    [15] Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, 2062 (2013), 271-302.
    [16] Physical Review E, 51 (1995), pp. 4282.
    [17] Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368 (2010), 4497-4517.
    [18] Computer Animation and Virtual Worlds, 24 (2013), 285-295.
    [19] Systems Science and Cybernetics, IEEE Transactions on, 4 (1968), 227-241.
    [20] Foundations of Physics, 3 (1973), 477-492.
    [21] Cambridge University Press, 2003.
    [22] Science, 220 (1983), 671-680.
    [23] Physica A: Statistical Mechanics and its Applications, 388 (2009), 2717-2726.
    [24] Journal of Chemical Physics, 21 (1953), 1087-1092.
    [25] Redmond, WA, USA.
    [26] Proceedings of the National Academy of Sciences, 108 (2011), 6884-6888.
    [27] The European Physical Journal Special Topics, 202 (2012), 1-162.
    [28] in Pedestrian and Evacuation Dynamics 2012, Springer International Publishing, 2014, 657-672.
    [29] Elsevier, 2010.
    [30] Transportation Research Part C: Emerging Technologies, 48 (2014), 212-228.
    [31] Oxford University Press, 1996.
    [32] Journal of Microscopy, 190 (1998), 28-36.
    [33] 2012.
    [34] Advances in Complex Systems, 15 (2012), 1250029, 22 pp.
    [35] Mitteilungen-Institut für Geodäsie und Photogrammetrie an der Eidgenossischen Technischen Hochschule Zürich, 2003.
  • This article has been cited by:

    1. Fabien Crauste, 2009, Chapter 8, 978-3-642-02328-6, 263, 10.1007/978-3-642-02329-3_8
    2. D. Efimov, W. Perruquetti, J.-P. Richard, Development of Homogeneity Concept for Time-Delay Systems, 2014, 52, 0363-0129, 1547, 10.1137/130908750
    3. F. Crauste, Delay Model of Hematopoietic Stem Cell Dynamics: Asymptotic Stability and Stability Switch, 2009, 4, 0973-5348, 28, 10.1051/mmnp/20094202
    4. Chi Jin, Keqin Gu, Silviu-Iulian Niculescu, Islam Boussaada, Stability Analysis of Systems With Delay-Dependent Coefficients: An Overview, 2018, 6, 2169-3536, 27392, 10.1109/ACCESS.2018.2828871
    5. Chi Jin, Islam Boussaada, Silviu-Iulian Niculescu, Keqin Gu, 2017, An overview of stability analysis of systems with delay dependent coefficients, 978-1-5386-3842-2, 430, 10.1109/ICSTCC.2017.8107072
    6. Mostafa Adimy, Fabien Crauste, Catherine Marquet, Asymptotic behavior and stability switch for a mature–immature model of cell differentiation, 2010, 11, 14681218, 2913, 10.1016/j.nonrwa.2009.11.001
    7. Mostafa Adimy, Fabien Crauste, My Lhassan Hbid, Redouane Qesmi, Stability and Hopf Bifurcation for a Cell Population Model with State-Dependent Delay, 2010, 70, 0036-1399, 1611, 10.1137/080742713
    8. L. Pujo-Menjouet, V. Volpert, Blood Cell Dynamics: Half of a Century of Modelling, 2016, 11, 0973-5348, 92, 10.1051/mmnp/201611106
    9. Aying Wan, Junjie Wei, Bifurcation analysis in an approachable haematopoietic stem cells model, 2008, 345, 0022247X, 276, 10.1016/j.jmaa.2008.04.014
    10. M. Adimy, F. Crauste, Delay Differential Equations and Autonomous Oscillations in Hematopoietic Stem Cell Dynamics Modeling, 2012, 7, 0973-5348, 1, 10.1051/mmnp/20127601
    11. S. Q. Ma, S. J. Hogan, Bifurcation in an modified model of neutrophil cells with time delay, 2024, 0924-090X, 10.1007/s11071-024-09786-3
    12. Chi Jin, Keqin Gu, Qian Ma, Silviu-Iulian Niculescu, Islam Boussaada, Stability analysis of systems with delay-dependent coefficients and commensurate delays, 2024, 0932-4194, 10.1007/s00498-024-00399-0
    13. Suqi Ma, S. J. Hogan, Generalized Hopf Bifurcation in a Delay Model of Neutrophil Cells Model, 2024, 13, 2167-9479, 11, 10.4236/ijmnta.2024.132002
    14. Ma Suqi, S. J. Hogan, Mohammad Safi Ullah, Bifurcation in a G0 Model of Hematological Stem Cells With Delay, 2024, 2024, 1085-3375, 10.1155/aaa/1419716
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3761) PDF downloads(612) Cited by(43)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog