Mathematical Biosciences and Engineering, 2013, 10(3): 787-802. doi: 10.3934/mbe.2013.10.787.

Primary: 49K15, 92C50; Secondary: 93C95.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth

1. Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653
2. Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Mo 63130

In this paper, a mathematical model for chemotherapy that takestumor immune-system interactions into account is considered for astrongly targeted agent. We use a classical model originallyformulated by Stepanova, but replace exponential tumor growth with ageneralised logistic growth model function depending on a parameter$\nu$. This growth function interpolates between a Gompertzian model(in the limit $\nu\rightarrow0$) and an exponential model (in thelimit $\nu\rightarrow\infty$). The dynamics is multi-stable andequilibria and their stability will be investigated depending on theparameter $\nu$. Except for small values of $\nu$, the system hasboth an asymptotically stable microscopic (benign) equilibrium pointand an asymptotically stable macroscopic (malignant) equilibriumpoint. The corresponding regions of attraction are separated by thestable manifold of a saddle. The optimal control problem of movingan initial condition that lies in the malignant region into thebenign region is formulated and the structure of optimal singularcontrols is determined.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Optimal control; generalized logistic growth.; tumor immune system interactions; targeted chemotherapy

Citation: Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences and Engineering, 2013, 10(3): 787-802. doi: 10.3934/mbe.2013.10.787

References

  • 1. Biology Direct, 7 (2012), 31.
  • 2. Physics of Life Reviews, 5 (2008), 183-206.
  • 3. Mathematical and Computational Modelling, 32 (2000), 413-452.
  • 4. Springer Verlag, Series: Mathematics and Applications, 40 (2003).
  • 5. American Institute of Mathematical Sciences, 2007.
  • 6. Annual Review of Immunology, 22 (2004), 322-360.
  • 7. Mathematical Modelling of Natural Phenomena, 7 (2012), 1-26.
  • 8. Springer Verlag, New York, 1983.
  • 9. J. of Theoretical Biology, 220 (2003), 545-554.
  • 10. W. H. Freeman, 2006.
  • 11. J. of Mathematical Biology, 37 (1998), 235-252.
  • 12. Nature, 450 (2007), 903-905.
  • 13. Bulletin of Mathematical Biology, 56 (1994), 295-321.
  • 14. Proceedings of the 51st IEEE Proceedings on Decision and Control, Maui, Hawaii, (2012), 7492-7497.
  • 15. Proceedings of the 8th AIMS Conference, Dresden, Germany, (2010), 971-980.
  • 16. J. of Mathematical Biology, 64 (2012), 557-577.
  • 17. Mathematical Biosciences and Engineering (MBE), 2 (2005), 561-578.
  • 18. Mathematical Medicine and Biology, 21 (2004), 1-34.
  • 19. Physica D, 208 (2005), 220-235.
  • 20. Mathematical Models and Methods in Applied Sciences, 16 (2006), 1375-1401.
  • 21. Chaos, Solitons and Fractals, 31 (2007), 261-268.
  • 22. Mathematical and Computational Modelling, 47 (2008), 614-637.
  • 23. Chaos, Solitons and Fractals, 41 (2009), 875-880.
  • 24. Physical Review E, 84 (2011).
  • 25. Cell Proliferation, 42 (2009), 317-329.
  • 26. Annual Reviews of Immunology, 21 (2003), 807-839.
  • 27. Nature Reviews$|$ Clinical Oncology, 7 (2010), 455-465.
  • 28. J. of Clinical Oncology, 23, (2005), 939-952.
  • 29. Cancer Research, 65 (2005), 7950-7958.
  • 30. MacMillan, New York, 1964.
  • 31. Springer Verlag, 2012.
  • 32. Biophysics, 24 (1980), 917-923.
  • 33. J. of Clinical Investigations, 117 (2007), 1137-1146.
  • 34. J. of Theoretical Biology, 227 (2004), 335-348.
  • 35. J. of Clinical Oncology, 11 (1993), 820-821.

 

This article has been cited by

  • 1. U. Ledzewicz, H. Schättler, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, A Review of Optimal Chemotherapy Protocols: From MTD towards Metronomic Therapy, Mathematical Modelling of Natural Phenomena, 2014, 9, 4, 131, 10.1051/mmnp/20149409
  • 2. Heinz Schättler, Urszula Ledzewicz, Behrooz Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, Journal of Mathematical Biology, 2016, 72, 5, 1255, 10.1007/s00285-015-0907-y
  • 3. Gary An, Swati Kulkarni, An agent-based modeling framework linking inflammation and cancer using evolutionary principles: Description of a generative hierarchy for the hallmarks of cancer and developing a bridge between mechanism and epidemiological data, Mathematical Biosciences, 2015, 260, 16, 10.1016/j.mbs.2014.07.009
  • 4. Urszula Ledzewicz, Behrooz Amini, Heinz Schättler, Dynamics and control of a mathematical model for metronomic chemotherapy, Mathematical Biosciences and Engineering, 2015, 12, 6, 1257, 10.3934/mbe.2015.12.1257
  • 5. Nicolas Houy, François Le Grand, Francesco Pappalardo, Optimal dynamic regimens with artificial intelligence: The case of temozolomide, PLOS ONE, 2018, 13, 6, e0199076, 10.1371/journal.pone.0199076
  • 6. Dominique Barbolosi, Joseph Ciccolini, Bruno Lacarelle, Fabrice Barlési, Nicolas André, Computational oncology — mathematical modelling of drug regimens for precision medicine, Nature Reviews Clinical Oncology, 2016, 13, 4, 242, 10.1038/nrclinonc.2015.204
  • 7. Heinz Schättler, Urszula Ledzewicz, , Optimal Control for Mathematical Models of Cancer Therapies, 2015, Chapter 8, 317, 10.1007/978-1-4939-2972-6_8
  • 8. Heinz Schättler, Urszula Ledzewicz, , Optimal Control for Mathematical Models of Cancer Therapies, 2015, Chapter 1, 1, 10.1007/978-1-4939-2972-6_1
  • 9. Urszula Ledzewicz, Heinz Schättler, , Mathematical Models of Tumor-Immune System Dynamics, 2014, Chapter 7, 157, 10.1007/978-1-4939-1793-8_7

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved