Mathematical Biosciences and Engineering, 2013, 10(1): 263-278. doi: 10.3934/mbe.2013.10.263.

Primary: 35R35, 35Q92; Secondary: 92C37.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

On a mathematical model of tumor growth based on cancer stem cells

1. Departamento de Matemática Aplicada, EUI Informática, Universidad Politécnica de Madrid, 28031 Madrid

We consider a simple mathematical model of tumor growth based on cancer stem cells. The model consists of four hyperbolic equations of first order to describe the evolution ofdifferent subpopulations of cells: cancer stem cells, progenitor cells, differentiated cells and dead cells. A fifth equation is introduced to model the evolution of the moving boundary. The system includes non-local terms of integral type in the coefficients. Under some restrictions in the parameters we show thatthere exists a unique homogeneous steady state which is stable.
  Figure/Table
  Supplementary
  Article Metrics

Keywords free boundary problems; stability.; Cancer steam cells

Citation: J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences and Engineering, 2013, 10(1): 263-278. doi: 10.3934/mbe.2013.10.263

References

  • 1. Cell, 124 (2006), 1111-1115.
  • 2. Cancer Res, 65 (2005), 10946-10951.
  • 3. Blood, 112 (2008), 4793-4807.
  • 4. Tutorials in mathematical biosciences. III, 223-246, Lecture Notes in Math., 1872, Springer, Berlin, 2006.
  • 5. J. Math. Biol., 47 (2003), 391-423.
  • 6. Proceedings of the CS2Bio 2nd International Workshop on Interactions between Computer Science and Biology, 2011.
  • 7. PLoS ONE, 7 (2012), e26233.
  • 8. Journal of Theoretical Biology, 250 (2008), 606-620.
  • 9. Willey Edt. New Jersey, 2009.
  • 10. Mathematical Models and Methods in Applied Sciences, 19 (2009), 257-281.
  • 11. Discrete and Continuous Dynamical Systems - Serie A., 25 (2009), 343-361.
  • 12. in "Modern Mathematical Tools and Techniques in Capturing Complexity Series: Understanding Complex Systems" (Eds. L. Pardo, N. Balakrishnan and M. A. Gil), Springer 2011.

 

This article has been cited by

  • 1. Sara N. Gentry, Trachette L. Jackson, Shree Ram Singh, A Mathematical Model of Cancer Stem Cell Driven Tumor Initiation: Implications of Niche Size and Loss of Homeostatic Regulatory Mechanisms, PLoS ONE, 2013, 8, 8, e71128, 10.1371/journal.pone.0071128
  • 2. Youshan Tao, Qian Guo, Kazuyuki Aihara, A partial differential equation model and its reduction to an ordinary differential equation model for prostate tumor growth under intermittent hormone therapy, Journal of Mathematical Biology, 2014, 69, 4, 817, 10.1007/s00285-013-0718-y
  • 3. Ana Isabel Muñoz, J. Ignacio Tello, On a mathematical model of bone marrow metastatic niche, Mathematical Biosciences and Engineering, 2016, 14, 1, 289, 10.3934/mbe.2017019
  • 4. Ana I. Muñoz, Numerical resolution of a model of tumour growth, Mathematical Medicine and Biology, 2016, 33, 1, 57, 10.1093/imammb/dqv004
  • 5. Jens Chr. Larsen, Models of cancer growth, Journal of Applied Mathematics and Computing, 2017, 53, 1-2, 613, 10.1007/s12190-016-0985-z
  • 6. L. G. Marcu, D. Marcu, S. M. Filip, In silicostudy of the impact of cancer stem cell dynamics and radiobiological hypoxia on tumour response to hyperfractionated radiotherapy, Cell Proliferation, 2016, 49, 3, 304, 10.1111/cpr.12251
  • 7. Mihaela Negreanu, J. Ignacio Tello, Asymptotic stability of a mathematical model of cell population, Journal of Mathematical Analysis and Applications, 2014, 415, 2, 963, 10.1016/j.jmaa.2014.02.032
  • 8. Alexander T. Pearson, Trachette L. Jackson, Jacques E. Nör, Modeling head and neck cancer stem cell-mediated tumorigenesis, Cellular and Molecular Life Sciences, 2016, 73, 17, 3279, 10.1007/s00018-016-2226-x
  • 9. Azim Rivaz, Mahdieh Azizian, Madjid Soltani, Various Mathematical Models of Tumor Growth with Reference to Cancer Stem Cells: A Review, Iranian Journal of Science and Technology, Transactions A: Science, 2019, 10.1007/s40995-019-00681-w

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved