A Cellular Potts model simulating cell migration on and in matrix environments

  • Received: 01 May 2012 Accepted: 29 June 2018 Published: 01 December 2012
  • MSC : Primary: 92B05, 92C15; Secondary: 92C42, 92C17.

  • Cell migration on and through extracellular matrix is fundamental ina wide variety of physiological and pathological phenomena, and isexploited in scaffold-based tissue engineering. Migration isregulated by a number of extracellular matrix- or cell-derivedbiophysical parameters, such as matrix fiber orientation, pore size,and elasticity, or cell deformation, proteolysis, and adhesion. Wehere present an extended Cellular Potts Model (CPM) able toqualitatively and quantitatively describe cell migrationefficiencies and phenotypes both on two-dimensional substrates andwithin three-dimensional matrices, close to experimental evidence.As distinct features of our approach, cells are modeled ascompartmentalized discrete objects, differentiated into nucleusand cytosolic region, while the extracellular matrix iscomposed of a fibrous mesh and a homogeneous fluid. Our modelprovides a strong correlation of the directionality of migrationwith the topological extracellular matrix distribution and abiphasic dependence of migration on the matrix structure, density,adhesion, and stiffness, and, moreover, simulates that celllocomotion in highly constrained fibrillar obstacles requires thedeformation of the cell's nucleus and/or the activity ofcell-derived proteolysis. In conclusion, we here propose amathematical modeling approach that serves to characterize cellmigration as a biological phenomenon in healthy and diseased tissuesand in engineering applications.

    Citation: Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 235-261. doi: 10.3934/mbe.2013.10.235

    Related Papers:

  • Cell migration on and through extracellular matrix is fundamental ina wide variety of physiological and pathological phenomena, and isexploited in scaffold-based tissue engineering. Migration isregulated by a number of extracellular matrix- or cell-derivedbiophysical parameters, such as matrix fiber orientation, pore size,and elasticity, or cell deformation, proteolysis, and adhesion. Wehere present an extended Cellular Potts Model (CPM) able toqualitatively and quantitatively describe cell migrationefficiencies and phenotypes both on two-dimensional substrates andwithin three-dimensional matrices, close to experimental evidence.As distinct features of our approach, cells are modeled ascompartmentalized discrete objects, differentiated into nucleusand cytosolic region, while the extracellular matrix iscomposed of a fibrous mesh and a homogeneous fluid. Our modelprovides a strong correlation of the directionality of migrationwith the topological extracellular matrix distribution and abiphasic dependence of migration on the matrix structure, density,adhesion, and stiffness, and, moreover, simulates that celllocomotion in highly constrained fibrillar obstacles requires thedeformation of the cell's nucleus and/or the activity ofcell-derived proteolysis. In conclusion, we here propose amathematical modeling approach that serves to characterize cellmigration as a biological phenomenon in healthy and diseased tissuesand in engineering applications.


    加载中
    [1] $3^{rd}$ edition, Garland Science, 1994.
    [2] Nano Lett., 8 (2008), 2063-2069.
    [3] Immunity, 25 (2006), 989-1001.
    [4] in "Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions" (eds. A. R. A. Anderson, M. A. J. Chaplain and K. A. Rejniak), Birkhaüser, (2007), 157-167.
    [5] Biophys. J., 92 (2007), 3105-3121.
    [6] Mol. Biol. Cell., 19 (2008), 3357-3368.
    [7] Odontology, 96 (2008), 1-11.
    [8] Biopolymers, 54 (2000), 222-234.
    [9] Langmuir, 19 (2003), 1611-1617.
    [10] Ann. Biomed. Eng., 28 (2003), 110-118.
    [11] IEEE Eng. Med. Biol. Mag., 22 (2003), 42-50.
    [12] Biophys. J., 92 (2007), 2964-2974.
    [13] Nat. Rev. Cancer, 3 (2003), 921-930.
    [14] Am. J. Pathol., 178 (2011), 1221-1232.
    [15] Ann. Biomed. Eng., 22 (1994), 342-356.
    [16] J. Cell. Biol., 122 (1993), 729-737.
    [17] J. Cell. Biol., 184 (2009), 481-490.
    [18] Biomaterials, 22 (2001), 1065-1075.
    [19] Exp. Cell. Res., 111 (1978), 475-479.
    [20] Agents Actions Suppl., 12 (1983), 14-33.
    [21] Biophys. J., 86 (2004), 617-628.
    [22] Eur. J. Immunol., 28 (1998), 2331-2343.
    [23] Cell. Mol. Life Sci., 57 (2000), 41-64.
    [24] Nat. Rev. Cancer, 3 (2003), 362-374.
    [25] Cancer Res., 57 (1997), 2061-2070.
    [26] Curr. Opin. Cell. Biol., 23 (2011), 253.
    [27] Nat. Immunol., 9 (2008), 960-969.
    [28] J. Cell. Biol., 188 (2009), 11-19.
    [29] Nat. Rev. Mol. Cell. Biol., 10 (2009), 445-457.
    [30] Biophys. J., 85 (2003), 3329-3335.
    [31] Trends Cell. Biol., 21 (2011), 6-11.
    [32] Math. Model. Nat. Phenom., 5 (2010), 203-223.
    [33] in "Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions" (eds. A. R. A. Anderson, M. A. J. Chaplain and K. A. Rejniak), Birkhaüser, (2007), 79-106.
    [34] Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 47 (1993), 2128-2154.
    [35] J. Cell. Biol., 109 (1989), 799-809.
    [36] Phys. Rev. Lett., 69 (1992), 2013-2016.
    [37] Biophys. J., 95 (2008), 4013-4024.
    [38] Cells Tissues Organs, 176 (2008), 153-165.
    [39] J. Cell Sci., 122 (2009), 3203-3208.
    [40] Z. Physik., 31 (1925), 253.
    [41] Biophys. J., 72 (1997), 1472-1480.
    [42] Birth Defects Res. C. Embryo Today, 84 (2008), 102-122.
    [43] Eur. Cell. Mater., 9 (2010), 329-343.
    [44] Oxford University Press, London, 1996.
    [45] Cell, 84 (1996), 359-369.
    [46] J. Cell. Sci., 117 (2004), 41-52.
    [47] Proc. Natl. Acad. Sci. U. S. A., 100 (2003), 5413-5418.
    [48] Mol. Biol. Cell., 10 (1999), 3067-3079.
    [49] in "IEEE conference on Computational Intelligence in Bioinformatics and Bioengineering," (2008), 233-240.
    [50] in "Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions" (eds. A. R. A. Anderson, M. A. J. Chaplain and K. A. Rejniak), Birkhaüser, (2007), 107-136.
    [51] PLoS Comput. Biol., 4 (2008), e1000163, 16 pp.
    [52] J. Chem. Phys., 21 (1953), 1087-1092.
    [53] Current Biology, 13 (2003), R721-733.
    [54] Biomaterials, 25 (2004), 1077-1086.
    [55] J. Mater. Sci. Mater. Med., 6 (1995), 460-472.
    [56] J. Biomed. Mater. Res. A, 68 (2004), 756-762.
    [57] Nature, 385 (1997), 537-540.
    [58] Dev. Biol., 313 (2008), 545-555.
    [59] J. Cell. Physiol., 204 (2005), 198-209.
    [60] Cell, 112 (2003), 453-465.
    [61] Proc. Camb. Phil. Soc., 48 (1952), 106-109.
    [62] Biophys. J., 89 (2005), 1374-1388.
    [63] Biophys. J., 92 (2007), 2212-2222.
    [64] Science, 302 (2003), 1704-1709.
    [65] J. Biomech. Eng., 124 (2002), 214-222.
    [66] PLoS ONE, 5 (2010), e8726.
    [67] Biophys. J., 95 (2006), 5661-5680.
    [68] J. Cell. Biol., 185 (2009), 11-19.
    [69] Nat. Rev. Cancer, 7 (2007), 737-749.
    [70] Bull. Math. Biol., 76 (2011), 1253-1291.
    [71] Multiscale Model. Simul., 10 (2012), 342-382.
    [72] Biomaterials, 22 (2001), 1713-1719.
    [73] Cell. Tissue Res., 339 (2010), 83-92.
    [74] J. Biol. Chem., 251 (1976), 5786-5792.
    [75] Conf. Proc. IEEE Eng. Med. Biol. Soc., 2010 (2010), 843-846.
    [76] Science, 141 (1963), 401-408.
    [77] J. Exp. Zool., 171 (1970), 395-433.
    [78] Oncology, 21 (2007), 6-12.
    [79] Cancer Res., 69 (2009), 4167-4174.
    [80] Cell. Transplant., 3 (1994), 339-343.
    [81] Nat. Cell. Biol., 9 (2007), 893-904.
    [82] Semin. Cell. Dev. Biol., 20 (2009), 931-941.
    [83] Trends Cell. Biol., 21 (2011), 736-744.
    [84] J. Cell. Biol., 160 (2003), 267-277.
    [85] Biophys. J., 96 (2009), 1566-1585.
    [86] Proc. Natl. Acad. Sci. U. S. A., 86 (1989), 933-937.
    [87] Ann. Biomed. Eng., 35 (2007), 91-100.
    [88] Proc. Natl. Acad. Sci. USA, 103 (2006), 10889-10894.
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(761) PDF downloads(673) Cited by(57)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog