[1]
|
H. C. Ott, T. S. Matthiesen, S. K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, et al., Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart, Nat. Med., 14 (2008), 213–221. https://doi.org/10.1038/nm1684 doi: 10.1038/nm1684
|
[2]
|
J. M. Wainwright, C. A. Czajka, U. B. Patel, D. O. Freytes, K. Tobita, T. W. Gilbert, et al., Preparation of cardiac extracellular matrix from an intact porcine heart, Tissue Eng. Part C Methods, 16 (2010), 525–532. https://doi.org/10.1089/ten.tec.2009.0392 doi: 10.1089/ten.tec.2009.0392
|
[3]
|
A. B. Daly, J. M. Wallis, Z. D. Borg, R. W. Bonvillain, B. Deng, B. A. Ballif, et al., Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells, Tissue Eng. Part A, 18 (2012), 1–16. https://doi.org/10.1089/ten.tea.2011.0301 doi: 10.1089/ten.tea.2011.0301
|
[4]
|
J. Cortiella, J. Niles, A. Cantu, A. Brettler, A. Pham, G. Vargas, et al., Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation, Tissue Eng. Part A, 16 (2010), 2565–2580. https://doi.org/10.1089/ten.tea.2009.0730 doi: 10.1089/ten.tea.2009.0730
|
[5]
|
H. C. Ott, B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, et al., Regeneration and orthotopic transplantation of a bioartificial lung, Nat. Med., 16 (2010), 927–933. https://doi.org/10.1038/nm.2193 doi: 10.1038/nm.2193
|
[6]
|
K. H. Nakayama, C. A. Batchelder, C. I. Lee, A. F. Tarantal, Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering, Tissue Eng. Part A, 16 (2010), 2207–2216. https://doi.org/10.1089/ten.tea.2009.0602 doi: 10.1089/ten.tea.2009.0602
|
[7]
|
G. Orlando, C. Booth, Z. Wang, G. Totonelli, C. L. Ross, E. Moran, et al., Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies., Biomaterials, 34 (2013), 5915–25. https://doi.org/10.1016/j.biomaterials.2013.04.033 doi: 10.1016/j.biomaterials.2013.04.033
|
[8]
|
B. E. Uygun, A. Soto-Gutierrez, H. Yagi, M. L. Izamis, M. A. Guzzardi, C. Shulman, et al., Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix, Nat. Med., 16 (2010), 814–820. https://doi.org/10.1038/nm.2170 doi: 10.1038/nm.2170
|
[9]
|
A. Soto-Gutierrez, L. Zhang, C. Medberry, K. Fukumitsu, D. Faulk, H. Jiang, et al., A whole-organ regenerative medicine approach for liver replacement, Tissue Eng. Part C Methods, 17 (2011), 677–686. https://doi.org/10.1089/ten.tec.2010.0698 doi: 10.1089/ten.tec.2010.0698
|
[10]
|
Y. H. Hsu, M. L. Moya, C. C. W. Hughes, S. C. George, A. P. Lee, A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays, Lab Chip, 13 (2013), 2990. https://doi.org/10.1039/c3lc50424g doi: 10.1039/c3lc50424g
|
[11]
|
K. Sakaguchi, T. Shimizu, S. Horaguchi, H. Sekine, M. Yamato, M. Umezu, et al., In vitro engineering of vascularized tissue surrogates, Sci. Rep., 3 (2013), 1316. https://doi.org/10.1038/srep01316 doi: 10.1038/srep01316
|
[12]
|
J. Zhang, L. Chu, Z. Hou, M. P. Schwartz, T. Hacker, V. Vickerman, et al., Functional characterization of human pluripotent stem cell-derived arterial endothelial cells, Proc. Natl. Acad. Sci., (2017), 201702295. https://doi.org/10.1073/pnas.1702295114 doi: 10.1073/pnas.1702295114
|
[13]
|
J. A. Whisler, M. B. Chen, R. D. Kamm, Control of perfusable microvascular network morphology using a multiculture microfluidic system, Tissue Eng. Part C Methods, 20 (2014), 543–552. https://doi.org/10.1089/ten.tec.2013.0370 doi: 10.1089/ten.tec.2013.0370
|
[14]
|
Z. Wan, S. Zhang, A. X. Zhong, S. E. Shelton, M. Campisi, S. K. Sundararaman, et al., A robust vasculogenic microfluidic model using human immortalized endothelial cells and Thy1 positive fibroblasts, Biomaterials, 276 (2021), 121032. https://doi.org/10.1016/j.biomaterials.2021.121032 doi: 10.1016/j.biomaterials.2021.121032
|
[15]
|
K. Yamamoto, K. Tanimura, M. Watanabe, H. Sano, H. Uwamori, Y. Mabuchi, et al., Construction of continuous capillary networks stabilized by pericyte-like perivascular cells, Tissue Eng. Part A, 25 (2019), 499–510. https://doi.org/10.1089/ten.tea.2018.0186 doi: 10.1089/ten.tea.2018.0186
|
[16]
|
S. Levenberg, J. S. Golub, M. Amit, J. Itskovitz-Eldor, R. Langer, Endothelial cells derived from human embryonic stem cells, Proc. Natl. Acad. Sci., 99 (2002), 4391–4396. https://doi.org/10.1073/pnas.032074999 doi: 10.1073/pnas.032074999
|
[17]
|
K. E. McCloskey, D. A. Smith, H. Jo, R. M. Nerem, Embryonic stem cell-derived endothelial cells may lack complete functional maturation in vitro, J. Vasc. Res., 43 (2006), 411–421. https://doi.org/10.1159/000094791 doi: 10.1159/000094791
|
[18]
|
Z. Gong, L. E. Niklason, Use of human mesenchymal stem cells as alternative source of smooth muscle cells in vessel engineering, Methods Mol. Biol., 698 (2011), 279–294. https://doi.org/10.1007/978-1-60761-999-4_21 doi: 10.1007/978-1-60761-999-4_21
|
[19]
|
G. K. Owens, Regulation of differentiation of vascular smooth muscle cells, Physiol. Rev., 75 (1995), 487–517. https://doi.org/10.1152/physrev.1995.75.3.487 doi: 10.1152/physrev.1995.75.3.487
|
[20]
|
E. M. Shen, K. E. McCloskey, Development of mural cells: From in vivo understanding to in vitro recapitulation, Stem Cells Dev., 26 (2017), 1020–1041. https://doi.org/10.1089/scd.2017.0020 doi: 10.1089/scd.2017.0020
|
[21]
|
B. Descamps, C. Emanueli, Vascular differentiation from embryonic stem cells: Novel technologies and therapeutic promises, Vascul. Pharmacol., 56 (2012), 267–279. https://doi.org/10.1016/j.vph.2012.03.007 doi: 10.1016/j.vph.2012.03.007
|
[22]
|
R. A. Wimmer, A. Leopoldi, M. Aichinger, N. Wick, B. Hantusch, M. Novatchkova, et al., Human blood vessel organoids as a model of diabetic vasculopathy, Nature, 565 (2019), 505–510. https://doi.org/10.1038/s41586-018-0858-8 doi: 10.1038/s41586-018-0858-8
|
[23]
|
A. A. Blancas, A. J. Shih, N. E. Lauer, K. E. McCloskey, Endothelial cells from embryonic stem cells in a chemically defined medium, Stem Cells Dev., 20 (2011), 2153–2161. https://doi.org/10.1089/scd.2010.0432 doi: 10.1089/scd.2010.0432
|
[24]
|
K. McCloskey, D. Glaser, A. Burns, R. Hatano, Y. Fan, M. Medrzycki, Specialized mouse embryonic stem cells for studying vascular development, Stem Cells Cloning Adv. Appl., 7 (2014), 79. https://doi.org/10.2147/SCCAA.S69554 doi: 10.2147/SCCAA.S69554
|
[25]
|
D. E. Glaser, W. S. Turner, N. Madfis, L. Wong, J. Zamora, N. White, et al., Multifactorial optimizations for directing endothelial fate from stem cells, PLoS One, 11 (2016), e0166663. https://doi.org/10.1371/journal.pone.0166663 doi: 10.1371/journal.pone.0166663
|
[26]
|
B. Jahan, K. E. McCloskey, Differentiation and expansion of endothelial cells requires pre-optimization of KDR+ expression kinetics, Stem Cell Res., 42 (2020), 101685. https://doi.org/10.1016/j.scr.2019.101685 doi: 10.1016/j.scr.2019.101685
|
[27]
|
L. Wong, A. Kumar, B. Gabela-Zuniga, J. Chua, G. Singh, C. L. Happe, et al., Substrate stiffness directs diverging vascular fates, Acta Biomater., 96 (2019), 321–329. https://doi.org/10.1016/j.actbio.2019.07.030 doi: 10.1016/j.actbio.2019.07.030
|
[28]
|
J. M. Osborne, A. G. Fletcher, J. M. Pitt-Francis, P. K. Maini, D. J. Gavaghan, Comparing individual-based approaches to modelling the self-organization of multicellular tissues, PLOS Comput. Biol., 13 (2017), e1005387. https://doi.org/10.1371/journal.pcbi.1005387 doi: 10.1371/journal.pcbi.1005387
|
[29]
|
D. Viens, A three-dimensional finite element model for the mechanics of cell-cell interactions, J. Biomech. Eng., 129 (2007), 651. https://doi.org/10.1115/1.2768375 doi: 10.1115/1.2768375
|
[30]
|
G. W. Brodland, D. A. Clausi, Embryonic tissue morphogenesis modeled by FEM, J. Biomech. Eng., 116 (1994), 146–155. https://doi.org/10.1115/1.2895713 doi: 10.1115/1.2895713
|
[31]
|
Q. Smith, E. Stukalin, S. Kusuma, S. Gerecht, S. X. Sun, Stochasticity and spatial interaction govern stem cell differentiation dynamics, Sci. Rep., 5 (2015), 1–10. https://doi.org/10.1038/srep12617 doi: 10.1038/srep12617
|
[32]
|
W. C. Lo, C. S. Chou, K. Gokoffski, F. Wan, A. Lander, A. Calof, et al., Feedback regulation in multistage cell lineages, Math. Biosci. Eng., 6 (2009), 59–82. https://doi.org/10.3934/mbe.2009.6.59 doi: 10.3934/mbe.2009.6.59
|
[33]
|
A. Szabó, R. Ünnep, E. Méhes, W. O. Twal, W. S. Argraves, Y. Cao, et al., Collective cell motion in endothelial monolayers, Phys. Biol., 7 (2010), 046007. https://doi.org/10.1088/1478-3975/7/4/046007 doi: 10.1088/1478-3975/7/4/046007
|
[34]
|
Y. Mao, A. L. Tournier, P. A. Bates, J. E. Gale, N. Tapon, B. J. Thompson, Planar polarization of the atypical myosin Dachs orients cell divisions in Drosophila, Genes Dev., 25 (2011), 131–136. https://doi.org/10.1101/gad.610511 doi: 10.1101/gad.610511
|
[35]
|
D. C. Walker, G. Hill, S. M. Wood, R. H. Smallwood, J. Southgate, Agent-based computational modeling of wounded epithelial cell monolayers, IEEE Trans. Nanobiosci., 3 (2004), 153–163. https://doi.org/10.1109/TNB.2004.833680 doi: 10.1109/TNB.2004.833680
|
[36]
|
E. L. Bearer, J. S. Lowengrub, H. B. Frieboes, Y. L. Chuang, F. Jin, S. M. Wise, et al., Multiparameter computational modeling of ttumor invasion, Cancer Res., 69 (2009), 4493–4501. https://doi.org/10.1158/0008-5472.CAN-08-3834 doi: 10.1158/0008-5472.CAN-08-3834
|
[37]
|
D. Drasdo, S. Höhme, A single-cell-based model of tumor growth in vitro : monolayers and spheroids, Phys. Biol., 2 (2005), 133–147. https://doi.org/10.1088/1478-3975/2/3/001 doi: 10.1088/1478-3975/2/3/001
|
[38]
|
C. S. Chou, W. C. Lo, K. K. Gokoffski, Y. T. Zhang, F. Y. M. Wan, A. D. Lander, et al., Spatial dynamics of multistage cell lineages in tissue stratification, Biophys. J., 99 (2010), 3145–3154. https://doi.org/10.1016/j.bpj.2010.09.034 doi: 10.1016/j.bpj.2010.09.034
|
[39]
|
D. J. Kelly, P. J. Prendergast, Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects, J. Biomech., 38 (2005), 1413–1422. https://doi.org/10.1016/j.jbiomech.2004.06.026 doi: 10.1016/j.jbiomech.2004.06.026
|
[40]
|
H. Du, Y. Wang, D. Haensel, B. Lee, X. Dai, Q. Nie, Multiscale modeling of layer formation in epidermis, PLOS Comput. Biol., 14 (2018), e1006006. https://doi.org/10.1371/journal.pcbi.1006006 doi: 10.1371/journal.pcbi.1006006
|
[41]
|
A. Atala, Re: Collective and single cell behavior in epithelial contact inhibition, J. Urol., 188 (2012), 1396–1397. https://doi.org/10.1016/j.juro.2012.06.073 doi: 10.1016/j.juro.2012.06.073
|
[42]
|
B. Schreier, G. Schwerdt, C. Heise, D. Bethmann, S. Rabe, S. Mildenberger, et al., Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture, Biochim. Biophys. Acta Mol. Cell Res., 1863 (2016), 1519–1533. https://doi.org/10.1016/j.bbamcr.2016.03.017 doi: 10.1016/j.bbamcr.2016.03.017
|
[43]
|
J. Walter-Yohrling, S. Morgenbesser, C. Rouleau, R. Bagley, M. Callahan, W. Weber, et al., Murine endothelial cell lines as models of tumor endothelial cells, Clin. Cancer Res., 10 (2004), 2179–2189. https://doi.org/10.1158/1078-0432.CCR-03-1013 doi: 10.1158/1078-0432.CCR-03-1013
|
[44]
|
N. Endlich, K. Endlich, N. Taesch, J. J. Helwig, Culture of vascular smooth muscle cells from small arteries of the rat kidney, Kidney Int., 57 (2000), 2468–2475. https://doi.org/10.1046/j.1523-1755.2000.00105.x doi: 10.1046/j.1523-1755.2000.00105.x
|
[45]
|
S. I. Nishikawa, S. Nishikawa, M. Hirashima, N. Matsuyoshi, H. Kodama, Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages, Development, 125 (1998), 1747–1757. https://doi.org/10.1111/ijpo.259 doi: 10.1111/ijpo.259
|
[46]
|
J. Yamashita, H. Itoh, M. Hirashima, M. Ogawa, S. Nishikawa, T. Yurugi, et al., Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors, Nature, 408 (2000), 92–96. https://doi.org/10.1038/35040568 doi: 10.1038/35040568
|
[47]
|
K. L. Hill, P. Obrtlikova, D. F. Alvarez, J. A. King, S. A. Keirstead, J. R. Allred, et al., Human embryonic stem cell−derived vascular progenitor cells capable of endothelial and smooth muscle cell function, Exp. Hematol., 38 (2010), 246–257. https://doi.org/10.1016/j.exphem.2010.01.001 doi: 10.1016/j.exphem.2010.01.001
|
[48]
|
G. Van Rossum, F. L. Drake Jr, Python reference manual, Department of Computer Science, CWI, 1995.
|
[49]
|
MATLAB, version 9.1.0.441655 (R2016b), Natick, MA: The MathWorks, Inc. Available from: https://www.mathworks.com
|
[50]
|
A. Huttenlocher, M. Lakonishok, M. Kinder, S. Wu, T. Truong, K. A. Knudsen, et al., Integrin and cadherin synergy regulates contact inhibition of migration and motile activity, J. Cell Biol., 141 (1998), 515–526. https://doi.org/10.1083/jcb.141.2.515 doi: 10.1083/jcb.141.2.515
|
[51]
|
M. Abercrombie, J. E. M. Heaysman, Observations on the social behaviour of cells in tissue culture, Exp. Cell Res., 6 (1954), 293–306. https://doi.org/10.1016/0014-4827(54)90176-7 doi: 10.1016/0014-4827(54)90176-7
|
[52]
|
M. S. Steinberg, Does differential adhesion govern self‐assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, J. Exp. Zool., 173 (1970), 395–433. https://doi.org/10.1002/jez.1401730406 doi: 10.1002/jez.1401730406
|
[53]
|
B. Lilly, We have contact: endothelial cell-smooth muscle cell interactions, Physiology, 29 (2014), 234–241. https://doi.org/10.1152/physiol.00047.2013 doi: 10.1152/physiol.00047.2013
|
[54]
|
W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, et al., Cadherin interaction probed by atomic force microscopy, Proc. Natl. Acad. Sci., 97 (2000), 4005–4010. https://doi.org/10.1073/pnas.070052697 doi: 10.1073/pnas.070052697
|
[55]
|
E. Moiseeva, Adhesion receptors of vascular smooth muscle cells and their functions, Cardiovasc. Res., 52 (2001), 372–386. https://doi.org/10.1016/S0008-6363(01)00399-6 doi: 10.1016/S0008-6363(01)00399-6
|
[56]
|
E. Perret, A. Leung, H. Feracci, E. Evans, Trans-bonded pairs of E-cadherin exhibit a remarkable hierarchy of mechanical strengths, Proc. Natl. Acad. Sci., 101 (2004), 16472–16477. https://doi.org/10.1073/pnas.0402085101 doi: 10.1073/pnas.0402085101
|
[57]
|
M. Noseda, L. Chang, G. McLean, J. E. Grim, B. E. Clurman, L. L. Smith, et al., Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression, Mol. Cell. Biol., 24 (2004), 8813–8822. https://doi.org/10.1128/MCB.24.20.8813-8822.2004 doi: 10.1128/MCB.24.20.8813-8822.2004
|
[58]
|
J. P. Sasine, K. T. Yeo, J. P. Chute, Concise review: Paracrine functions of vascular niche cells in regulating hematopoietic stem cell fate, Stem Cells Transl. Med., 6 (2017), 482–489. https://doi.org/https://doi.org/10.5966/sctm.2016-0254 doi: 10.5966/sctm.2016-0254
|
[59]
|
H. L. Kirschenlohr, J. C. Metcalfe, P. L. Weissberg, D. J. Grainger, Adult human aortic smooth muscle cells in culture produce active TGF-beta, Am. J. Physiol., 265 (1993), C571–C576. https://doi.org/10.1152/ajpcell.1993.265.2.C571 doi: 10.1152/ajpcell.1993.265.2.C571
|
[60]
|
H. Huang, X. Zhao, L. Chen, C. Xu, X. Yao, Y. Lu, et al., Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture, Biochem. Biophys. Res. Commun., 351 (2006), 321–327. https://doi.org/10.1016/j.bbrc.2006.09.171 doi: 10.1016/j.bbrc.2006.09.171
|
[61]
|
E. G. Rens, M. T. Zeegers, I. Rabbers, A. Szabó, R. M. H. Merks, Autocrine inhibition of cell motility can drive epithelial branching morphogenesis in the absence of growth, Philos. Trans. R. Soc. B Biol. Sci., 375 (2020), 20190386. https://doi.org/10.1098/rstb.2019.0386 doi: 10.1098/rstb.2019.0386
|
[62]
|
S. H. Yoon, Y. K. Kim, E. D. Han, Y. H. Seo, B. H. Kim, M. R. K. Mofrad, Passive control of cell locomotion using micropatterns: the effect of micropattern geometry on the migratory behavior of adherent cells, Lab Chip, 12 (2012), 2391. https://doi.org/10.1039/c2lc40084g doi: 10.1039/c2lc40084g
|
[63]
|
A. Spradling, D. Drummond-Barbosa, T. Kai, Stem cells find their niche, Nature, 414 (2001), 98–104. https://doi.org/10.1038/35102160 doi: 10.1038/35102160
|
[64]
|
P. J. Albert, U. S. Schwarz, Modeling cell shape and dynamics on micropatterns, Cell Adh. Migr., 10 (2016), 516–528. https://doi.org/10.1080/19336918.2016.1148864 doi: 10.1080/19336918.2016.1148864
|
[65]
|
X. Jiang, D. A. Bruzewicz, A. P. Wong, M. Piel, G. M. Whitesides, Directing cell migration with asymmetric micropatterns, Proc. Natl. Acad. Sci., 102 (2005), 975–978. https://doi.org/10.1073/pnas.0408954102 doi: 10.1073/pnas.0408954102
|
[66]
|
N. Ojeh, I. Pastar, M. Tomic-Canic, O. Stojadinovic, Stem cells in skin regeneration, wound healing, and their clinical applications, Int. J. Mol. Sci., 16 (2015), 25476–25501. https://doi.org/10.3390/ijms161025476 doi: 10.3390/ijms161025476
|
[67]
|
R. I. Johnson, Hexagonal patterning of the Drosophila eye, Dev. Biol., 478 (2021), 173–182. https://doi.org/10.1016/j.ydbio.2021.07.004 doi: 10.1016/j.ydbio.2021.07.004
|