Mathematical Biosciences and Engineering, 2013, 10(5&6): 1455-1474. doi: 10.3934/mbe.2013.10.1455.

Primary: 92D30, 92C60; Secondary: 37N25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile

1. Mathematical, Computational & Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Box 872402, Tempe, AZ 85287
2. Department of Epidemiology, Ministerio de Salud, Santiago
3. Universidad del Desarrollo, Santiago
4. School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287
5. Tulane University, New Orleans, LA, 70118

We use a stochastic simulation model to explore the effect of reactive intervention strategies during the 2002 dengue outbreak in the small population of Easter Island, Chile. We quantified the effect of interventions on the transmission dynamics and epidemic size as a function of the simulated control intensity levels and the timing of initiation of control interventions. Because no dengue outbreaks had been reported prior to 2002 in Easter Island, the 2002 epidemic provided a unique opportunity to estimate the basic reproduction number $R_0$ during the initial epidemic phase, prior to the start of control interventions. We estimated $R_0$ at $27.2$ ($95 \%$CI: $14.8$, $49.3$). We found that the final epidemic size is highly sensitive to the timing of start of interventions. However, even when the control interventions start several weeks after the epidemic onset, reactive intervention efforts can have a significant impact on the final epidemic size. Our results indicate that the rapid implementation of control interventions can have a significant effect in reducing the epidemic size of dengue epidemics.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Chile; Dengue; epidemic; Easter Island; 2002 outbreak; reproduction number.; dengue hemorrhagic fever; mathematical model

Citation: Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1455-1474. doi: 10.3934/mbe.2013.10.1455

References

  • 1. El Vigia (Boletín de Vigilancia en Salud Püblica), 16 (2002), 37-38.
  • 2. Oxford University Press, Oxford, UK, 1991.
  • 3. Springer-Verlag, New York, 2000.
  • 4. BMC Infectious Diseases, 11 (2011), 164.
  • 5. Mathematical Biosciences, 208 (2007), 571-589.
  • 6. Epidemiology and Infection, 8 (2008), 1-11.
  • 7. Journal of Environmental Health, 68 (2006), 40-44.
  • 8. Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2000.
  • 9. Available from: http://www.meteochile.cl/.
  • 10. Tropical Medicine and International Health, 11 (2006), 332-340.
  • 11. Phil. Trans. Roy. Soc. Lond. B, 354 (1999), 757-768.
  • 12. American Journal of Tropical Medicine and Hygiene, 53 (1995), 489-506.
  • 13. Clinical Microbiology Reviews, 11 (1998), 480-496.
  • 14. Mathematical Biosciences, 209 (2007), 361-385.
  • 15. Annu Rev Entomol., 53 (2007), 273-291.
  • 16. Trop. Med. Int. Health., 14 (2009), 628-638.
  • 17. American Journal of Tropical Medicine and Hygiene, 80 (2009), 66-71.
  • 18. Mathematical Biosciences, 155 (1999), 77-109.
  • 19. Available from: http://www.ine.cl.
  • 20. Michigan Thompson-Shore, Inc., Michigan, 1996.
  • 21. American Journal Tropical Medicine and Hygiene, 57 (1997), 285-297.
  • 22. American Journal of Epidemiology, 133 (1991), 1168-1178.
  • 23. Southeast Asian Journal of Tropical Medicine and Public Health, 16 (1985), 560-568.
  • 24. Memórias do Instituto Oswaldo Cruz, 98 (2003), 871-878.
  • 25. Chapter Epidemics, Oxford University Press, London, (1957), 45-62.
  • 26. Transactions of the Royal Society of Tropical Medicine and Hygiene, 88 (1994), 58-59.
  • 27. Transactions of the Royal Society of Tropical Medicine and Hygiene, 95 (2001), 370-374.
  • 28. American Journal Tropical Medicine and Hygiene, 70 (2004), 346-350.
  • 29. American Journal of Tropical Medicine and Hygiene, 58 (1998), 277-282.
  • 30. Bulletin of Mathematical Biology, 68 (2006), 1945-1974.
  • 31. Emerg Infect Dis., 9 (2003), 1465-1467.
  • 32. John Murray, London, 1910.
  • 33. Southeast Asian Journal of Tropical Medicine and Public Health, 24 (1993), 369-375.
  • 34. PLoS Biology, 2 (2004), 1957-1964.
  • 35. PLoS Negl. Trop. Dis., 3 (2009), e481.
  • 36. Mathematical Biosciences, 180 (2002), 29-48.
  • 37. Journal of Infectious Diseases, 181 (2000), 2-9.
  • 38. PLoS Medicine, 2 (2005), e174.
  • 39. Available from: http://www.who.int/mediacentre/factsheets/fs117/en/.
  • 40. Available from: http://www.who.int/csr/resources/publications/dengue/012-23.pdf.

 

This article has been cited by

  • 1. Tao Liu, Guanghu Zhu, Jianfeng He, Tie Song, Meng Zhang, Hualiang Lin, Jianpeng Xiao, Weilin Zeng, Xing Li, Zhihao Li, Runsheng Xie, Haojie Zhong, Xiaocheng Wu, Wenbiao Hu, Yonghui Zhang, Wenjun Ma, Early rigorous control interventions can largely reduce dengue outbreak magnitude: experience from Chaozhou, China, BMC Public Health, 2018, 18, 1, 10.1186/s12889-017-4616-x
  • 2. Sebastian Funk, Adam J. Kucharski, Anton Camacho, Rosalind M. Eggo, Laith Yakob, Lawrence M. Murray, W. John Edmunds, Michael A Johansson, Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus, PLOS Neglected Tropical Diseases, 2016, 10, 12, e0005173, 10.1371/journal.pntd.0005173
  • 3. Rebecca C. Christofferson, Daniel M. Chisenhall, Helen J. Wearing, Christopher N. Mores, Lisa FP. Ng, Chikungunya Viral Fitness Measures within the Vector and Subsequent Transmission Potential, PLoS ONE, 2014, 9, 10, e110538, 10.1371/journal.pone.0110538
  • 4. Murali Krishna Enduri, Shivakumar Jolad, Estimation of reproduction number and non stationary spectral analysis of dengue epidemic, Mathematical Biosciences, 2017, 288, 140, 10.1016/j.mbs.2017.03.007
  • 5. S. Pollett, M.C. Melendrez, I. Maljkovic Berry, S. Duchêne, H. Salje, D.A.T. Cummings, R.G. Jarman, Understanding dengue virus evolution to support epidemic surveillance and counter-measure development, Infection, Genetics and Evolution, 2018, 62, 279, 10.1016/j.meegid.2018.04.032
  • 6. Natsuko Imai, Ilaria Dorigatti, Simon Cauchemez, Neil M. Ferguson, Simon I Hay, Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in Multiple Countries, PLOS Neglected Tropical Diseases, 2015, 9, 4, e0003719, 10.1371/journal.pntd.0003719
  • 7. M. A. Aziz-Alaoui, Sunita Gakkhar, Benjamin Ambrosio, Arti Mishra, A network model for control of dengue epidemic using sterile insect technique, Mathematical Biosciences and Engineering, 2017, 15, 2, 441, 10.3934/mbe.2018020
  • 8. Jing Chen, John C. Beier, Robert Stephen Cantrell, Chris Cosner, Douglas O. Fuller, Yongtao Guan, Guoyan Zhang, Shigui Ruan, Modeling the Importation and Local Transmission of Vector-Borne Diseases in Florida: The Case of Zika Outbreak in 2016, Journal of Theoretical Biology, 2018, 10.1016/j.jtbi.2018.07.026
  • 9. Lan Zou, Jing Chen, Xiaomei Feng, Shigui Ruan, Analysis of a Dengue Model with Vertical Transmission and Application to the 2014 Dengue Outbreak in Guangdong Province, China, Bulletin of Mathematical Biology, 2018, 10.1007/s11538-018-0480-9
  • 10. Erley Lizarazo, Maria Vincenti-Gonzalez, Maria E. Grillet, Sarah Bethencourt, Oscar Diaz, Noheliz Ojeda, Haydee Ochoa, Maria Auxiliadora Rangel, Adriana Tami, Spatial Dynamics of Chikungunya Virus, Venezuela, 2014, Emerging Infectious Diseases, 2019, 25, 4, 10.3201/eid2504.172121
  • 11. Yanfeng Liang, David Greenhalgh, Estimation of the expected number of cases of microcephaly in Brazil as a result of Zika, Mathematical Biosciences and Engineering, 2019, 16, 6, 8217, 10.3934/mbe.2019416

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, Gerardo Chowell, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved