Mathematical Biosciences and Engineering, 2008, 5(2): 355-388. doi: 10.3934/mbe.2008.5.355.

Primary: 92-08, 92C15; Secondary: 65C05, 68U20.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment

1. Biocomplexity Institute and Department of Physics, Indiana University, Swain Hall West, 727 East Third Street, Bloomington, IN 47405-7105

The CompuCell3D modeling environment provides a convenient platform for biofilm simulations using the Glazier-Graner-Hogeweg (GGH) model, a cell-oriented framework designed to simulate growth and pattern formation due to biological cells' behaviors. We show how to develop such a simulation, based on the hybrid (continuum-discrete) model of Picioreanu, van Loosdrecht, and Heijnen (PLH), simulate the growth of a single-species bacterial biofilm, and study the roles of cell-cell and cell-field interactions in determining biofilm morphology. In our simulations, which generalize the PLH model by treating cells as spatially extended, deformable bodies, differential adhesion between cells, and their competition for a substrate (nutrient), suffice to produce a fingering instability that generates the finger shapes of biofilms. Our results agree with most features of the PLH model, although our inclu- sion of cell adhesion, which is difficult to implement using other modeling approaches, results in slightly different patterns. Our simulations thus pro- vide the groundwork for simulations of medically and industrially important multispecies biofilms.
  Figure/Table
  Supplementary
  Article Metrics

Keywords cellular Potts model; CompuCell3D.; computational biology; Biofilms; bacterial growth; Glazier-Graner-Hogeweg model

Citation: Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences and Engineering, 2008, 5(2): 355-388. doi: 10.3934/mbe.2008.5.355

 

This article has been cited by

  • 1. D. Rodriguez, B. Einarsson, A. Carpio, Biofilm growth on rugose surfaces, Physical Review E, 2012, 86, 6, 10.1103/PhysRevE.86.061914
  • 2. Séverine Urdy, On the evolution of morphogenetic models: mechano-chemical interactions and an integrated view of cell differentiation, growth, pattern formation and morphogenesis, Biological Reviews, 2012, 87, 4, 786, 10.1111/j.1469-185X.2012.00221.x
  • 3. Bruno Hay Mele, Francesco Giannino, Christian E. Vincenot, Stefano Mazzoleni, Fabrizio Cartení, Cell-Based Models in Plant Developmental Biology: Insights into Hybrid Approaches, Frontiers in Environmental Science, 2015, 3, 10.3389/fenvs.2015.00073
  • 4. Pablo Gonzalez-de-Aledo, Andrey Vladimirov, Marco Manca, Jerry Baugh, Ryo Asai, Marcus Kaiser, Roman Bauer, An optimization approach for agent-based computational models of biological development, Advances in Engineering Software, 2018, 121, 262, 10.1016/j.advengsoft.2018.03.010
  • 5. Susan D. Hester, Julio M. Belmonte, J. Scott Gens, Sherry G. Clendenon, James A. Glazier, Edmund J. Crampin, A Multi-cell, Multi-scale Model of Vertebrate Segmentation and Somite Formation, PLoS Computational Biology, 2011, 7, 10, e1002155, 10.1371/journal.pcbi.1002155
  • 6. Marco Scianna, Luca Munaron, Multiscale model of tumor-derived capillary-like network formation, Networks and Heterogeneous Media, 2011, 6, 4, 597, 10.3934/nhm.2011.6.597
  • 7. Tomas Storck, Cristian Picioreanu, Bernardino Virdis, Damien J. Batstone, Variable Cell Morphology Approach for Individual-Based Modeling of Microbial Communities, Biophysical Journal, 2014, 106, 9, 2037, 10.1016/j.bpj.2014.03.015
  • 8. Gaddiel Yonathan Ouaknin, Pinhas Zvi Bar-Yoseph, Stochastic Collective Movement of Cells and Fingering Morphology: No Maverick Cells, Biophysical Journal, 2009, 97, 7, 1811, 10.1016/j.bpj.2009.05.064
  • 9. Abbas Shirinifard, James Alexander Glazier, Maciej Swat, J. Scott Gens, Fereydoon Family, Yi Jiang, Hans E. Grossniklaus, Edmund J. Crampin, Adhesion Failures Determine the Pattern of Choroidal Neovascularization in the Eye: A Computer Simulation Study, PLoS Computational Biology, 2012, 8, 5, e1002440, 10.1371/journal.pcbi.1002440
  • 10. M. Scianna, L. Preziosi, Multiscale Developments of the Cellular Potts Model, Multiscale Modeling & Simulation, 2012, 10, 2, 342, 10.1137/100812951
  • 11. Z. Huang, E.S. McLamore, H.S. Chuang, W. Zhang, S. Wereley, J.L.C. Leon, M.K. Banks, Shear-induced detachment of biofilms from hollow fiber silicone membranes, Biotechnology and Bioengineering, 2013, 110, 2, 525, 10.1002/bit.24631
  • 12. R. Allena, M. Scianna, L. Preziosi, A Cellular Potts Model of single cell migration in presence of durotaxis, Mathematical Biosciences, 2016, 275, 57, 10.1016/j.mbs.2016.02.011
  • 13. Nikodem J. Popławski, Ubirajara Agero, J. Scott Gens, Maciej Swat, James A. Glazier, Alexander R. A. Anderson, Front Instabilities and Invasiveness of Simulated Avascular Tumors, Bulletin of Mathematical Biology, 2009, 71, 5, 1189, 10.1007/s11538-009-9399-5
  • 14. Maciej H. Swat, Susan D. Hester, Ariel I. Balter, Randy W. Heiland, Benjamin L. Zaitlen, James A. Glazier, , Systems Biology, 2009, Chapter 13, 361, 10.1007/978-1-59745-525-1_13
  • 15. C. Giverso, M. Scianna, L. Preziosi, N. Lo Buono, A. Funaro, Individual Cell-Based Model for In-Vitro Mesothelial Invasion of Ovarian Cancer, Mathematical Modelling of Natural Phenomena, 2010, 5, 1, 203, 10.1051/mmnp/20105109
  • 16. Ovidiu Pârvu, David Gilbert, Monika Heiner, Fei Liu, Nigel Saunders, Simon Shaw, Spatial-Temporal Modelling and Analysis of Bacterial Colonies with Phase Variable Genes, ACM Transactions on Modeling and Computer Simulation, 2015, 25, 2, 1, 10.1145/2742546

Reader Comments

your name: *   your email: *  

Copyright Info: 2008, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved