Multiscale deformable registration of noisy medical images

  • Received: 01 July 2007 Accepted: 29 June 2018 Published: 01 January 2008
  • MSC : Primary: 68U10; Secondary: 92C55, 62P10, 94A08.

  • Multiscale image registration techniques are presented for the reg- istration of medical images using deformable registration models. The tech- niques are particularly effective for registration problems in which one or both of the images to be registered contains significant levels of noise. A brief overview of existing deformable registration techniques is presented, and exper- iments using B-spline free-form deformation registration models demonstrate that ordinary deformable registration techniques fail to produce accurate re- sults in the presence of significant levels of noise. The hierarchical multiscale image decomposition described in E. Tadmor, S. Nezzar, and L. Vese's, ''A multiscale image representation using hierarchical (BV,L2) decompositions'' (Multiscale Modeling and Simulations, 2 (2004): 4, pp. 554-579) is reviewed, and multiscale image registration algorithms are developed based on the mul- tiscale decomposition. Accurate registration of noisy images is achieved by obtaining a hierarchical multiscale decomposition of the images and iteratively registering the resulting components. This approach enables a successful reg- istration of images that contain noise levels well beyond the level at which ordinary deformable registration fails. Numerous image registration experi- ments demonstrate the accuracy and efficiency of the multiscale registration techniques.

    Citation: Dana Paquin, Doron Levy, Lei Xing. Multiscale deformable registration of noisy medical images[J]. Mathematical Biosciences and Engineering, 2008, 5(1): 125-144. doi: 10.3934/mbe.2008.5.125

    Related Papers:

    [1] Dana Paquin, Doron Levy, Lei Xing . Hybrid multiscale landmark and deformable image registration. Mathematical Biosciences and Engineering, 2007, 4(4): 711-737. doi: 10.3934/mbe.2007.4.711
    [2] Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing . Multiscale Image Registration. Mathematical Biosciences and Engineering, 2006, 3(2): 389-418. doi: 10.3934/mbe.2006.3.389
    [3] Liwei Deng, Yuanzhi Zhang, Jingjing Qi, Sijuan Huang, Xin Yang, Jing Wang . Enhancement of cone beam CT image registration by super-resolution pre-processing algorithm. Mathematical Biosciences and Engineering, 2023, 20(3): 4403-4420. doi: 10.3934/mbe.2023204
    [4] Yuan-Nan Young, Doron Levy . Registration-Based Morphing of Active Contours for Segmentation of CT Scans. Mathematical Biosciences and Engineering, 2005, 2(1): 79-96. doi: 10.3934/mbe.2005.2.79
    [5] Luca Bertelli, Frédéric Gibou . Fast two dimensional to three dimensional registration of fluoroscopy and CT-scans using Octrees on segmentation maps. Mathematical Biosciences and Engineering, 2012, 9(3): 527-537. doi: 10.3934/mbe.2012.9.527
    [6] Viliam Ďuriš, Vladimir I. Semenov, Sergey G. Chumarov . Wavelets and digital filters designed and synthesized in the time and frequency domains. Mathematical Biosciences and Engineering, 2022, 19(3): 3056-3068. doi: 10.3934/mbe.2022141
    [7] Sanjaykumar Kinge, B. Sheela Rani, Mukul Sutaone . Restored texture segmentation using Markov random fields. Mathematical Biosciences and Engineering, 2023, 20(6): 10063-10089. doi: 10.3934/mbe.2023442
    [8] Anam Mehmood, Ishtiaq Rasool Khan, Hassan Dawood, Hussain Dawood . A non-uniform quantization scheme for visualization of CT images. Mathematical Biosciences and Engineering, 2021, 18(4): 4311-4326. doi: 10.3934/mbe.2021216
    [9] Tianran Yuan, Hongsheng Zhang, Hao Liu, Juan Du, Huiming Yu, Yimin Wang, Yabin Xu . Watertight 2-manifold 3D bone surface model reconstruction from CT images based on visual hyper-spherical mapping. Mathematical Biosciences and Engineering, 2021, 18(2): 1280-1313. doi: 10.3934/mbe.2021068
    [10] Tongping Shen, Fangliang Huang, Xusong Zhang . CT medical image segmentation algorithm based on deep learning technology. Mathematical Biosciences and Engineering, 2023, 20(6): 10954-10976. doi: 10.3934/mbe.2023485
  • Multiscale image registration techniques are presented for the reg- istration of medical images using deformable registration models. The tech- niques are particularly effective for registration problems in which one or both of the images to be registered contains significant levels of noise. A brief overview of existing deformable registration techniques is presented, and exper- iments using B-spline free-form deformation registration models demonstrate that ordinary deformable registration techniques fail to produce accurate re- sults in the presence of significant levels of noise. The hierarchical multiscale image decomposition described in E. Tadmor, S. Nezzar, and L. Vese's, ''A multiscale image representation using hierarchical (BV,L2) decompositions'' (Multiscale Modeling and Simulations, 2 (2004): 4, pp. 554-579) is reviewed, and multiscale image registration algorithms are developed based on the mul- tiscale decomposition. Accurate registration of noisy images is achieved by obtaining a hierarchical multiscale decomposition of the images and iteratively registering the resulting components. This approach enables a successful reg- istration of images that contain noise levels well beyond the level at which ordinary deformable registration fails. Numerous image registration experi- ments demonstrate the accuracy and efficiency of the multiscale registration techniques.


  • This article has been cited by:

    1. Yunzhi Ma, Louis Lee, O. Keshet, Paul Keall, Lei Xing, Four-dimensional inverse treatment planning with inclusion of implanted fiducials in IMRT segmented fields, 2009, 36, 00942405, 2215, 10.1118/1.3121425
    2. Hendrik Teske, Kathrin Bartelheimer, Jan Meis, Rolf Bendl, Eva M Stoiber, Kristina Giske, Construction of a biomechanical head and neck motion model as a guide to evaluation of deformable image registration, 2017, 62, 0031-9155, N271, 10.1088/1361-6560/aa69b6
    3. Sebastian Suhr, Daniel Tenbrinck, Martin Burger, Jan Modersitzki, 2014, Chapter 24, 978-3-319-08553-1, 231, 10.1007/978-3-319-08554-8_24
    4. Ming Chao, Yaoqin Xie, Lei Xing, Auto-propagation of contours for adaptive prostate radiation therapy, 2008, 53, 0031-9155, 4533, 10.1088/0031-9155/53/17/005
    5. Lisa Tang, Ghassan Hamarneh, Rafeef Abugharbieh, 2010, Chapter 16, 978-3-642-14365-6, 173, 10.1007/978-3-642-14366-3_16
    6. Rozhin Penjweini, Michele M. Kim, Timothy C. Zhu, Three-dimensional finite-element based deformable image registration for evaluation of pleural cavity irradiation during photodynamic therapy, 2017, 44, 00942405, 3767, 10.1002/mp.12284
    7. Dana Paquin, Doron Levy, Lei Xing, Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy, 2008, 36, 00942405, 4, 10.1118/1.3026602
    8. Nicolás Barnafi, Gabriel N. Gatica, Daniel E. Hurtado, Primal and Mixed Finite Element Methods for Deformable Image Registration Problems, 2018, 11, 1936-4954, 2529, 10.1137/17M115219X
    9. Yaoqin Xie, Ming Chao, Lei Xing, Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of Shear Movement of Lungs, 2009, 74, 03603016, 1256, 10.1016/j.ijrobp.2009.02.023
    10. Jidong Hou, Mariana Guerrero, Wenjuan Chen, Warren D. D'Souza, Deformable planning CT to cone-beam CT image registration in head-and-neck cancer, 2011, 38, 00942405, 2088, 10.1118/1.3554647
    11. Yaoqin Xie, Ming Chao, Percy Lee, Lei Xing, Feature-based rectal contour propagation from planning CT to cone beam CT, 2008, 35, 00942405, 4450, 10.1118/1.2975230
    12. Klas Modin, Adrian Nachman, Luca Rondi, A multiscale theory for image registration and nonlinear inverse problems, 2019, 346, 00018708, 1009, 10.1016/j.aim.2019.02.014
    13. Eduard Schreibmann, Paul Pantalone, Anthony Waller, Tim Fox, A measure to evaluate deformable registration fields in clinical settings, 2012, 13, 15269914, 126, 10.1120/jacmp.v13i5.3829
    14. Ming Chao, Yaoqin Xie, Eduardo G. Moros, Quynh-Thu Le, Lei Xing, Image-based modeling of tumor shrinkage in head and neck radiation therapya), 2010, 37, 00942405, 2351, 10.1118/1.3399872
    15. Noémie Debroux, Carole Le Guyader, Luminita A. Vese, 2021, Chapter 10, 978-3-030-75548-5, 115, 10.1007/978-3-030-75549-2_10
    16. Robert Boyd, Amar Basavatia, Wolfgang A. Tomé, Validation of accuracy deformable image registration contour propagation using a benchmark virtual HN phantom dataset, 2021, 1526-9914, 10.1002/acm2.13246
    17. Noémie Debroux, Carole Le Guyader, 2023, Chapter 49, 978-3-031-31974-7, 639, 10.1007/978-3-031-31975-4_49
    18. Noémie Debroux, Carole Le Guyader, Luminita A. Vese, A Multiscale Deformation Representation, 2023, 16, 1936-4954, 802, 10.1137/22M1510200
    19. Veit Sandfort, Martin J. Willemink, Marina Codari, Domenico Mastrodicasa, Dominik Fleischmann, Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data, 2024, 6, 2638-6100, 10.1148/ryai.230153
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3061) PDF downloads(511) Cited by(19)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog