Multiscale Image Registration

  • Received: 01 December 2005 Accepted: 29 June 2018 Published: 01 February 2006
  • MSC : Primary: 68U10; Secondary: 92C55, 62P10, 94A08.

  • A multiscale image registration technique is presented for the registration of medical images that contain significant levels of noise. An overview of the medical image registration problem is presented, and various registration techniques are discussed. Experiments using mean squares, normalized correlation, and mutual information optimal linear registration are presented that determine the noise levels at which registration using these techniques fails. Further experiments in which classical denoising algorithms are applied prior to registration are presented, and it is shown that registration fails in this case for significantly high levels of noise, as well. The hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [20] is presented, and accurate registration of noisy images is achieved by obtaining a hierarchical multiscale decomposition of the images and registering the resulting components. This approach enables successful registration of images that contain noise levels well beyond the level at which ordinary optimal linear registration fails. Image registration experiments demonstrate the accuracy and efficiency of the multiscale registration technique, and for all noise levels, the multiscale technique is as accurate as or more accurate than ordinary registration techniques.

    Citation: Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration[J]. Mathematical Biosciences and Engineering, 2006, 3(2): 389-418. doi: 10.3934/mbe.2006.3.389

    Related Papers:

  • A multiscale image registration technique is presented for the registration of medical images that contain significant levels of noise. An overview of the medical image registration problem is presented, and various registration techniques are discussed. Experiments using mean squares, normalized correlation, and mutual information optimal linear registration are presented that determine the noise levels at which registration using these techniques fails. Further experiments in which classical denoising algorithms are applied prior to registration are presented, and it is shown that registration fails in this case for significantly high levels of noise, as well. The hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [20] is presented, and accurate registration of noisy images is achieved by obtaining a hierarchical multiscale decomposition of the images and registering the resulting components. This approach enables successful registration of images that contain noise levels well beyond the level at which ordinary optimal linear registration fails. Image registration experiments demonstrate the accuracy and efficiency of the multiscale registration technique, and for all noise levels, the multiscale technique is as accurate as or more accurate than ordinary registration techniques.


    加载中
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(194) PDF downloads(453) Cited by(13)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog