Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity

1. Department of Life Sciences, Scottsdale Community College, 9000 E. Chaparral Rd., Scottsdale, AZ 85256

Recent evidence elucidating the relationship between parenchyma cells and otherwise ''healthy'' cells in malignant neoplasms is forcing cancer biologists to expand beyond the genome-centered, ''one-renegade-cell'' theory of cancer. As it becomes more and more clear that malignant transformation is context dependent, the usefulness of an evolutionary ecology-based theory of malignant neoplasia becomes increasingly clear. This review attempts to synthesize various theoretical structures built by mathematical oncologists into potential explanations of necrosis and cellular diversity, including both total cell diversity within a tumor and cellular pleomorphism within the parenchyma. The role of natural selection in necrosis and pleomorphism is also examined. The major hypotheses suggested as explanations of these phenomena are outlined in the conclusions section of this review. In every case, mathematical oncologists have built potentially valuable models that yield insight into the causes of necrosis, cell diversity and nearly every other aspect of malignancy; most make predictions ultimately testable in the lab or clinic. Unfortunately, these advances have gone largely unexploited by the empirical community. Possible reasons why are considered.
  Article Metrics

Keywords cancer; necrosis; review.; mathematical models; genetic poly- morphism; pleomorphism; natural selection

Citation: John D. Nagy. The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity. Mathematical Biosciences and Engineering, 2005, 2(2): 381-418. doi: 10.3934/mbe.2005.2.381


This article has been cited by

  • 1. Shihe Xu, Analysis of a free boundary problem for tumor growth in a periodic external environment, Boundary Value Problems, 2015, 2015, 1, 10.1186/s13661-015-0399-0
  • 2. Jingsong Zhang, Jessica J. Cunningham, Joel S. Brown, Robert A. Gatenby, Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer, Nature Communications, 2017, 8, 1, 10.1038/s41467-017-01968-5
  • 3. Hyun Geun Lee, Yangjin Kim, Junseok Kim, Mathematical model and its fast numerical method for the tumor growth, Mathematical Biosciences and Engineering, 2015, 12, 6, 1173, 10.3934/mbe.2015.12.1173
  • 4. Shihe Xu, Meng Bai, Zhong Wang, Fangwei Zhang, Qualitative analysis of a free boundary problem for tumor growth under the action of periodic external inhibitors, International Journal of Biomathematics, 2018, 11, 01, 1850008, 10.1142/S1793524518500080
  • 5. S. A. Menchón, C. A. Condat, Modeling tumor cell shedding, European Biophysics Journal, 2009, 38, 4, 479, 10.1007/s00249-008-0398-5
  • 6. Tanuja Agrawal, M. Saleem, S. K. Sahu, Optimal control of the dynamics of a tumor growth model with Hollings’ type-II functional response, Computational and Applied Mathematics, 2014, 33, 3, 591, 10.1007/s40314-013-0083-x
  • 7. J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 2010, 23, 1, R1, 10.1088/0951-7715/23/1/R01
  • 8. Hermann B. Frieboes, Fang Jin, Yao-Li Chuang, Steven M. Wise, John S. Lowengrub, Vittorio Cristini, Three-dimensional multispecies nonlinear tumor growth—II: Tumor invasion and angiogenesis, Journal of Theoretical Biology, 2010, 264, 4, 1254, 10.1016/j.jtbi.2010.02.036
  • 9. Irina Kareva, Jonathan A. Coles, Biological Stoichiometry in Tumor Micro-environments, PLoS ONE, 2013, 8, 1, e51844, 10.1371/journal.pone.0051844
  • 10. Sehyo C. Choe, Guannan Zhao, Zhenyuan Zhao, Joseph D. Rosenblatt, Hyun-Mi Cho, Seung-Uon Shin, Neil F. Johnson, Model for in vivo progression of tumors based on co-evolving cell population and vasculature, Scientific Reports, 2011, 1, 1, 10.1038/srep00031
  • 11. Sandeep Sanga, Hermann B. Frieboes, Xiaoming Zheng, Robert Gatenby, Elaine L. Bearer, Vittorio Cristini, Predictive oncology: A review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth, NeuroImage, 2007, 37, S120, 10.1016/j.neuroimage.2007.05.043
  • 12. S. A. Menchón, C. A. Condat, Cancer growth: Predictions of a realistic model, Physical Review E, 2008, 78, 2, 10.1103/PhysRevE.78.022901
  • 13. Shihe Xu, Minhai Huang, Global Existence and Uniqueness of Solutions for a Free Boundary Problem Modeling the Growth of Tumors with a Necrotic Core and a Time Delay in Process of Proliferation, Mathematical Problems in Engineering, 2014, 2014, 1, 10.1155/2014/480147
  • 14. Shihe Xu, Yinhui Chen, Meng Bai, Analysis of a time-delayed mathematical model for solid avascular tumor growth under the action of external inhibitors, Journal of Applied Mathematics and Computing, 2016, 52, 1-2, 403, 10.1007/s12190-015-0947-x
  • 15. Sarah R. Amend, Sounak Roy, Joel S. Brown, Kenneth J. Pienta, Ecological paradigms to understand the dynamics of metastasis, Cancer Letters, 2016, 380, 1, 237, 10.1016/j.canlet.2015.10.005
  • 16. Philip Gerlee, Alexander R A Anderson, The evolution of carrying capacity in constrained and expanding tumour cell populations, Physical Biology, 2015, 12, 5, 056001, 10.1088/1478-3975/12/5/056001
  • 17. N. S. Ravindran, M. Mohamed Sheriff, P. Krishnapriya, Analysis of tumour-immune evasion with chemo-immuno therapeutic treatment with quadratic optimal control, Journal of Biological Dynamics, 2017, 11, 1, 480, 10.1080/17513758.2017.1381280
  • 18. AI Reppas, JCL Alfonso, H Hatzikirou, In silicotumor control induced via alternating immunostimulating and immunosuppressive phases, Virulence, 2016, 7, 2, 174, 10.1080/21505594.2015.1076614
  • 19. Ying Chen, John S. Lowengrub, Tumor growth in complex, evolving microenvironmental geometries: A diffuse domain approach, Journal of Theoretical Biology, 2014, 361, 14, 10.1016/j.jtbi.2014.06.024
  • 20. Raluca Eftimie, Jonathan L. Bramson, David J.D. Earn, Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma, Journal of Theoretical Biology, 2010, 265, 3, 467, 10.1016/j.jtbi.2010.04.030
  • 21. F.A. Rihan, D.H. Abdel Rahman, S. Lakshmanan, A.S. Alkhajeh, A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis, Applied Mathematics and Computation, 2014, 232, 606, 10.1016/j.amc.2014.01.111
  • 22. R. A. Everett, J. D. Nagy, Y. Kuang, Dynamics of a Data Based Ovarian Cancer Growth and Treatment Model with Time Delay, Journal of Dynamics and Differential Equations, 2016, 28, 3-4, 1393, 10.1007/s10884-015-9498-y
  • 23. L. Loewe, , Encyclopedia of Evolutionary Biology, 2016, 297, 10.1016/B978-0-12-800049-6.00184-0
  • 24. P Tracqui, Biophysical models of tumour growth, Reports on Progress in Physics, 2009, 72, 5, 056701, 10.1088/0034-4885/72/5/056701
  • 25. Kenneth J. Pienta, Natalie McGregor, Robert Axelrod, David E. Axelrod, Ecological Therapy for Cancer: Defining Tumors Using an Ecosystem Paradigm Suggests New Opportunities for Novel Cancer Treatments, Translational Oncology, 2008, 1, 4, 158, 10.1593/tlo.08178
  • 26. Scott T. Bickel, Joseph D. Juliano, John D. Nagy, Juan F. Poyatos, Evolution of Proliferation and the Angiogenic Switch in Tumors with High Clonal Diversity, PLoS ONE, 2014, 9, 4, e91992, 10.1371/journal.pone.0091992
  • 27. John D. Nagy, Dieter Armbruster, Evolution of uncontrolled proliferation and the angiogenic switch in cancer, Mathematical Biosciences and Engineering, 2012, 9, 4, 843, 10.3934/mbe.2012.9.843
  • 28. Hermann B. Frieboes, Bryan R. Smith, Yao-Li Chuang, Ken Ito, Allison M. Roettgers, Sanjiv S. Gambhir, Vittorio Cristini, Mark S. Alber, An Integrated Computational/Experimental Model of Lymphoma Growth, PLoS Computational Biology, 2013, 9, 3, e1003008, 10.1371/journal.pcbi.1003008
  • 29. F. A. Rihan, D. H. Abdelrahman, F. Al-Maskari, F. Ibrahim, M. A. Abdeen, Delay Differential Model for Tumour-Immune Response with Chemoimmunotherapy and Optimal Control, Computational and Mathematical Methods in Medicine, 2014, 2014, 1, 10.1155/2014/982978
  • 30. Shihe Xu, Meng Bai, Stability of solutions to a mathematical model for necrotic tumor growth with time delays in proliferation, Journal of Mathematical Analysis and Applications, 2015, 421, 1, 955, 10.1016/j.jmaa.2014.07.029
  • 31. Ying Chen, Steven M. Wise, Vivek B. Shenoy, John S. Lowengrub, A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane, International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 7, 726, 10.1002/cnm.2624
  • 32. Joel S. Brown, Why Darwin would have loved evolutionary game theory, Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 1838, 20160847, 10.1098/rspb.2016.0847
  • 33. M. Saleem, Tanuja Agrawal, Chaos in a Tumor Growth Model with Delayed Responses of the Immune System, Journal of Applied Mathematics, 2012, 2012, 1, 10.1155/2012/891095
  • 34. Kerri-Ann Norton, Michael Wininger, Gyan Bhanot, Shridar Ganesan, Nicola Barnard, Troy Shinbrot, A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression, Journal of Theoretical Biology, 2010, 263, 4, 393, 10.1016/j.jtbi.2009.11.024
  • 35. J.M. Chrobak, M. Bodnar, H. Herrero, About a generalized model of lymphoma, Journal of Mathematical Analysis and Applications, 2012, 386, 2, 813, 10.1016/j.jmaa.2011.08.043
  • 36. Shihe Xu, Meng Bai, Xiangqing Zhao, Analysis of a solid avascular tumor growth model with time delays in proliferation process, Journal of Mathematical Analysis and Applications, 2012, 391, 1, 38, 10.1016/j.jmaa.2012.02.034
  • 37. Raluca Eftimie, Jonathan L. Bramson, David J. D. Earn, Interactions Between the Immune System and Cancer: A Brief Review of Non-spatial Mathematical Models, Bulletin of Mathematical Biology, 2011, 73, 1, 2, 10.1007/s11538-010-9526-3
  • 38. P. Krishnapriya, M. Pitchaimani, Optimal control of mixed immunotherapy and chemotherapy of tumours with discrete delay, International Journal of Dynamics and Control, 2017, 5, 3, 872, 10.1007/s40435-015-0221-y
  • 39. Madhusudana Girija Sanal, A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer, SAGE Open Medicine, 2014, 2, 205031211455037, 10.1177/2050312114550375
  • 40. ANTONIO BRÚ, MIGUEL A. HERRERO, FROM THE PHYSICAL LAWS OF TUMOR GROWTH TO MODELLING CANCER PROCESSES, Mathematical Models and Methods in Applied Sciences, 2006, 16, supp01, 1199, 10.1142/S0218202506001510
  • 41. Fangwei Zhang, Shihe Xu, Steady-State Analysis of Necrotic Core Formation for Solid Avascular Tumors with Time Delays in Regulatory Apoptosis, Computational and Mathematical Methods in Medicine, 2014, 2014, 1, 10.1155/2014/467158
  • 42. Shihe Xu, Global stability of solutions to a free boundary problem of ductal carcinoma in situ, Nonlinear Analysis: Real World Applications, 2016, 27, 238, 10.1016/j.nonrwa.2015.08.003
  • 43. A. Kianercy, R. Veltri, K. J. Pienta, Critical transitions in a game theoretic model of tumour metabolism, Interface Focus, 2014, 4, 4, 20140014, 10.1098/rsfs.2014.0014
  • 44. Shihe Xu, Yinhui Chen, Meng Bai, Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients, Discrete and Continuous Dynamical Systems - Series B, 2016, 21, 3, 997, 10.3934/dcdsb.2016.21.997
  • 45. S.M. Wise, J.S. Lowengrub, V. Cristini, An adaptive multigrid algorithm for simulating solid tumor growth using mixture models, Mathematical and Computer Modelling, 2011, 53, 1-2, 1, 10.1016/j.mcm.2010.07.007
  • 46. G. F. Webb, , Structured Population Models in Biology and Epidemiology, 2008, Chapter 1, 1, 10.1007/978-3-540-78273-5_1
  • 47. Thomas Hillen, Mark A. Lewis, , Managing Complexity, Reducing Perplexity, 2014, Chapter 1, 1, 10.1007/978-3-319-03759-2_1
  • 48. Peter Nimiritsky, Roman Eremichev, Natalya Alexandrushkina, Anastasia Efimenko, Vsevolod Tkachuk, Pavel Makarevich, Unveiling Mesenchymal Stromal Cells’ Organizing Function in Regeneration, International Journal of Molecular Sciences, 2019, 20, 4, 823, 10.3390/ijms20040823
  • 49. , , Stochastic Calculus for Fractional Brownian Motion and Related Processes, 2008, Chapter 1, 1, 10.1007/978-3-540-75873-0_1
  • 50. Bryan Q. Spring, Ryan T. Lang, Eric M. Kercher, Imran Rizvi, Robert M. Wenham, José R. Conejo-Garcia, Tayyaba Hasan, Robert A. Gatenby, Heiko Enderling, Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosimetry and Combination Therapies, Frontiers in Physics, 2019, 7, 10.3389/fphy.2019.00046
  • 51. Tin Phan, Sharon M. Crook, Alan H. Bryce, Carlo C. Maley, Eric J. Kostelich, Yang Kuang, Review: Mathematical Modeling of Prostate Cancer and Clinical Application, Applied Sciences, 2020, 10, 8, 2721, 10.3390/app10082721
  • 52. S. G. Babajanyan, Eugene V. Koonin, Kang Hao Cheong, Can Environmental Manipulation Help Suppress Cancer? Non‐Linear Competition Among Tumor Cells in Periodically Changing Conditions, Advanced Science, 2020, 2000340, 10.1002/advs.202000340

Reader Comments

your name: *   your email: *  

Copyright Info: 2005, John D. Nagy, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved