Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Critical role of nosocomial transmission in the Toronto SARS outbreak

1. Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, TN 37240
2. Department of Medicine, New York University School of Medicine, OBV A606, 550 First Avenue, New York, NY 10016
3. Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J 1P3
4. Central East Health Information Partnership, Box 159, 4950 Yonge Street, Suite 610, Toronto, ON M2N 6K1

We develop a compartmental mathematical model to address the role of hospitals in severe acute respiratory syndrome (SARS) transmission dynamics, which partially explains the heterogeneity of the epidemic. Comparison of the e ffects of two major policies, strict hospital infection control procedures and community-wide quarantine measures, implemented in Toronto two weeks into the initial outbreak, shows that their combination is the key to short-term containment and that quarantine is the key to long-term containment.
  Article Metrics

Keywords epidemiology; coronavirus; containment; quarantine.; nonlinear dynamics; severe acute respiratory syndrome (SARS); mathematical model

Citation: Glenn Webb, Martin J. Blaser, Huaiping Zhu, Sten Ardal, Jianhong Wu. Critical role of nosocomial transmission in the Toronto SARS outbreak. Mathematical Biosciences and Engineering, 2004, 1(1): 1-13. doi: 10.3934/mbe.2004.1.1


This article has been cited by

  • 1. Xiaotian Wu, Venkata R. Duvvuri, Yijun Lou, Nicholas H. Ogden, Yann Pelcat, Jianhong Wu, Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada, Journal of Theoretical Biology, 2013, 319, 50, 10.1016/j.jtbi.2012.11.014
  • 2. Anuj Kumar Sharma, Amit Sharma, Kulbhushan Agnihotri, Bifurcation behaviors analysis of a plankton model with multiple delays, International Journal of Biomathematics, 2016, 09, 06, 1650086, 10.1142/S1793524516500868
  • 3. Mohammad A. Safi, Abba B. Gumel, The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay, Nonlinear Analysis: Real World Applications, 2011, 12, 1, 215, 10.1016/j.nonrwa.2010.06.009
  • 4. Martin J. Blaser, Studying microbiology with Glenn F. Webb, Mathematical Biosciences and Engineering, 2015, 12, 4, 10.3934/mbe.2015.12.4xvii
  • 5. Wenjuan Guo, Qimin Zhang, Xining Li, Weiming Wang, Dynamic behavior of a stochastic SIRS epidemic model with media coverage, Mathematical Methods in the Applied Sciences, 2018, 10.1002/mma.5094
  • 6. Wei-Ming Wang, Hou-Ye Liu, Yong-Li Cai, Zhen-Qing Li, Turing pattern selection in a reaction-diffusion epidemic model, Chinese Physics B, 2011, 20, 7, 074702, 10.1088/1674-1056/20/7/074702
  • 7. Mohammad A. Safi, Abba B. Gumel, Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals, Journal of Mathematical Analysis and Applications, 2013, 399, 2, 565, 10.1016/j.jmaa.2012.10.015
  • 8. Fred Brauer, Some Simple Nosocomial Disease Transmission Models, Bulletin of Mathematical Biology, 2015, 77, 3, 460, 10.1007/s11538-015-0061-0
  • 9. Ying-Hen Hsieh, Junli Liu, Yun-Huei Tzeng, Jianhong Wu, Impact of visitors and hospital staff on nosocomial transmission and spread to community, Journal of Theoretical Biology, 2014, 356, 20, 10.1016/j.jtbi.2014.04.003
  • 10. A. B. Gumel, Global dynamics of a two-strain avian influenza model, International Journal of Computer Mathematics, 2009, 86, 1, 85, 10.1080/00207160701769625
  • 11. Martin J. Blaser, Studying microbiology with Glenn F. Webb, Mathematical Biosciences and Engineering, 2015, 12, 4, 10.3934/mbe.2015.12.xvii
  • 12. Fred Brauer, Mathematical epidemiology: Past, present, and future, Infectious Disease Modelling, 2017, 2, 2, 113, 10.1016/j.idm.2017.02.001
  • 13. Rania Assab, Narimane Nekkab, Pascal Crépey, Pascal Astagneau, Didier Guillemot, Lulla Opatowski, Laura Temime, Mathematical models of infection transmission in healthcare settings, Current Opinion in Infectious Diseases, 2017, 30, 4, 410, 10.1097/QCO.0000000000000390
  • 14. William E. Fitzgibbon, The work of Glenn F. Webb, Mathematical Biosciences and Engineering, 2015, 12, 4, 10.3934/mbe.2015.12.4v
  • 15. Supatcha Siriprapaiwan, Elvin J. Moore, Sanoe Koonprasert, Generalized reproduction numbers, sensitivity analysis and critical immunity levels of an SEQIJR disease model with immunization and varying total population size, Mathematics and Computers in Simulation, 2018, 146, 70, 10.1016/j.matcom.2017.10.006
  • 16. Dong-Wei Huang, Hong-Li Wang, Jian-Feng Feng, Zhi-Wen Zhu, Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics, Applied Mathematical Modelling, 2008, 32, 7, 1318, 10.1016/j.apm.2007.04.006
  • 17. Govind Prasad Sahu, Joydip Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, Journal of Mathematical Analysis and Applications, 2015, 421, 2, 1651, 10.1016/j.jmaa.2014.08.019
  • 18. Mohammad A. Safi, Mudassar Imran, Abba B. Gumel, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, Theory in Biosciences, 2012, 131, 1, 19, 10.1007/s12064-011-0148-6
  • 19. Ayako Fukutome, Koichi Watashi, Norito Kawakami, Hirofumi Ishikawa, Mathematical Modeling of Severe Acute Respiratory Syndrome Nosocomial Transmission in Japan: The Dynamics of Incident Cases and Prevalent Cases, Microbiology and Immunology, 2007, 51, 9, 823, 10.1111/j.1348-0421.2007.tb03978.x
  • 20. Michael Small, C.K. Tse, Clustering model for transmission of the SARS virus: application to epidemic control and risk assessment, Physica A: Statistical Mechanics and its Applications, 2005, 351, 2-4, 499, 10.1016/j.physa.2005.01.009
  • 21. Ying-Hen Hsieh, Chwan-Chuan King, Cathy W.S Chen, Mei-Shang Ho, Sze-Bi Hsu, Yi-Chun Wu, Impact of quarantine on the 2003 SARS outbreak: A retrospective modeling study, Journal of Theoretical Biology, 2007, 244, 4, 729, 10.1016/j.jtbi.2006.09.015
  • 22. Chunqing Wu, The Optimal Vaccination Rate Based on Structured SI Model, Procedia Engineering, 2012, 29, 1713, 10.1016/j.proeng.2012.01.200
  • 23. Wenjuan Guo, Yongli Cai, Qimin Zhang, Weiming Wang, Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage, Physica A: Statistical Mechanics and its Applications, 2018, 492, 2220, 10.1016/j.physa.2017.11.137
  • 24. Dongwei Huang, Hongli Wang, Jianfeng Feng, Zhi-wen Zhu, Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics, Chaos, Solitons & Fractals, 2006, 27, 4, 1072, 10.1016/j.chaos.2005.04.086
  • 25. Jason Bintz, Suzanne Lenhart, Cristina Lanzas, Antimicrobial Stewardship and Environmental Decontamination for the Control of Clostridium difficile Transmission in Healthcare Settings, Bulletin of Mathematical Biology, 2017, 79, 1, 36, 10.1007/s11538-016-0224-7
  • 26. Jianping Sha, Yuan Li, Xiaowen Chen, Yan Hu, Yajin Ren, Xingyi Geng, Zhiruo Zhang, Shelan Liu, Fatality risks for nosocomial outbreaks of Middle East respiratory syndrome coronavirus in the Middle East and South Korea, Archives of Virology, 2017, 162, 1, 33, 10.1007/s00705-016-3062-x
  • 27. YIPING LIU, JING-AN CUI, THE IMPACT OF MEDIA COVERAGE ON THE DYNAMICS OF INFECTIOUS DISEASE, International Journal of Biomathematics, 2008, 01, 01, 65, 10.1142/S1793524508000023
  • 28. Yun Kang, Carlos Castillo-Chavez, Multiscale analysis of compartment models with dispersal, Journal of Biological Dynamics, 2012, 6, sup2, 50, 10.1080/17513758.2012.713125
  • 29. Christopher M. Kribs-Zaleta, Jean-François Jusot, Philippe Vanhems, Sandrine Charles, Modeling Nosocomial Transmission of Rotavirus in Pediatric Wards, Bulletin of Mathematical Biology, 2011, 73, 7, 1413, 10.1007/s11538-010-9570-z
  • 30. M. H. Ling, S. Y. Wong, K. L. Tsui, Efficient heterogeneous sampling for stochastic simulation with an illustration in health care applications, Communications in Statistics - Simulation and Computation, 2017, 46, 1, 631, 10.1080/03610918.2014.977914
  • 31. Mohammad A. Safi, Abba B. Gumel, Qualitative study of a quarantine/isolation model with multiple disease stages, Applied Mathematics and Computation, 2011, 218, 5, 1941, 10.1016/j.amc.2011.07.007
  • 32. A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, D. Gabrielson, C. Bowman, M. E. Alexander, S. Ardal, J. Wu, B. M. Sahai, Modelling strategies for controlling SARS outbreaks, Proceedings of the Royal Society of London. Series B: Biological Sciences, 2004, 271, 1554, 2223, 10.1098/rspb.2004.2800
  • 33. Kin On Kwok, Gabriel M Leung, Wai Yee Lam, Steven Riley, Using models to identify routes of nosocomial infection: a large hospital outbreak of SARS in Hong Kong, Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1610, 611, 10.1098/rspb.2006.0026
  • 34. Mohammad A. Safi, Global Stability Analysis of Two-Stage Quarantine-Isolation Model with Holling Type II Incidence Function, Mathematics, 2019, 7, 4, 350, 10.3390/math7040350
  • 35. Anatoliy V. Swishchuk, Nikolaos Limnios, Mariya Svishchuk, Averaging, Merging and Diffusion Approximation of Stochastic SARS Models, SSRN Electronic Journal, 2012, 10.2139/ssrn.2201765
  • 36. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, , Mathematical Models in Epidemiology, 2019, Chapter 16, 507, 10.1007/978-1-4939-9828-9_16
  • 37. Jennifer B. Nuzzo, Diane Meyer, Michael Snyder, Sanjana J. Ravi, Ana Lapascu, Jon Souleles, Carolina I. Andrada, David Bishai, What makes health systems resilient against infectious disease outbreaks and natural hazards? Results from a scoping review, BMC Public Health, 2019, 19, 1, 10.1186/s12889-019-7707-z

Reader Comments

your name: *   your email: *  

Copyright Info: 2004, Glenn Webb, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved