
Citation: Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions[J]. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061
[1] | Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang . A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29(3): 2375-2389. doi: 10.3934/era.2020120 |
[2] | Chunmei Wang . Simplified weak Galerkin finite element methods for biharmonic equations on non-convex polytopal meshes. Electronic Research Archive, 2025, 33(3): 1523-1540. doi: 10.3934/era.2025072 |
[3] | Leilei Wei, Xiaojing Wei, Bo Tang . Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066 |
[4] | Guanrong Li, Yanping Chen, Yunqing Huang . A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28(2): 821-836. doi: 10.3934/era.2020042 |
[5] | Victor Ginting . An adjoint-based a posteriori analysis of numerical approximation of Richards equation. Electronic Research Archive, 2021, 29(5): 3405-3427. doi: 10.3934/era.2021045 |
[6] | Jun Pan, Yuelong Tang . Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365 |
[7] | Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118 |
[8] | Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang . A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28(4): 1487-1501. doi: 10.3934/era.2020078 |
[9] | Suayip Toprakseven, Seza Dinibutun . A weak Galerkin finite element method for parabolic singularly perturbed convection-diffusion equations on layer-adapted meshes. Electronic Research Archive, 2024, 32(8): 5033-5066. doi: 10.3934/era.2024232 |
[10] | Bin Wang, Lin Mu . Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29(1): 1881-1895. doi: 10.3934/era.2020096 |
For simplicity, we consider Poisson equation with a Dirichlet boundary condition as our model problem.
−Δu=f,inΩ, | (1) |
u=g,on∂Ω, | (2) |
where
Using integration by parts, we can get the variational form: find
(∇u,∇v)=(f,v),∀v∈H10(Ω). | (3) |
Various finite element methods have been introduced to solve the Poisson equations (1)-(2), such as the Galerkin finite element methods (FEMs)[2, 3], the mixed FEMs [15] and the finite volume methods (FVMs) [6], etc. The FVMs emphasis on the local conservation property and discretize equations by asking the solution satisfying the flux conservation on a dual mesh consisting of control volumes. The mixed FEMs is another category method that based on the variable
The classical conforming finite element method obtains numerical approximate results by constructing a finite-dimensional subspace of
(∇uh,∇vh)=(f,vh),∀vh∈V0h, | (4) |
where
One obvious disadvantage of discontinuous finite element methods is their rather complex formulations which are often necessary to ensure connections of discontinuous solutions across element boundaries. For example, the IPDG methods add parameter depending interior penalty terms. Besides additional programming complexity, one often has difficulties in finding optimal values for the penalty parameters and corresponding efficient solvers. Most recently, Zhang and Ye [21] developed a discontinuous finite element method that has an ultra simple weak formulation on triangular/tetrahedal meshes. The corresponding numerical scheme can be written as: find
(∇wuh,∇wvh)=(f,vh),∀vh∈V0h, | (5) |
where
Following the work in [21, 22], we propose a new conforming DG finite element method on rectangular partitions in this work. It can be obtained from the conforming formulation simply by replacing
In this paper, we keep the same finite element space as DG method, replace the boundary function with the average of the inner function, and use the weak gradient arising from local Raviart-Thomas (RT) elements [5] to approximate the classic gradient. Moreover, the derivation process in this paper is based on rectangular RT elements [16]. Error estimates of optimal order are established for the corresponding conforming DG approximation in both a discrete
The rest of this paper is organized as follows: In Section 2, we shall present the conforming DG finite element scheme for the Poisson equation on rectangular partitions. Section 3 is devoted to a discussion of the stability and solvability of the new method. In Section 4, we shall prepare ourselves for error estimates by deriving some identities. Error estimates of optimal order in
Throughout this paper, we adopt the standard definition of Sobolev space
H10(Ω)={v∈H1(Ω):v|∂Ω=0}, |
and the space
H(div,Ω)={q∈[L2(Ω)]d:∇⋅q∈L2(Ω)}. |
Assume that the domain
For any interior edge
{v}=12(v|∂T1+v|∂T2),[[v]]=v|∂T1n1+v|∂T2n2, | (6) |
where
{v}=v|eand[[v]]=v|en. | (7) |
We define a discontinuous finite element space
Vh={v∈L2(Ω):v|T∈Qk(T),∀T∈Th}, | (8) |
and its subspace
V0h={v∈Vh:v=0on∂Ω}, | (9) |
where
Definition 2.1. For a given
(∇dv,q)T:=−(v,∇⋅q)T+⟨{v},q⋅n⟩∂T,∀q∈RTk(T), | (10) |
where
The weak gradient operator
(∇dv)|T=∇d(v|T). |
We introduce the following bilinear form:
a(v,w)=(∇dv,∇dw), |
the conforming DG algorithm to solve the problems (1) - (2) is given by
Conforming DG algorithm 1. Find
a(uh,vh)=(f,vh),∀vh∈V0h, | (11) |
where
We will prove the existence and uniqueness of the solution of equation (11). Firstly, we present the following two useful inequalities to derive the forthcoming analysis.
Lemma 3.1 (trace inequality). Let
‖φ‖2e≤C(h−1T‖φ‖2T+hT‖∇φ‖2T), | (12) |
where
Lemma 3.2 (inverse inequality). Let
‖∇φ‖T≤C(n)h−1T‖φ‖T,∀T∈Th. | (13) |
Then, we define the following semi-norms in the discontinuous finite element space
|||v|||2=a(v,v)=∑T∈Th‖∇dv‖2T, | (14) |
‖v‖21,h=∑T∈Th‖∇v‖2T+∑e∈E0hh−1e‖[[v]]‖2e. | (15) |
We have the equivalence between the semi-norms
Lemma 3.3. For any
C1‖v‖1,h≤|||v|||≤C2‖v‖1,h, | (16) |
where
Proof. It follows from the definition of
‖∇dv‖2T1=(∇dv,∇dv)T1=−(v,∇⋅∇dv)T1+⟨{v}n,∇dv⟩∂T1=(∇v,∇dv)T1−⟨(v−{v})n,∇dv⟩∂T1≤‖∇v‖T1‖∇dv‖T1+‖(v−{v})n‖∂T1‖∇dv‖∂T1≤‖∇dv‖T1(‖∇v‖T1+h−12T1‖(v−{v})n‖∂T1). | (17) |
For any
(v−{v})|en1=v|∂T1n1−12(v|∂T1+v|∂T2)n1=12(v|∂T1n1+v|∂T2n2)=12[[v]]e. |
Then we can get
‖(v−{v})n‖2∂T1≤12∑e∈∂T1‖[[v]]‖2e. | (18) |
Substituting (18) into (17) gives
‖∇dv‖2T1≤C2‖∇dv‖T1(‖∇v‖T1+∑e∈∂T1h−12e‖[[v]]‖e), |
this completes the proof of the right-hand of (16).
To prove the left-hand of (16), we consider the subspace of
D(k,T):={q∈RTk(T):q⋅n=0on∂T}. |
Note that
‖∇v‖T=supq∈D(k,T)(∇v,q)T‖q‖T. | (19) |
Using the integration by parts, Cauchy-Schwarz inequality, the definition of
(∇v,q)T=−(v,∇⋅q)T+⟨v,q⋅n⟩∂T=(∇dv,q)T−⟨{v},q⋅n⟩∂T=(∇dv,q)T≤‖∇dv‖T⋅‖q‖T, |
where we have used the fact that
‖∇v‖T≤‖∇dv‖T. | (20) |
We define the space
‖[[v]]‖e=supq∈De(k,T)⟨[[v]],q⋅n⟩e‖q⋅n‖e. | (21) |
Following the integration by parts and the definition of
(∇dv,q)T=(∇v,q)T−⟨v,q⋅n⟩e+⟨{v},q⋅n⟩e. |
Together with (20), we obtain
|⟨[[v]],q⋅n⟩e|=2|(∇dv,q)T−(∇v,q)T|≤2|(∇dv,q)T|+2|(∇v,q)T|≤C(‖∇dv‖T‖q‖T+‖∇v‖T‖q‖T)≤C‖∇dv‖T‖q‖T. |
Substituting the above inequality into (21), by the scaling argument [13], for such
‖[[v]]‖e≤C‖∇dv‖T‖q‖T‖q⋅n‖e≤Ch12‖∇dv‖T. | (22) |
Combining (20) and (22) gives a proof of the left-hand of (16).
Lemma 3.4. The semi-norm
Proof. We shall only verify the positivity property for
The above two lemmas imply the well posedness of the scheme (11). We prove the existence and uniqueness of solution of the conforming DG method in Theorem 3.1.
Theorem 3.1. The conforming DG scheme (11) has and only has one solution.
Proof. To prove the scheme (11) is uniquely solvable, it suffices to verify that the homogeneous equation has zero as its unique solution. To this end, let
a(uh,uh)=0, |
which leads to
In this section, we will derive an error equation which will be used for the error estimates. For any
(∇⋅q,v)T=(∇⋅Πhq,v)T,∀v∈Qk(T). | (23) |
For any
‖Πh(∇w)−∇w‖≤Chk‖w‖1+k. | (24) |
Moreover, it is easy to verify the following property holds true.
Lemma 4.1. For any
∑T∈Th(−∇⋅q,v)T=∑T∈Th(Πhq,∇dv)T,∀v∈V0h. | (25) |
Proof.
∑T∈Th⟨{v},Πhq⋅n⟩∂T=0. | (26) |
By the definition of
∑T∈Th(−∇⋅q,v)T=∑T∈Th(−∇⋅Πhq,v)T=∑T∈Th(−∇⋅Πhq,v)T+∑T∈Th⟨{v},Πhq⋅n⟩∂T=∑T∈Th(Πhq,∇dv)T. |
This completes the proof of the lemma.
Before establishing the error equation, we define a continuous finite element subspace of
˜Vh={v∈H1(Ω):v|T∈Qk(T),∀T∈Th}. | (27) |
so as a subspace of
˜V0h:={v∈˜Vh:v|∂Ω=0}. | (28) |
Lemma 4.2. For any
∇dv=∇v. |
Proof. By the definition of
(∇dv,q)T=−(v,∇⋅q)T+⟨{v},q⋅n⟩∂T=−(v,∇⋅q)T+⟨v,q⋅n⟩∂T=(∇v,q)T, |
which gives
(∇dv−∇v,q)T=0,∀q∈RTk(T). |
Letting
Let
‖Ihu−u‖≤Chk+1‖u‖k+1, | (29) |
‖∇Ihu−∇u‖≤Chk‖u‖k+1. | (30) |
It is obvious that
Lemma 4.3. Denote
a(eh,vh)=lu(vh), | (31) |
where
lu(vh)=∑T∈Th(∇Ihu−Πh∇u,∇dvh). | (32) |
Proof. Since
∑T∈Th(∇dIhu,∇dvh)T=∑T∈Th(∇Ihu,∇dvh)T=∑T∈Th(∇Ihu−Πh∇u+Πh∇u,∇dvh)T=∑T∈Th(∇Ihu−Πh∇u,∇dvh)T+∑T∈Th(Πh∇u,∇dvh)T=lu(vh)−∑T∈Th(∇⋅∇u,vh)T=lu(vh)+(f,vh). |
By the definition of the scheme (11), we have
∑T∈Th(∇dIhu−∇duh,∇dvh)T=lu(vh). |
This completes the proof of the lemma.
The goal of this section is to derive the error estimates in
Theorem 5.1. Let
|||eh|||≤Chk|u|k+1. | (33) |
Proof. Letting
|||eh|||2=lu(eh). | (34) |
From the Cauchy-Schwarz inequality, the triangle inequality, the definition of
lu(vh)=∑T∈Th(∇Ihu−Πh(∇u),∇dvh)T≤∑T∈Th‖∇Ihu−Πh(∇u)‖T‖∇dvh‖T≤(∑T∈Th‖∇Ihu−Πh(∇u)‖2T)12(∑T∈Th‖∇dvh‖2T)12=(∑T∈Th‖∇Ihu−∇u+∇u−Πh(∇u)‖2T)12|||vh|||≤(∑T∈Th‖∇Ihu−∇u‖2T+‖∇u−Πh(∇u)‖2T)12|||vh|||≤Chk|u|k+1|||vh|||. |
Then, we have
lu(eh)≤Chk|u|k+1|||eh|||. | (35) |
Substituting (35) to (34), we obtain
|||eh|||2≤Chk|u|k+1|||eh|||, |
which completes the proof of the lemma.
It is obvious that
(∇˜uh,∇v)=(f,v),∀v∈˜V0h. | (36) |
For any
(∇duh−∇˜uh,∇v)=0,∀v∈˜V0h. | (37) |
In the rest of this section, we derive an optimal order error estimate for the conforming DG approximation (11) in
−∇⋅(∇Φ)=uh−˜uh,inΩ. | (38) |
Assume that the dual problem satisfies
‖Φ‖2≤C‖uh−˜uh‖. | (39) |
In the following of this paper, we note
Theorem 5.2. Assume
‖u−uh‖≤Chk+1|u|k+1. | (40) |
Proof. First, we shall derive the optimal order for
a(Φh,v)=(εh,v),∀v∈V0h. | (41) |
Since
(∇duh−∇˜uh,∇IhΦ)=0,∇dIhΦ=∇IhΦ, |
which gives
(∇duh−∇˜uh,∇dIhΦ)=0. | (42) |
Setting
‖εh‖2=a(Φh,εh)=∑T∈Th(∇dΦh,∇dεh)T=∑T∈Th(∇d(Φh−IhΦ),∇duh−∇˜uh)T≤|||Φh−IhΦ|||(|||uh−Ihu|||+‖∇(Ihu−˜uh)‖). |
Then, by the Cauchy-Schwarz inequality, (33) and (39), we obtain
‖εh‖2≤Ch|Φ|2hk|u|k+1≤Chk+1|u|k+1‖εh‖, |
which gives
‖εh‖≤Chk+1|u|k+1. | (43) |
Combining the error estimate of finite element solution, the triangle inequality and (43) yields (40), which completes the proof of the theorem.
In this section, we shall present some numerical results for the conforming discontinuous Galerkin method analyzed in the previous sections.
We solve the following Poisson equation on the unit square domain
−Δu=2π2sin(πx)sin(πy)in Ω | (44) |
u=0on ∂Ω. | (45) |
The exact solution of the above problem is
We first use the
level | rate | rate | |||
by |
|||||
6 | 0.1996E-02 | 1.97 | 0.8887E-02 | 1.98 | 1024 |
7 | 0.5013E-03 | 1.99 | 0.2228E-02 | 2.00 | 4096 |
8 | 0.1255E-03 | 2.00 | 0.5574E-03 | 2.00 | 16384 |
by |
|||||
6 | 0.2427E-02 | 1.97 | 0.1027E+00 | 1.02 | 3072 |
7 | 0.6100E-03 | 1.99 | 0.5105E-01 | 1.01 | 12288 |
8 | 0.1527E-03 | 2.00 | 0.2546E-01 | 1.00 | 49152 |
by |
|||||
5 | 0.1533E-03 | 3.00 | 0.2042E-01 | 2.03 | 1536 |
6 | 0.1915E-04 | 3.00 | 0.5061E-02 | 2.01 | 6144 |
7 | 0.2394E-05 | 3.00 | 0.1260E-02 | 2.01 | 24576 |
by |
|||||
5 | 0.7959E-05 | 4.00 | 0.1965E-02 | 3.00 | 2560 |
6 | 0.4971E-06 | 4.00 | 0.2451E-03 | 3.00 | 10240 |
7 | 0.3140E-07 | 3.98 | 0.3059E-04 | 3.00 | 40960 |
by |
|||||
4 | 0.1055E-04 | 4.97 | 0.1421E-02 | 4.05 | 960 |
5 | 0.3314E-06 | 4.99 | 0.8735E-04 | 4.02 | 3840 |
6 | 0.1057E-07 | 4.97 | 0.5417E-05 | 4.01 | 15360 |
by |
|||||
2 | 0.2835E-02 | 6.24 | 0.1450E+00 | 5.49 | 84 |
3 | 0.4532E-04 | 5.97 | 0.4718E-02 | 4.94 | 336 |
4 | 0.7115E-06 | 5.99 | 0.1478E-03 | 5.00 | 1344 |
The same test case is also computed using the
level | rate | rate | |||
by |
|||||
6 | 0.4006E-03 | 1.99 | 0.2389E-02 | 1.99 | 4096 |
7 | 0.1003E-03 | 2.00 | 0.5982E-03 | 2.00 | 16384 |
8 | 0.2510E-04 | 2.00 | 0.1496E-03 | 2.00 | 65536 |
by |
|||||
6 | 0.2360E-04 | 2.99 | 0.3186E-02 | 1.99 | 9216 |
7 | 0.2953E-05 | 3.00 | 0.7976E-03 | 2.00 | 36864 |
8 | 0.3692E-06 | 3.00 | 0.1995E-03 | 2.00 | 147456 |
by |
|||||
5 | 0.1413E-04 | 4.08 | 0.1650E-02 | 2.97 | 4096 |
6 | 0.8676E-06 | 4.03 | 0.2072E-03 | 2.99 | 16384 |
7 | 0.5398E-07 | 4.01 | 0.2593E-04 | 3.00 | 65536 |
by |
|||||
3 | 0.2226E-02 | 4.59 | 0.5414E-01 | 3.52 | 400 |
4 | 0.9610E-04 | 4.53 | 0.3723E-02 | 3.86 | 1600 |
5 | 0.3279E-05 | 4.87 | 0.2392E-03 | 3.96 | 6400 |
To test the superconvergence of
−Δu+u=fin Ωu=0on ∂Ω, |
where
u=(x−x2)(y−y3). | (46) |
Uniform square grids as shown in Figure 1 are used for numerical computation. The numerical results are listed in Table 3. Surprising, for this problem, the
level | rate | rate | |||
by |
|||||
3 | 0.8265E-02 | 1.06 | 0.4577E-01 | 1.14 | 16 |
4 | 0.2772E-02 | 1.58 | 0.1732E-01 | 1.40 | 64 |
5 | 0.7965E-03 | 1.80 | 0.6331E-02 | 1.45 | 256 |
6 | 0.2142E-03 | 1.90 | 0.2290E-02 | 1.47 | 1024 |
7 | 0.5564E-04 | 1.94 | 0.8213E-03 | 1.48 | 4096 |
8 | 0.1419E-04 | 1.97 | 0.2928E-03 | 1.49 | 16384 |
To test further the superconvergence of
−∇(a∇u)=fin Ωu=0on ∂Ω, |
where
u=(x−x3)(y2−y3). | (47) |
Uniform square grids as shown in Figure 1 are used for computation. The numerical results are listed in Table 4. Surprising, again, the
level | rate | rate | |||
by |
|||||
3 | 0.4929E-02 | 0.97 | 0.5371E-01 | 0.80 | 16 |
4 | 0.1917E-02 | 1.36 | 0.2401E-01 | 1.16 | 64 |
5 | 0.6004E-03 | 1.67 | 0.9407E-02 | 1.35 | 256 |
6 | 0.1682E-03 | 1.84 | 0.3507E-02 | 1.42 | 1024 |
7 | 0.4457E-04 | 1.92 | 0.1275E-02 | 1.46 | 4096 |
8 | 0.1148E-04 | 1.96 | 0.4576E-03 | 1.48 | 16384 |
In this paper, we establish a new numerical approximation scheme based on the rectangular partition to solve second order elliptic equation. We derived the numerical scheme and then proved the optimal order of convergence of the error estimates in
[1] |
Q. Z. Ahmad, N. Khan, M. Raza, M. Tahir, B. Khan, Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions, Filomat, 33 (2019), 3385-3397. doi: 10.2298/FIL1911385A
![]() |
[2] |
H. Aldweby, M. Darus, On a subclass of bi-univalent functions associated with the q-derivative operator, J. Math. Comput. Sci., 19 (2019), 58-64. doi: 10.22436/jmcs.019.01.08
![]() |
[3] | M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, S. A. Khan, Some Janowski type harmonic q-starlike functions associated with symmetrical points, Mathematics, 8 (2020), 1-16. |
[4] |
M. Arif, H. M. Srivastava, S. Umar, Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211-1221. doi: 10.1007/s13398-018-0539-3
![]() |
[5] | M. Çaglar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2017), 85-91. |
[6] | E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (2013), 49-60. |
[7] | E. Deniz, J. M. Jahangiri, S. G. Hamidi, S. K. Kina, Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Inequal., 12 (2018), 645-653. |
[8] |
E. Deniz, H. T. Yolcu, Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order, AIMS Mathematics, 5 (2020), 640-649. doi: 10.3934/math.2020043
![]() |
[9] | P. L. Duren, Univalent functions, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983. |
[10] | D. E. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and compact integral operators, Dordrecht, Boston and London: Kluwer Academic Publishers, 2002. |
[11] |
H. Ö. Güney, G. Murugusundaramoorthy, H. M. Srivastava, The second Hankel determinant for a certain class of bi-close-to-convex functions, Results Math., 74 (2019), 1-13. doi: 10.1007/s00025-018-0927-1
![]() |
[12] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77-84. |
[13] | F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203. |
[14] | F. H. Jackson, q-difference equations, Am. J. Math., 32 (1910), 305-314. |
[15] | B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent q-starlike functions involving higher-order q-Derivatives, Mathematics, 8 (2020), 1-12. |
[16] | B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1-15. |
[17] | N. Khan, M. Shafiq, M. Darus, B. Khan, Q. Z. Ahmad, Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with Lemniscate of Bernoulli, J. Math. Inequal., 14 (2020), 51-63. |
[18] | Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. U. Rehman, et al. Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13. |
[19] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Basel and Boston: Birkhäuser, 2016. |
[20] |
S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically q-starlike functions associated with the Janowski functions, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4
![]() |
[21] | S. Mahmood, N. Raza, E. S. A. Abujarad, G. Srivastava, H. M. Srivastava, S. N. Malik, Geometric properties of certain classes of analytic functions associated with a q-integral operator, Symmetry, 11 (2019), 1-14. |
[22] | S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of q-starlike functions, Symmetry, 11 (2019), 1-13. |
[23] | G. V. Milovanović, M. T. Rassias, Analytic number theory, approximation theory, and special functions: In honor of Hari M. Srivastava, Berlin, Heidelberg and New York: Springer, 2014. |
[24] | K. I. Noor, On new classes of integral operators, J. Natur. Geom., 16 (1999), 71-80. |
[25] |
S. Porwal, M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc., 21 (2013), 190-193. doi: 10.1016/j.joems.2013.02.007
![]() |
[26] | M. S. Rehman, Q. Z. Ahmad, B. Khan, M. Tahir, N. Khan, Generalisation of certain subclasses of analytic and univalent functions, Maejo Int. J. Sci. Technol., 13 (2019), 1-9. |
[27] | M. S. Rehman, Q. Z. Ahmad, H. M. Srivastava, B. Khan, N. Khan, Partial sums of generalized q-Mittag-Leffler functions, AIMS Mathematics, 5 (2019), 408-420. |
[28] | L. Shi, Q. Khan, G. Srivastava, J. L. Liu, M. Arif, A study of multivalent q-starlike functions connected with circular domain, Mathematics, 7 (2019), 1-12. |
[29] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus, and their applications, Chichester: Halsted Press (Ellis Horwood Limited), 329-354, 1989. |
[30] |
H. M. Srivastava, A new family of the λ-generalized Hurwitz-Lerch zeta functions with applications, Appl. Math. Inform. Sci., 8 (2014), 1485-1500. doi: 10.12785/amis/080402
![]() |
[31] | H. M. Srivastava, Some general families of the Hurwitz-Lerch Zeta functions and their applications: Recent developments and directions for further researches, Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan, 45 (2019), 234-269. |
[32] |
H. M. Srivastava, The Zeta and related functions: Recent developments, J. Adv. Engrg. Comput., 3 (2019), 329-354. doi: 10.25073/jaec.201931.229
![]() |
[33] |
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327-344. doi: 10.1007/s40995-019-00815-0
![]() |
[34] | H. M. Srivastava, Q. Z. Ahmad, N. Khan, S. Kiran, B. Khan, Some applications of higher-order derivatives involving certain subclasses of analytic and multivalent functions, J. Nonlinear Var. Anal., 2 (2018), 343-353. |
[35] |
H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), 1873-1879. doi: 10.1007/s40995-018-0647-0
![]() |
[36] |
H. M. Srivastava, M. K. Aouf, A. O. Mostafa, Some properties of analytic functions associated with fractional q-calculus operators, Miskolc Math. Notes, 20 (2019), 1245-1260. doi: 10.18514/MMN.2019.3046
![]() |
[37] |
H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integr. Transf. Spec. Funct., 18 (2007), 207-216. doi: 10.1080/10652460701208577
![]() |
[38] |
H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23 (2015), 242-246. doi: 10.1016/j.joems.2014.04.002
![]() |
[39] | H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1 (2017), 61-69. |
[40] |
H. M. Srivastava, S. Bulut, M. Çaǧlar, N. Yaǧmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831-842. doi: 10.2298/FIL1305831S
![]() |
[41] |
H. M. Srivastavaa, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845. doi: 10.2298/FIL1508839S
![]() |
[42] |
H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Mathematics, 5 (2020), 7087-7106. doi: 10.3934/math.2020454
![]() |
[43] |
H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517
![]() |
[44] |
H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 2325-2346. doi: 10.1216/RMJ-2019-49-7-2325
![]() |
[45] |
H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 419-436. doi: 10.24193/subbmath.2018.4.01
![]() |
[46] |
H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. doi: 10.1016/j.aml.2010.05.009
![]() |
[47] | H. M. Srivastava, A. Motamednezhad, E. A. Adegan, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 1-12. |
[48] | H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions, RACSAM, 113 (2019), 3563-3584. |
[49] | H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1-14. |
[50] |
H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of q-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613-2626. doi: 10.2298/FIL1909613S
![]() |
[51] | H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59 (2019), 493-503. |
[52] | T. S. Taha, Topics in univalent function theory, Ph. D. Thesis, University of London, London, 1981. |
[53] | M. Tahir, N. Khan, Q. Z. Ahmad, B. Khan, G. Mehtab, Coefficient estimates for some subclasses of analytic and bi-univalent functions associated with conic domain, SCMA, 16 (2019), 69-81. |
[54] | H. E. Ö. Uçar, Coefficient inequality for q-starlike functions, Appl. Math. Comput., 276 (2016), 122-126. |
[55] |
Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990-994. doi: 10.1016/j.aml.2011.11.013
![]() |
[56] | Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461-11465. |
[57] |
P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169-178. doi: 10.36045/bbms/1394544302
![]() |
1. | Xiu Ye, Shangyou Zhang, A weak divergence CDG method for the biharmonic equation on triangular and tetrahedral meshes, 2022, 178, 01689274, 155, 10.1016/j.apnum.2022.03.017 | |
2. | Jun Zhou, Da Xu, Wenlin Qiu, Leijie Qiao, An accurate, robust, and efficient weak Galerkin finite element scheme with graded meshes for the time-fractional quasi-linear diffusion equation, 2022, 124, 08981221, 188, 10.1016/j.camwa.2022.08.022 | |
3. | Xiu Ye, Shangyou Zhang, A conforming discontinuous Galerkin finite element method for the Stokes problem on polytopal meshes, 2021, 93, 0271-2091, 1913, 10.1002/fld.4959 | |
4. | Xiu Ye, Shangyou Zhang, Constructing a CDG Finite Element with Order Two Superconvergence on Rectangular Meshes, 2023, 2096-6385, 10.1007/s42967-023-00330-5 | |
5. | Yan Yang, Xiu Ye, Shangyou Zhang, A pressure-robust stabilizer-free WG finite element method for the Stokes equations on simplicial grids, 2024, 32, 2688-1594, 3413, 10.3934/era.2024158 | |
6. | Xiu Ye, Shangyou Zhang, A superconvergent CDG finite element for the Poisson equation on polytopal meshes, 2023, 0044-2267, 10.1002/zamm.202300521 | |
7. | Xiu Ye, Shangyou Zhang, Two-Order Superconvergent CDG Finite Element Method for the Heat Equation on Triangular and Tetrahedral Meshes, 2024, 2096-6385, 10.1007/s42967-024-00444-4 | |
8. | Xiu Ye, Shangyou Zhang, Order two superconvergence of the CDG finite elements for non-self adjoint and indefinite elliptic equations, 2024, 50, 1019-7168, 10.1007/s10444-023-10100-9 | |
9. | Fuchang Huo, Weilong Mo, Yulin Zhang, A locking-free conforming discontinuous Galerkin finite element method for linear elasticity problems, 2025, 465, 03770427, 116582, 10.1016/j.cam.2025.116582 |
level | rate | rate | |||
by |
|||||
6 | 0.1996E-02 | 1.97 | 0.8887E-02 | 1.98 | 1024 |
7 | 0.5013E-03 | 1.99 | 0.2228E-02 | 2.00 | 4096 |
8 | 0.1255E-03 | 2.00 | 0.5574E-03 | 2.00 | 16384 |
by |
|||||
6 | 0.2427E-02 | 1.97 | 0.1027E+00 | 1.02 | 3072 |
7 | 0.6100E-03 | 1.99 | 0.5105E-01 | 1.01 | 12288 |
8 | 0.1527E-03 | 2.00 | 0.2546E-01 | 1.00 | 49152 |
by |
|||||
5 | 0.1533E-03 | 3.00 | 0.2042E-01 | 2.03 | 1536 |
6 | 0.1915E-04 | 3.00 | 0.5061E-02 | 2.01 | 6144 |
7 | 0.2394E-05 | 3.00 | 0.1260E-02 | 2.01 | 24576 |
by |
|||||
5 | 0.7959E-05 | 4.00 | 0.1965E-02 | 3.00 | 2560 |
6 | 0.4971E-06 | 4.00 | 0.2451E-03 | 3.00 | 10240 |
7 | 0.3140E-07 | 3.98 | 0.3059E-04 | 3.00 | 40960 |
by |
|||||
4 | 0.1055E-04 | 4.97 | 0.1421E-02 | 4.05 | 960 |
5 | 0.3314E-06 | 4.99 | 0.8735E-04 | 4.02 | 3840 |
6 | 0.1057E-07 | 4.97 | 0.5417E-05 | 4.01 | 15360 |
by |
|||||
2 | 0.2835E-02 | 6.24 | 0.1450E+00 | 5.49 | 84 |
3 | 0.4532E-04 | 5.97 | 0.4718E-02 | 4.94 | 336 |
4 | 0.7115E-06 | 5.99 | 0.1478E-03 | 5.00 | 1344 |
level | rate | rate | |||
by |
|||||
6 | 0.4006E-03 | 1.99 | 0.2389E-02 | 1.99 | 4096 |
7 | 0.1003E-03 | 2.00 | 0.5982E-03 | 2.00 | 16384 |
8 | 0.2510E-04 | 2.00 | 0.1496E-03 | 2.00 | 65536 |
by |
|||||
6 | 0.2360E-04 | 2.99 | 0.3186E-02 | 1.99 | 9216 |
7 | 0.2953E-05 | 3.00 | 0.7976E-03 | 2.00 | 36864 |
8 | 0.3692E-06 | 3.00 | 0.1995E-03 | 2.00 | 147456 |
by |
|||||
5 | 0.1413E-04 | 4.08 | 0.1650E-02 | 2.97 | 4096 |
6 | 0.8676E-06 | 4.03 | 0.2072E-03 | 2.99 | 16384 |
7 | 0.5398E-07 | 4.01 | 0.2593E-04 | 3.00 | 65536 |
by |
|||||
3 | 0.2226E-02 | 4.59 | 0.5414E-01 | 3.52 | 400 |
4 | 0.9610E-04 | 4.53 | 0.3723E-02 | 3.86 | 1600 |
5 | 0.3279E-05 | 4.87 | 0.2392E-03 | 3.96 | 6400 |
level | rate | rate | |||
by |
|||||
3 | 0.8265E-02 | 1.06 | 0.4577E-01 | 1.14 | 16 |
4 | 0.2772E-02 | 1.58 | 0.1732E-01 | 1.40 | 64 |
5 | 0.7965E-03 | 1.80 | 0.6331E-02 | 1.45 | 256 |
6 | 0.2142E-03 | 1.90 | 0.2290E-02 | 1.47 | 1024 |
7 | 0.5564E-04 | 1.94 | 0.8213E-03 | 1.48 | 4096 |
8 | 0.1419E-04 | 1.97 | 0.2928E-03 | 1.49 | 16384 |
level | rate | rate | |||
by |
|||||
3 | 0.4929E-02 | 0.97 | 0.5371E-01 | 0.80 | 16 |
4 | 0.1917E-02 | 1.36 | 0.2401E-01 | 1.16 | 64 |
5 | 0.6004E-03 | 1.67 | 0.9407E-02 | 1.35 | 256 |
6 | 0.1682E-03 | 1.84 | 0.3507E-02 | 1.42 | 1024 |
7 | 0.4457E-04 | 1.92 | 0.1275E-02 | 1.46 | 4096 |
8 | 0.1148E-04 | 1.96 | 0.4576E-03 | 1.48 | 16384 |
level | rate | rate | |||
by |
|||||
6 | 0.1996E-02 | 1.97 | 0.8887E-02 | 1.98 | 1024 |
7 | 0.5013E-03 | 1.99 | 0.2228E-02 | 2.00 | 4096 |
8 | 0.1255E-03 | 2.00 | 0.5574E-03 | 2.00 | 16384 |
by |
|||||
6 | 0.2427E-02 | 1.97 | 0.1027E+00 | 1.02 | 3072 |
7 | 0.6100E-03 | 1.99 | 0.5105E-01 | 1.01 | 12288 |
8 | 0.1527E-03 | 2.00 | 0.2546E-01 | 1.00 | 49152 |
by |
|||||
5 | 0.1533E-03 | 3.00 | 0.2042E-01 | 2.03 | 1536 |
6 | 0.1915E-04 | 3.00 | 0.5061E-02 | 2.01 | 6144 |
7 | 0.2394E-05 | 3.00 | 0.1260E-02 | 2.01 | 24576 |
by |
|||||
5 | 0.7959E-05 | 4.00 | 0.1965E-02 | 3.00 | 2560 |
6 | 0.4971E-06 | 4.00 | 0.2451E-03 | 3.00 | 10240 |
7 | 0.3140E-07 | 3.98 | 0.3059E-04 | 3.00 | 40960 |
by |
|||||
4 | 0.1055E-04 | 4.97 | 0.1421E-02 | 4.05 | 960 |
5 | 0.3314E-06 | 4.99 | 0.8735E-04 | 4.02 | 3840 |
6 | 0.1057E-07 | 4.97 | 0.5417E-05 | 4.01 | 15360 |
by |
|||||
2 | 0.2835E-02 | 6.24 | 0.1450E+00 | 5.49 | 84 |
3 | 0.4532E-04 | 5.97 | 0.4718E-02 | 4.94 | 336 |
4 | 0.7115E-06 | 5.99 | 0.1478E-03 | 5.00 | 1344 |
level | rate | rate | |||
by |
|||||
6 | 0.4006E-03 | 1.99 | 0.2389E-02 | 1.99 | 4096 |
7 | 0.1003E-03 | 2.00 | 0.5982E-03 | 2.00 | 16384 |
8 | 0.2510E-04 | 2.00 | 0.1496E-03 | 2.00 | 65536 |
by |
|||||
6 | 0.2360E-04 | 2.99 | 0.3186E-02 | 1.99 | 9216 |
7 | 0.2953E-05 | 3.00 | 0.7976E-03 | 2.00 | 36864 |
8 | 0.3692E-06 | 3.00 | 0.1995E-03 | 2.00 | 147456 |
by |
|||||
5 | 0.1413E-04 | 4.08 | 0.1650E-02 | 2.97 | 4096 |
6 | 0.8676E-06 | 4.03 | 0.2072E-03 | 2.99 | 16384 |
7 | 0.5398E-07 | 4.01 | 0.2593E-04 | 3.00 | 65536 |
by |
|||||
3 | 0.2226E-02 | 4.59 | 0.5414E-01 | 3.52 | 400 |
4 | 0.9610E-04 | 4.53 | 0.3723E-02 | 3.86 | 1600 |
5 | 0.3279E-05 | 4.87 | 0.2392E-03 | 3.96 | 6400 |
level | rate | rate | |||
by |
|||||
3 | 0.8265E-02 | 1.06 | 0.4577E-01 | 1.14 | 16 |
4 | 0.2772E-02 | 1.58 | 0.1732E-01 | 1.40 | 64 |
5 | 0.7965E-03 | 1.80 | 0.6331E-02 | 1.45 | 256 |
6 | 0.2142E-03 | 1.90 | 0.2290E-02 | 1.47 | 1024 |
7 | 0.5564E-04 | 1.94 | 0.8213E-03 | 1.48 | 4096 |
8 | 0.1419E-04 | 1.97 | 0.2928E-03 | 1.49 | 16384 |
level | rate | rate | |||
by |
|||||
3 | 0.4929E-02 | 0.97 | 0.5371E-01 | 0.80 | 16 |
4 | 0.1917E-02 | 1.36 | 0.2401E-01 | 1.16 | 64 |
5 | 0.6004E-03 | 1.67 | 0.9407E-02 | 1.35 | 256 |
6 | 0.1682E-03 | 1.84 | 0.3507E-02 | 1.42 | 1024 |
7 | 0.4457E-04 | 1.92 | 0.1275E-02 | 1.46 | 4096 |
8 | 0.1148E-04 | 1.96 | 0.4576E-03 | 1.48 | 16384 |