Special Issues

A hybridized weak Galerkin finite element scheme for general second-order elliptic problems

  • Received: 01 February 2020 Revised: 01 March 2020
  • Primary: 65N15, 65N30; Secondary: 35J50

  • In this paper, a hybridized weak Galerkin (HWG) finite element scheme is presented for solving the general second-order elliptic problems. The HWG finite element scheme is based on the use of a Lagrange multiplier defined on the element boundaries. The Lagrange multiplier provides a numerical approximation for certain derivatives of the exact solution. It is worth pointing out that a skew symmetric form has been used for handling the convection term to get the stability in the HWG formulation. Optimal order error estimates are derived for the corresponding HWG finite element approximations. A Schur complement formulation of the HWG method is introduced for implementation purpose.

    Citation: Guanrong Li, Yanping Chen, Yunqing Huang. A hybridized weak Galerkin finite element scheme for general second-order elliptic problems[J]. Electronic Research Archive, 2020, 28(2): 821-836. doi: 10.3934/era.2020042

    Related Papers:

    [1] Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218
    [2] Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123
    [3] Matthew D. Johnston, Bruce Pell, David A. Rubel . A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718
    [4] Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134
    [5] Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin . Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences and Engineering, 2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068
    [6] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [7] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
    [8] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [9] Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048
    [10] Azmy S. Ackleh, Shuhua Hu . Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences and Engineering, 2007, 4(2): 133-157. doi: 10.3934/mbe.2007.4.133
  • In this paper, a hybridized weak Galerkin (HWG) finite element scheme is presented for solving the general second-order elliptic problems. The HWG finite element scheme is based on the use of a Lagrange multiplier defined on the element boundaries. The Lagrange multiplier provides a numerical approximation for certain derivatives of the exact solution. It is worth pointing out that a skew symmetric form has been used for handling the convection term to get the stability in the HWG formulation. Optimal order error estimates are derived for the corresponding HWG finite element approximations. A Schur complement formulation of the HWG method is introduced for implementation purpose.





    [1] A discontinuous hp finite elelnent method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. (1999) 175: 311-341.
    [2] On least energy solutions to a semilinear elliptic equation in a strip. Discrete Contin. Dyn. Syst. (2010) 28: 1083-1099.
    [3] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 2008. doi: 10.1007/978-0-387-75934-0
    [4] On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO (1974) 8: 129-151.
    [5] Two families of mixed finite elements for second order elliptic problems. Numer. Math. (1985) 47: 217-235.
    [6] A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction. SIAM J. Sci. Comput. (2019) 31: 3827-3846.
    [7] Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. (2009) 47: 1319-1365.
    [8] Conditions for superconvergence of HDG methods for Stokes flow. Math. Comp. (2013) 82: 651-671.
    [9] On the exact multiplicity of stable ground states of non-Lipschitz semilinear elliptic equations for some classes of starshaped sets. Adv. Nonlinear Anal. (2020) 9: 1046-1065.
    [10] Global estimates for mixed methods for second order elliptic equations. Math. Comp. (1985) 44: 39-52.
    [11] Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. (2010) 234: 114-130.
    [12] A posteriori error estimates for finite volume element approximations of convection-diffusion-reaction equations. Computat. Geosci. (2002) 6: 483-503.
    [13] Semilinear elliptic system with boundary singularity. Discrete Contin. Dyn. Syst. (2020) 40: 2189-2212.
    [14] A new weak Galerkin finite element method for general second-order elliptic problems. J. Comput. Appl. Math. (2018) 344: 701-715.
    [15] Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Meth. Part. D E (2014) 30: 1003-1029.
    [16] A hybridized formulation for the weak Galerkin mixed finite element method. J. Comput. Appl. Math. (2016) 307: 335-345.
    [17] On the solvability conditions for the diffusion equation with convection terms. Commun. Pure Appl. Anal. (2012) 11: 365-373.
    [18] A hybridized weak Galerkin finite element method for the Biharmonic equation. Int. J. Numer. Anal. Model. (2015) 12: 302-317.
    [19] A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. (2013) 241: 103-115.
    [20] A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comp. (2014) 83: 2101-2126.
    [21] A weak Galerkin finite element method for the stokes equations. Adv. Comput. Math. (2016) 42: 155-174.
    [22] Concentrating solutions for an anisotropic elliptic problem with large exponent. Discrete Contin. Dyn. Syst. (2015) 35: 3771-3797.
    [23] Multiplicity results for a class of elliptic problems with nonlinear boundary condition. Commun. Pure Appl. Anal. (2013) 12: 785-802.
    [24] A hybridized weak Galerkin finite element scheme for the Stokes equations. Sci. China Math. (2015) 58: 2455-2472.
    [25] Concentrating solutions for a planar elliptic problem with large nonlinear exponent and Robin boundary condition. Adv. Nonlinear Anal. (2019) 8: 1252-1285.
    [26] A weak Galerkin finite element scheme for the Biharmonic equations by using polynomials of reduced order. J. Sci. Comput. (2015) 64: 559-585.
  • This article has been cited by:

    1. Yixiang Wu, Necibe Tuncer, Maia Martcheva, Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion, 2017, 22, 1553-524X, 1167, 10.3934/dcdsb.2017057
    2. Junping Shi, Yixiang Wu, Xingfu Zou, Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model, 2020, 32, 1040-7294, 1085, 10.1007/s10884-019-09763-0
    3. Yixiang Wu, Xingfu Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, 2016, 261, 00220396, 4424, 10.1016/j.jde.2016.06.028
    4. Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period, 2020, 51, 14681218, 102966, 10.1016/j.nonrwa.2019.102966
    5. Jing Ge, Ling Lin, Lai Zhang, A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment, 2017, 22, 1553-524X, 2763, 10.3934/dcdsb.2017134
    6. Yuan Lou, Rachidi B. Salako, Control Strategies for a Multi-strain Epidemic Model, 2022, 84, 0092-8240, 10.1007/s11538-021-00957-6
    7. Jinsheng Guo, Shuang-Ming Wang, Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay, 2022, 7, 2473-6988, 6331, 10.3934/math.2022352
    8. Rachidi B. Salako, Impact of population size and movement on the persistence of a two-strain infectious disease, 2023, 86, 0303-6812, 10.1007/s00285-022-01842-z
    9. Yuan Lou, Rachidi B. Salako, Mathematical analysis of the dynamics of some reaction-diffusion models for infectious diseases, 2023, 370, 00220396, 424, 10.1016/j.jde.2023.06.018
    10. Jonas T. Doumatè, Tahir B. Issa, Rachidi B. Salako, Competition-exclusion and coexistence in a two-strain SIS epidemic model in patchy environments, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023213
    11. Azmy S. Ackleh, Nicolas Saintier, Aijun Zhang, A multiple-strain pathogen model with diffusion on the space of Radon measures, 2025, 140, 10075704, 108402, 10.1016/j.cnsns.2024.108402
    12. Jamal Adetola, Keoni G. Castellano, Rachidi B. Salako, Dynamics of classical solutions of a multi-strain diffusive epidemic model with mass-action transmission mechanism, 2025, 90, 0303-6812, 10.1007/s00285-024-02167-9
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3312) PDF downloads(267) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog