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ABSTRACT. In this paper, a hybridized weak Galerkin (HWGQG) finite element
scheme is presented for solving the general second-order elliptic problems. The
HWG finite element scheme is based on the use of a Lagrange multiplier defined
on the element boundaries. The Lagrange multiplier provides a numerical
approximation for certain derivatives of the exact solution. It is worth pointing
out that a skew symmetric form has been used for handling the convection term
to get the stability in the HWG formulation. Optimal order error estimates are
derived for the corresponding HWG finite element approximations. A Schur
complement formulation of the HWG method is introduced for implementation
purpose.

1. Introduction. In this paper, we consider the following general second-order
elliptic problem

V- (AVu)+ V- (bu)+cu = finQ, (1)
u = gon Jf, (2)

where €2 is a polygonal/plolyhedral domain in R(d = 2,3), A is a symmetric
matrix, b = (b;(z))ax1 € [L=(Q)]? is a vector-valued function, ¢ = c(z) € L>(Q) is
a scalar function on Q, f € L2() is a source term and g € H=(Q) is the boundary
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condition. Assume that the matrix A satisfies the following property: there exists
a constant A > 0 such that

EAE > A€, VE e RY,

where ¢ is understood as a column vector and &' is the transpose of €. Taking
A.b,c, f,g to be specific functions in the problem(1)-(2), we can obtain various
specific partial differential equations [3, 9, 25, 2, 22, 13, 23, 17]. Many numerical
methods have been developed to get the numerical solution to the general second-
order elliptic problem(1)-(2), e,g., the finite volume element method [12], the finite
element method [3], the mixed finite element method [10], the discontinous Galerkin
method [11], the hybridizable discontinuous Galerkin method [6], the discontinuous
hp finite elelnent method [1].

Recently, a weak Galerkin (WG) finite element method has been developed to
solve the problem (1)-(2) [19, 14]. The weak Galerkin finite element method is a
efficient numerical technique in which differential operators are approximated by
their weak forms as distributions. In the WG method, the weak function and its
derivative can be approximated by piecewise polynomials with various degrees. The
efficiency and flexibility have made the WG method become an excellent candidate
for solving partial differential equations. Since its contribution, the WG finite ele-
ment method has been applied successfully to the discretization of several classes
of partial differential equations, e.g., the second-order elliptic problem [19, 20, 14],
the Biharmonic equation [15, 26], the Stokes equation[21, 24].

In the finite element method, hybridization is a useful technique where a La-
grange multiplier is identified to relax certain constrain such as some continuity
requirements. This technique has been used in mixed finite element methods to
yield hybridized mixed finite element formulations [4, 5]. It is also employed in
discontinuous Galerkin finite element methods to yield hybridized discontinuous
Galerkin (HDG) methods [7, 8]. In [24, 16, 18], the WG finite element formulations
are hybridized to obtain corresponding hybridized weak Galerkin finite element for-
mulations for involved problems.

The aim of this paper is to propose a hybridized weak Galerkin finite element
method for the general second-order elliptic problem (1)-(2) based on the use of
a Lagrange multiplier defined on the element boundaries. We shall establish the
stability and convergence for the proposed hybridized weak Galerkin finite element
method. The hybridized weak Galerkin method is further used to derive a Schur
complement formulation which lead to a linear system with significantly less number
of unknowns than the original WG or HWG formulation. It is also worth pointing
out that a skew symmetric form has been used for handling the convection term to
get the stability in the HWG formulation for the problem (1)-(2).

The paper is organized as follows. In the next section, we shall introduce the dis-
crete weak differential operators including the discrete weak gradient operator and
the discrete weak convective operator. In Section 3, we shall present a hybridized
weak Galerkin formulation for the problem (1)-(2) and further show the relation
between WG method and HWG method. The stability condition for the proposed
hybridized weak Galerkin formulation shall be proved in Section 4. Some error es-
timates shall be obtain in Section 5. In Section 6, a Schur complement formulation
was established for variable reduction. Finally, conclusions are drawn in Section 7.

2. Discrete weak differential operators. Let K be any domain in R%, d = 2, 3.
We use the standard definition for the Sobolev space H*(K) and their associated
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inner products (-,-)s x, norms || - ||s,x, and semi-norms | - | x for any s > 0. For
instance, for any integer s > 0, the semi-norm | - | x is defined by

1/2
= (X [ orar)
|a]=s K
a=(a, o), o =01+ +ag, 0%= H?Zlag‘jf.
The Sobolev norm || « ||, x is given by

m 1/2
ol s = (Z v i,K) .
7=0

The space H°(K) coincides with L?(K), for which norm and inner product are
denoted by || - ||k and (-, )k, respectively. If K = Q, we shall drop the subscript K
in the L? norm and the L? inner product notations.

The space H (div; K) is given by the set of vector-valued functions on K which,
together with their divergence, are square integrable; i.e.,

H(div; K) = {v:v € [L*(K)]4 Vv e L*(K)}.
The norm in H(div; K) is defined as

|v

with the usual notation

0l arasvizey = (0l + 19 - wlF) .

Next, we will introduce the discrete weak gradient operator and the discrete
weak convective operator. To this end, we denoted by v = {vg, vy} a weak function
on a polygonal/polyhedral domain 7' with boundary 9T. Here, vy € L?(T) and
v, € H2(8T). The first component vy can be understood as the value of v in T,
and the second component v, represents v on the boundary of 7. Note that v, may
not necessarily be related to the trace of vy on OT. Denote by W (T') the space of
weak functions on T i.e.,

W(T) = {v = {vg, v} : vo € L*(T), v, € H?(dT)}. (3)

Define (v,w)r = [;vwdz and (v,w), = f7 vwds. Denote by P.(K) the set of
polynomials on T' with degree no more than r. In the rest of the section, we shall

recall the discrete weak gradient operator and the discrete weak convective operator
defined in [14].

Definition 2.1. ([14]) The discrete weak gradient operator, denoted by V,, » r, is
defined as the unique polynomial Vv € [P,.(T)]¢ satisfying the following equation

(Vom0 @) = —(v0,V - @)1 + (03,q -n)or, Vg € [P(T)]% (4)

By applying the usual integration by part to the first term on the right hand side
of (4), we can rewrite the equation (4) as

(Vo 70,@)7 = (V0,9) 5 + (V5 — v0,9 - RYor, Vg € [Pr(T)]". (5)

Definition 2.2. ([14]) The discrete weak convective operator, denoted by b-V,, . 1,
is defined as the unique polynomial b - V,, ,rv € P,(T) satisfying the following
equation

b Viurrv,0)r = —(b-V,v0)r — ((V-b)g,v0) + (b-n,vpd)or, V¢ € P(T). (6)
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3. A hybridized weak Galerkin formulation. The goal of this section is to
establish a hybridized weak Galerkin finite element scheme for the problem (1)-(2)
and further obtain the relation between WG method and HWG method.

3.1. Notations. Let 7, be a partition of the domain €2 into polygons in 2D or
polyhedra in 3D. Assume that 7;, is shape regular in the sense as defined in [20].
Denote by &, the set of all edges or flat faces in Ty, and let £ = £,\0N be the set
of all interior edges or flat faces. For every element T" € T, we denote by hrp its
diameter and mesh size h = maz,., e, hr for Ty,.

For each element T' € Ty, denote by W(T) the space of weak function defined
by (3). Suppose the trace of W(T') on the boundary 9T is the usual Sobolev space
L?(9T). Define the spaces W and A by

W = lgrer, W(T), A =Tlrer, L(0T).

Note that the values of functions in the space W are not correlated between any
adjacent elements T7 and T, which share e € E,? as a common edge or flat face. For
example, on each interior edge e € €Y, v € W has two copies of v,: one taken from
the left (say 77) and the other from the right (say T3). Define the jump of v € W
on e € &, by

[[U]]e = (7)

0
vplor, — vblom,, €€ &
Vp, e € 09,

where vp|ar, is the value of v on e as seen from the element T;. The order of T}
and T is non-essential in (7) as long as the difference is taken in consistent way in
all the formulas. Analogously, for any function A € A, we define its similarity on
e € &, by
(p = | o a8 0
‘ 0, e € 90,

Denote by (A) the similarity of A in &.
For any given integer k > 2, denote by V}, the discrete weak function space given
by
Vie(T) = {v ={vo,vp} : vg € Pp(T),vp € Py_1(T),e € T}.
Define A, (0T') by
Ap(OT) ={A: A € Py_1(e),e € OT}.

By patching Vi (T') and A (9T) over all the elements T' € Ty, we obtain two weak
Galerkin finite element spaces Vj, and Ay as follows

Vi = lrer, Vi(T), Ap = Urer, Ax(0T).
Denote by V}¥ the subspace of V, with vanishing boundary values on 912, i.e.,
V,? = {’U = {’Uo,’l)b} (S Vh : Ub|aTnaQ = O,VT S 77L}

Furthermore, let V;, be the subspace of V}, consisting of functions without jump on
each interior edge or flat face, i.e.,

Vi = {v={vo, v} € Vi : [v]e =0, e € &}
Denote by V§ the subspace of V), with vanishing boundary values on 99, i.e.,

V,(L) = {U = {’U(),Ub} eV ’Ub|aTﬂaQ = O,VT S 771}
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Let =, be subspace of Ay consisting of functions with similarity zero across each
edge or flat face, i.e.,

Zp = {)\ €Ay <<)\>>e =0,e € gh}

Note that the functions in the space = shall serve as Lagrange multipliers in hy-
bridization methods.

On the finite element space V},, the discrete weak gradient operator V,, ;—; and
the discrete weak convective operator b - V_; are respectively given by

(Vwk-10)|lr = Vyk—1,7(|r), (b-Vi_1v)|r =b- Vi_1(v|r), Yv € V},.

With an abuse of notation, from now on we shall drop the subscript £ — 1 in the
notation V,, p—1 and b - Vi_;.

Let Qo be the local L? projection on 7;, and Qj be the local L? projection on &y,.
Thus, Qo|r is the L? projection from L?(T) onto Py (T) and @yl is the L? projection
from L?(e) onto Py(e). In addition, denote by Qp the local L? projection onto
[P._1(T)]%. For any v € H'(f2), we define the projection operator Qy, : H'(Q2) — V},
such that for each element T" € T, we have

Qnv = {Qovo, Quup}, {vo, v} = iw(v) € W(T).

Lemma 3.1. ([19]) The L?-projection Qp, and Qy have the following commutative
property
Vu(Qnd) = Qu(Ve), Vo € H'(T). (9)

3.2. Algorithm. In [14], a new variational form of the problem (1)-(2) is given by
1 1
(AVu, Vo) + §(b -Vu,v) — i(b -V, u) + (cou,v) = (f,v), v € HY(Q),  (10)
where ¢o = 1(V-b) +c. And the variational form (10) was further used to establish
a WG finite element formulation. In this section, we shall establish a hybridized
finite element formulation based on (10) for the problem (1)-(2). To this end, we
introduce two forms on V}, as follows

1 1
a(v,w) = (AVyv, Vyw) + i(b - Vv, wp) — i(b - Vww, vg) + (covo, wo),
s(v,w) = Z hz (Qevo — vb, Quwo — wy)or,
TETh
b, A) = > (w,N),
TETh

where ¢y = %(V -b) + ¢ >0 for all z € Q, and the usual L? inner product can be

written locally on each element by

(AV“,U, wa) = Z (Avwva vww)Ta (b . V“,’U, wO) = Z (b . va, wO)Ta
TET TeTh
(b Vww,v0) = Y (b Vauw,vo)r, (coto,vo) = Y (cotio, vo)r-
TETh TETh

Denote by as(+, ) a stabilization of a(-,-) given by

as(v,w) = a(v,w) + s(v, w). (11)
For any v € V,, let
ol := vas (v, v). (12)

It has been verified in [14] that || - || defines a norm in the space Vy.
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The following weak Galerkin finite element scheme for the general second-order
elliptic problem (1)-(2) was introduced and analyzed in [14].

Algorithm 3.2. ([14]) A numerical approximation for the problem (1)-(2) can be
obtained by seeking @, = {uo, us} € Vj satisfying both 4, = Qpg on 9Q and the
following equation

as(tn,v) = (f,v0), Yo = {vo,vp} € Vy. (13)

The weak Galerkin finite algorithm 3.2 can be hybridized in the finite element
space V,, by using a Lagrange multiplier that shall enforce the continuity of the
functions in V}, on interior element boundaries. The corresponding formulation can
be described as follows

Algorithm 3.3. A numerical approximation for the problem (1)-(2) can be ob-
tained by seeking (upn,Ap) € Vi x Ej, satisfying both up = Qpg on 9 and the
following equations

as(uh,v) - b('U, >‘h) = (fa UO)? (14)
b(un,p) = 0, (15)

for all v = {vg,vp} € V)P, u € Ep,.

Since A\ € = indicates A\, + A\g = 0 on each interior edge and A = 0 on the
boundary edge, then for any v € V}, and A € 5, we obtain

b0, ) = 3 (funle, Ar). (16)

ecEy)

3.3. The relation between WG and HWG. The aim of this subsection is to
show that the HWG scheme (14)-(15) is equivalent to WG scheme (13) in that the
solutions uy, from (14)-(15) and @y, from (13). But the HWG scheme is expected to
be advantageous over WG for some special problems such as interface problems.

Theorem 3.4. Let u, = {ug, up} € V3, be the first component of the solution of the
HWG scheme (14)-(15). Then, one has [up]e = 0 for any e € E); i.e., up € V.
Furthermore, up, = Qpg on OQ and uy, satisfies (13). Thus, up, = Up,.

Proof. Let e be an interior edge or flat face shared by two elements 77 and T5. By
letting p = Jup] on e € 9Ty (ie. p= —Jup] on e € 9Ty ) and p = 0 otherwise in
(15), we obtain from (16) that

0= bunsp) = 3 lunsplor = [ LT,
TETh €

which implies that [us]e = 0 for each interior edge or flat face e € £7.
Now by restricting v € V}, in (14) and using the fact b(v, Ap) = 0, we obtain

as(un,v) = (f,v0), Yv € VY,

which is the same as (13). It follows from the solution uniqueness for (13) that
up, = up, which finishes the proof. O
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4. Stability condition for HWG. It is easy to check that the following defines
a norm in the finite element space =j,

|mﬁ(zmw®% (a7)

TETh

As to V)2, for any v € V)2, let

1/2
ww-@wimm@. (18)

TETh
We claim that [| - [lyo defines a norm in VY. In fact, if [v]lyo = 0, then [v]e =0
for e € £). Thus, v € Vj,. Hence v = 0 since || - || define a norm in V. This proves
the positivity of || - ||V’?. The other properties for a norm can be checked trivially.

In the rest of the paper, we always suppose 7; be a shape regular finite element
partition detailed by [20].

Lemma 4.1. ([20])(Trace Inequality) Let Ty, be a finite element partition of ) that
is shape reqular. Then, there exists a constant C such that for any T € T}, and
edge/face e € 0T, we have

lellz < C(hzllellz + hrllVeli?), (19)
where ¢ € HY(T) is any function.

Lemma 4.2. ([20])(Inverse Inequality) Let T;, be a finite element partition of Q2
that is shape reqular. Then, there exists a constant C(n) such that

IVellr < Cm)hz'elir, YT € T, (20)
for any piecewise polynomial ¢ of degree n on Ty,.

Lemma 4.3. (Boundedness) There exists a constant C > 0 such that

b, Nl < ClvllvellMlz,, Yv € Vi, A € En. (22)

las(w,0)] < Cllwllypllvllve, Yw,veVy, (21)

Proof. To verify (21), we use the Cauchy-Schwarz inequality to obtain
|as (w, v)]
= ’(.Avww, Vwv) + %(b - Vww,vg) — %(b - Vv, wo) + (cowo, vg)

+ Z hr (Quwo — vb, Quvo — vb)or

TETy

< > (I\Alloo\lvwwllTHVwUHT+ [blloc IV wwllz[|v]l7 4 [[blloc |V wvl|[[w]l 2
TETy

+||CO||oonHT||v||T) + Y b7 HIQuwo — vollor|Qevo — vellor
TETy

0(( ST AVewlF) 2O IVwoll3) Y (O IVewl3) 2D l3)

TETy TeTh TeTh TETy,

IN
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H(CST IVl E) 2O w3+ O3 ll3) 2SS i)

TETh TET TETh TET
_ 1/2/; — 1/2
+(D 2 hHIQuwo — weli3r) / (™" > 1Quvo — wsll3r) / >
TETy TETy

< Clwlyolvlve-

As to (22), it follows from (16) and the Cauchy-Schwarz inequality that

b = |3 (o Nor| = | 3 (foe Mor
TETh eefg
1/2 1/2
< (h 3 II[[v}]eHi) (h 3 ||A||§)
ecgy ecgy
< lolluslIM=,.

O
Lemma 4.4. (Coercivity) For any v € VP, there exists a constant C > 0 such that
ax(v,0) = Cllo][ 3. (23)

Proof. For any v € V), we have [|v||2,, = [Jv[l, which implies the estimate (23) holds
h
true with C' = 1. O

Lemma 4.5. (Inf-sup condition) There exists a constant C > 0 such that

b(v, p)

vevo ol

> Cllpllz,, Vp € En. (24)

Proof. For any p € =y, we have {p). = 0 or equivalently p*+p® = 0 on each interior
edge e € T;, and p = 0 on each boundary edge e € 9. By letting v = {0, hep} € V)
in b(v, p) and s(v,v), we obtain

b(v,p) = Z<’Ub7p>8T

TeTh

- Z<UbLapL>e+ Z<’U§',pR>e

ecgy e€gy

= Z <Ul§ - ’Ué%vpL>e

ec&yp

= 2)  hellplZ, (25)

o

and

> hp'R2llpllor
TETh

= > hg' B2 + 10")1%)
6652

2 3 ol (26)

ec&d

s(v,v)

IA
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By (4),the Cauchy-Schwarz inequality, the trace inequality (19) and the inverse
inequality (20), we have

(Vwo, Vyv)r = Z (vp, Vv - m)e < Z hellp* eI Vwvlle

ecoT ecoT

1
¢ Z he [p*[lell VwollT,
ecoT

IN

which implies

1
IVwollr <C Y e llpt|I2,
ecoT

where v} is chosen to be vg or vg according to the relative position of v, and e, and
the same to p*. Summing over all elements yields

(Vat, Vi) < C Y hellp”I2. (27)

ecky

It follows from (26) and (27) that

ol < C ) hellp™|2. (28)

ec&y)
By the fact of p + p® = 0, we obtain
h ' TolellZ = Rt hep® = hep™ |12 = 2he|lpl[2- (29)
Combining(25), (27), (28) and (29) gives
2
b(’U,,O) > 026652 ||pHe

UEV,? ||v||V}? a 26652 ||p||€

::(j”p”Eh’

which finishes the proof. 0

5. Error analysis. The goal of this section is to establish the error estimate for
the HWG finite element solution {up; A} arising from (14)-(15). To this end, we
let (up; A\n) € Vi X Ep, be the WG finite element solution arising from the numerical
scheme (14)-(15), where u = {ug, up}. Assume that the exact solution of (1)-(2) is
given by u. Let A\ be given by

1
A= 5(b-n)(Quu+2u) — AVu - n, on T.
Defined error functions by

en = {eo, e} = up — Quu = {ug — Qou, up — Qpu}, €, = A\ — QpA.

Lemma 5.1. Let T, be a finite element partition of ) that is shape reqular. Let u
and (up; A\p) € Vi, X Ep, be the solutions of (1)-(2) and (14)-(15), respectively. Then,

for any v € V,? and p € =y, the error functions e, and €y, satisfies
Cls(eh, U) + b(’U, Gh) = gu,b(v) + tu,b(v) + Au,b(v) - lu(v) - S(Qhu7 ’U)a (30)
ben,p) = 0, (31)
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where
Eus(v) = (b, (Qou — weo) + (b Voo, Qou — ) + cofus — Qou, vo),
lu(v) = Z (vg — vp, (AVu — AQp(Vu)) - n)or,
TeTh
L) = 5 3 Bem (u— Queo — w)or
TETh

Aup(v) = % S (b, (u — Qou)(vo — w))or-

TeTh

Proof. Equation (31) is obvious by the fact [e,] = 0 from Theorem 3.4. Tt remains
to prove (30). Testing (1) by using vo of v = {vg,vp} € V)2, we arrive at

(fyvo) = (AVu,Vug) + %((V -b)u,v) + (b Vu,vp) + (cou,vo)
= > {(AVW) n,v — vor — Y ((AVu) -n,vp)ar,  (32)
TETh TETh

where ¢y = $(V - b) + c. We first deal with the form (AVu, V) in (32). In fact,
for any v € V!, it follows from Lemma 3.1 and (5) that

(Avw(Qhu)a va)T = (A@h (VU), va)T
= (Vvo, A@h(Vu))T — <’U0 — Up, (AQh(Vu)) . ’n)>aT
= (AVu,Vug)r — ((AQn(Vu)) - n,vg — vp)or

Thus,
(AVu,v9) = (AV4(Qpu), Vo) + ((AQn(Vu) - n,vo — vp)ar

Then, we handle the term  ((V-b)u, vo)+(b-Vu, vg) in (32). For w = {wo, ws} € Vi,
according to the definition of discrete weak convective operator (6), we have

(b -Vaw, 1)0) = —(b - Vg, 'LU()) — (V . b7 ’wo’Uo) + Z <b 'n, ’wb’U()>aT (33)
T67-h
and
(b-Vyv,wg) = —(b-Vwp,vg) — (Vb wovy) + Z (b-n,vywo)or
TETh
= (b . Vvo,wo) — Z <b n, (UQ — Ub)UJQ>aT. (34)
T€eTh

By letting w = Qpu in (33) and wy = Qou in (34), we obtain the following equations

(- Vu(Qru),vo) = —(b- Vv, Qou) — (V- b, (Qou)vo)
+ Y (b, Quulvo — vb))or
T€Th
+ Z ((b-n)Qvu, vp)or, (35)
TeT)
(b ' vwva QOU) = (b ' VUOa QOU) - Z <b ‘n, QQU(UO — Ub)>8T~ (36)

TETh
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Thus, by using the integration by parts and (35) and (36) , we obtain
1
(b-Vu,vo) + 5((V -b)u, vg)

1
= —(b-Vuvg,u) — =(V-buvg) + Z (b-n,uve)er
2 TETh

= —(b- Vv, Qou) — %(V b, (Qow)vo) + (b- Vg, Qou — u)
+%(v : b7 (QOU - u)UO) + Z <b ‘n, U’Uo>aT
TEeT,
- _%(b Vg, Qou) — %(V b, (Qou)vo) — %(b - Vv, Qou) + (b Voo, Qou — u)
—|—%(V b, (Qou — u)vg) + Z (b-n,u(vo — wvp))or + Z (b-n,uvp)or
TET TeTh
= b Vu(Quu),vo) — 5(b- Vi, Qo) + (Vb (Qou — u)ro)
+(b - Vg, Qou — u) + % Z (b-n, (u— Qpu)(vg — vp))or
TeTh

+% > (b-n, (u—Qou)(vo—vb)>aT+% > {(b-n)(Quu+ 2u),vp)or. (37)

TETh TETh

By the difinition of a(u,v), we can get

a(Qru,v) = (AV4(Qpu), Vo) + %(b - Vau(Qpu),vo) — %(b - Vv, Qou)
+(coQou, vo). (38)

With A = 1(b-n)(Qpu + 2u) — AVu - n we have

b(v, Q) = Y (W, QuNor = Y (v, Nor

TeTh TeTh
1
= Z <§(b 1) (Quu + 2u) — AVu - n, vp)or
TeTh

According to the (13) and the definition of ey, we can get
as(en,v) +b(v,en) = as(up,v)+b(v, Ap) — as(Qpu,v) — b(v, QpA)
= (f,vo) — a(@nu,v) — s(Qnu,v) = b(v,QpA).  (39)
Combining the (32), (33) and (37)-(39), we obtain
as(en,v) +b(v,en) = Eup(V) +tup(v) + Aup(v) — lu(v) — s(Qru,v),
which completes the proof. O
In the rest of the section, we will prove the error estimate for the HWG finite

element solution {up;Ap} arising from (14)-(15). We rewrite the error equations
(30)-(31) by

as(en,v) +b(v,en) = Cu(v), Yo € VP,
b(eh7p) 0, VP € Eha
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where
Cu(v) = gu,b(v) + tu,b(v) + )\u,b(v) - lu(v) - S(Qhua U)

is a linear function. The above is a saddle problem for which the Brezzi’s theorem
[4] can be applied for an analysis on its stability and solvability.

Theorem 5.2. Suppose Ty, is a finite element partition of Q that is shape regular.
Let u, {up, An} € Vi, x Zj, be solutions of (1)-(2) and (14)-(15), respectively. Then,
there exists a constant C' such that

1Qnu — unllvo + 1QvA — Anllz, < CR* [[ullps1- (40)

Proof. Since all the conditions of Brezzi’s theorem [4] have been verified in Section
4, it from the Brezzi’s theorem that

[Qru — unllvo + [QuA = Anllz, < CllCullyor- (41)
For any v € V), it has been shown in [14] that
[Cu(0)] < Ch*[[ullsalloll-

Thus, we have

< O a1 (42)

Cu(v Culv
Cullyer = sup ()] sup |Cu ()]
= ol = P ]
Substituting (42) into (41) yields the desired estimate (40), which completes the
proof. 0

6. Variable reduction. The degrees of freedom in the WG scheme (13) are cre-
ated by the interior variables ug and the interface variables u,. For the HWG scheme
(14)-(15), more unknowns are added to the picture from the Lagrange multiplier
An. Hence, the size of the discrete system arising from either (13) or (14)-(15) is
enormously large. In order to reduce the size of the discrete systems, we present a
Schur complement for the WG scheme (13) based on HWG scheme (14)-(15) in the
rest of this section. The method shall eliminate all the interior unknowns ug and
the interface unknow A, and produce a much reduced system involving only the
interface variables wuy.

6.1. Theory of variable reduction. Define the interface finite element space By
as the restriction of the finite element space V, on the set of edges &; i.e.,

B, = {’Ub S Pk,1(€)7€ € gh}
Then, By, is a Hilbert space equipped with the following inner product
(o, vb)e, = Y (Wh, Vb)e, Vi, vy € By,
ec&y

Denote by & the subspace of &, consisting of functions with vanishing boundary.
Now, we define an operator Gy : &, — &) such that for any v, € &, the image
Gj(vp) is obtained by the following three steps.

Step 1. On each element T' € Tp, compute wy in terms of w; by solving the
following local equations

as 7(wp,v) = (f,v0)r, Yo = {v9,0} € V3(T). (43)
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Here wy, = {wo, wp} € Vi, (T'). We denote the solution wy by wo = Fy(wp).
Step 2. Compute 6}, 7 € Ak (9T) on each element T € Ty, such that
br(v,0n1) = asr(wp,v), Yo ={0,v,} € V},(T). (44)
Thus, we can obtain a function 6, € Ay. Denote 65, by 0, = Ly(wp).
Step 3. Set Gy(wp) as the similarity of 65, on &; i.e.
Gr(ws) = (On)-
Adding the two equations (43) and (44) gives
br(v,0n1) = as r(wn,v) — (f,v0)r, Yv € {vo,vp} € Vi(T). (45)
By the superposition principle one has the following Lemma.
Lemma 6.1. For any wy, € By, one has
Gy(wp) = Go(wp) + G(0), (46)
where Gq is the operator with respect to f = 0.

Theorem 6.2. For any wy, v, € IB%?L, one has
Z <G0(wb)a GO(Ub»E = as(wh7 vh)a
ee&?

where wy, = {Fy(wp), wp} and vy, = {Fs(vp),vp}. In other words, the linear operator
Gy, when restricted to the subspace 52, is symmetric and positive definite.

Proof. For any wy, v, € £, let

wp, = {Fo(ws),wp}, On = Lo(ws),
Vp = {Fo(’l)b),vb}.

Applying (45) with f = 0 we arrive at

D (Golws),vp)e = D> ((Brhesvo), = Y (Onr,v0)

e€Ep e€Ep TeTh
= > b(on.Ohr) =Y asr(ws,vn),
TeTh TeTh
which finishes the proof. O

Theorem 6.3. Suppose u, € By, be any function such that u, = Qpg on 0. Let
Gy = Fy(up). Then, ap, = {Uo, Ty} is the solution of (13) if and only if Uy satisfies
the following operator equation

G (up) = 0. (47)
Proof. The proof will be divided into two steps:

Step 1. We will prove the necessity.

Let @y, = {#o,up} be the solution of the WG scheme (13). Then, from Theorem
3.4 there exists A\, € =y, such that (up; Ay ) is the solution of HWG scheme (14)-(15).
Taking v = {v9,0} € Vi(T) on T and zero elsewhere in (14), we have

as,1(Un,v) = (f,v0), Yv = {vo,0} € Vi(T),

which implies that @, satisfies the local equation (43).
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Next taking v = {0,vp} € Vi(T) on T and zero elsewhere in (14) gives
br(An1,v) = as 1 (in,v), Yo ={0,v} € Vi(T),
where Xh’T is the restriction of Aj, on 9T'. This implies that \;, satisfies (44). Then

from the definition of G'f, we have

Gy(up) = (An)-
Since \;, € =, implies (A\4) = 0,
Gf(ﬂb) = 07

which finishes the proof of the necessity. O

Step 2. We will prove the sufficiency.

Suppose 4, € By, satisfies (47) and the boundary condition: @, = Qpg on 9.
Let @y = Fy(tp). Then, @ is the solution of the following local equations on each
T € Th,

as1(tn,v) = (f,v0)r, Yv = {vo,0} € Vi(T), (48)
where @y, = {@o, Up}- B
Now on each element T, we compute Ay 1 € Ag(9T) by solving the local equation
br (v, A1) = as 1 (tn,v), Yo = {0,v,} € Vi(T). (49)
We let \j, € Ay, be the function given by Ay|ar = Ap7 with modification Ay|sq = 0.
By (47) and the definition of G, on each e € & we have
(An) = Gy(up) =0,
which means \;, € Zj,. Subtracting (49) from (48) gives
as,7(n, v) = br(v, Anr) = (f,v0), Yo = {vo, v} € Vi(T).

Summing up the above equations over all element T' € T}, yields

as(tn,v) — b(v, \p) = (f,v0), Yo = {vo,vp} € V0. (50)

For any o € E}, we obtain from (16) that
b(in, o) = _ ([n]e,oL)e =0 (51)

ec&y)

Equations (50) and (51) indicate that (ip;As) is a solution to HDG scheme (14)-
(15). Recalling that @, = Qpg on 99, we see from Theorem 3.4 that uy, is the WG
solution defined by the formulation (13). This completes the proof of the sufficiency.

6.2. Computational algorithm with reduced variables. From (46), the equa-
tion (47) can rewritten as
Go(up) = —G1(0). (52)
Let ¢, € By, satisfy g, = Qpg on 99 and zero elsewhere. It follows from the linearity
of Gy that
Go(u) = Go(tp — qv) + Go(an)-

Substituting the above into (52) gives
Go(up — qp) = —G5(0) — Go(aw)-

It is easy to check that the function p, = 4y — gp has vanishing boundary value. By
letting r, = —G;(0) — Go(gp), we have

Go(pb) = Tp. (53)
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The reduced system of linear equation (53) is actually a Schur complement formu-
lation for WG scheme (13). Note that (53) involves only the variables representing
the value of the function on .

Variable Reduction Algorithm The solution uy, to the WG scheme (13) can
be obtained step-by-step as fellows

Step 1. On each element T' € Tp, solve for r, from the following equation
rp = =G (0) = Golgp)-

Step 2. Solve for p, € BY) by the equation (53).

Step 3. Compute @, = pp + gp to get the solution on element boundaries. Then,
on each element T', compute @y = F¢(up) by solving the local equations (43).

Remark 1. Step 1 requires the inversion of local stiffness matrices and can be
accomplished in parallel. The computational complexity is linear with respect to
the number of unknowns. Step 2 is only computation extensive part of the imple-
mentation.

7. Conclusions. We have presented a hybridized weak Galerkin finite element
scheme for general second-order elliptic problems. The scheme is based on the use
of a Lagrange multiplier defined on the element boundaries. We further developed
a Schur complement formulation for the hybridized weak Galerkin finite element
scheme for implementation purpose. The Schur complement formulation have ar-
rived at a much reduced system involving only the interface variables u; by elim-
ination the interior unknowns and Lagrange multipliers. It is worth pointing out
that a skew symmetric form has been used for handling the convection term to get
the stability in the hybridized weak Galerkin finite element formulation. Optimal
order error estimates are derived for the corresponding hybridized weak Galerkin
finite element approximations.

Acknowledgment. We would like to express our gratitude to the anonymous ref-
erees for their helpful suggestions.
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