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Abstract. In this paper, a hybridized weak Galerkin (HWG) finite element

scheme is presented for solving the general second-order elliptic problems. The

HWG finite element scheme is based on the use of a Lagrange multiplier defined
on the element boundaries. The Lagrange multiplier provides a numerical

approximation for certain derivatives of the exact solution. It is worth pointing

out that a skew symmetric form has been used for handling the convection term
to get the stability in the HWG formulation. Optimal order error estimates are

derived for the corresponding HWG finite element approximations. A Schur

complement formulation of the HWG method is introduced for implementation
purpose.

1. Introduction. In this paper, we consider the following general second-order
elliptic problem

−∇ · (A∇u) +∇ · (bbbu) + cu = f in Ω, (1)

u = g on ∂Ω, (2)

where Ω is a polygonal/plolyhedral domain in Rd(d = 2, 3), A is a symmetric
matrix, bbb = (bi(xxx))d×1 ∈ [L∞(Ω)]d is a vector-valued function, c = c(xxx) ∈ L∞(Ω) is

a scalar function on Ω, f ∈ L2(Ω) is a source term and g ∈ H 1
2 (Ω) is the boundary
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condition. Assume that the matrix A satisfies the following property: there exists
a constant λ > 0 such that

ξtAξ ≥ λξtξ, ∀ξ ∈ Rd,
where ξ is understood as a column vector and ξt is the transpose of ξ. Taking
A, bbb, c, f, g to be specific functions in the problem(1)-(2), we can obtain various
specific partial differential equations [3, 9, 25, 2, 22, 13, 23, 17]. Many numerical
methods have been developed to get the numerical solution to the general second-
order elliptic problem(1)-(2), e,g., the finite volume element method [12], the finite
element method [3], the mixed finite element method [10], the discontinous Galerkin
method [11], the hybridizable discontinuous Galerkin method [6], the discontinuous
hp finite elelnent method [1].

Recently, a weak Galerkin (WG) finite element method has been developed to
solve the problem (1)-(2) [19, 14]. The weak Galerkin finite element method is a
efficient numerical technique in which differential operators are approximated by
their weak forms as distributions. In the WG method, the weak function and its
derivative can be approximated by piecewise polynomials with various degrees. The
efficiency and flexibility have made the WG method become an excellent candidate
for solving partial differential equations. Since its contribution, the WG finite ele-
ment method has been applied successfully to the discretization of several classes
of partial differential equations, e.g., the second-order elliptic problem [19, 20, 14],
the Biharmonic equation [15, 26], the Stokes equation[21, 24].

In the finite element method, hybridization is a useful technique where a La-
grange multiplier is identified to relax certain constrain such as some continuity
requirements. This technique has been used in mixed finite element methods to
yield hybridized mixed finite element formulations [4, 5]. It is also employed in
discontinuous Galerkin finite element methods to yield hybridized discontinuous
Galerkin (HDG) methods [7, 8]. In [24, 16, 18], the WG finite element formulations
are hybridized to obtain corresponding hybridized weak Galerkin finite element for-
mulations for involved problems.

The aim of this paper is to propose a hybridized weak Galerkin finite element
method for the general second-order elliptic problem (1)-(2) based on the use of
a Lagrange multiplier defined on the element boundaries. We shall establish the
stability and convergence for the proposed hybridized weak Galerkin finite element
method. The hybridized weak Galerkin method is further used to derive a Schur
complement formulation which lead to a linear system with significantly less number
of unknowns than the original WG or HWG formulation. It is also worth pointing
out that a skew symmetric form has been used for handling the convection term to
get the stability in the HWG formulation for the problem (1)-(2).

The paper is organized as follows. In the next section, we shall introduce the dis-
crete weak differential operators including the discrete weak gradient operator and
the discrete weak convective operator. In Section 3, we shall present a hybridized
weak Galerkin formulation for the problem (1)-(2) and further show the relation
between WG method and HWG method. The stability condition for the proposed
hybridized weak Galerkin formulation shall be proved in Section 4. Some error es-
timates shall be obtain in Section 5. In Section 6, a Schur complement formulation
was established for variable reduction. Finally, conclusions are drawn in Section 7.

2. Discrete weak differential operators. Let K be any domain in Rd, d = 2, 3.
We use the standard definition for the Sobolev space Hs(K) and their associated
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inner products (·, ·)s,K , norms ‖ · ‖s,K , and semi-norms | · |s,K for any s ≥ 0. For
instance, for any integer s ≥ 0, the semi-norm | · |s,K is defined by

|v|s,K =

( ∑
|α|=s

∫
K

|∂αv|2dK
)1/2

with the usual notation

α = (α1, · · ·, αd), |α| = α1 + · · ·+ αd, ∂
α = Πd

j=1∂
αj
xj
.

The Sobolev norm ‖ · ‖m,K is given by

‖v‖m,K =

( m∑
j=0

|v|2j,K
)1/2

.

The space H0(K) coincides with L2(K), for which norm and inner product are
denoted by ‖ · ‖K and (·, ·)K , respectively. If K = Ω, we shall drop the subscript K
in the L2 norm and the L2 inner product notations.

The space H(div;K) is given by the set of vector-valued functions on K which,
together with their divergence, are square integrable; i.e.,

H(div;K) = {vvv : vvv ∈ [L2(K)]d,∇ · vvv ∈ L2(K)}.

The norm in H(div;K) is defined as

‖vvv‖H(div;K) =
(
‖vvv‖2K + ‖∇ · vvv‖2K

)1/2
.

Next, we will introduce the discrete weak gradient operator and the discrete
weak convective operator. To this end, we denoted by v = {v0, vb} a weak function
on a polygonal/polyhedral domain T with boundary ∂T . Here, v0 ∈ L2(T ) and

vb ∈ H
1
2 (∂T ). The first component v0 can be understood as the value of v in T ,

and the second component vb represents v on the boundary of T . Note that vb may
not necessarily be related to the trace of v0 on ∂T . Denote by W (T ) the space of
weak functions on T ; i.e.,

W (T ) = {v = {v0, vb} : v0 ∈ L2(T ), vb ∈ H
1
2 (∂T )}. (3)

Define (v, w)T =
∫
T
vwdx and 〈v, w〉γ =

∫
γ
vwds. Denote by Pr(K) the set of

polynomials on T with degree no more than r. In the rest of the section, we shall
recall the discrete weak gradient operator and the discrete weak convective operator
defined in [14].

Definition 2.1. ([14]) The discrete weak gradient operator, denoted by ∇w,r,T , is
defined as the unique polynomial ∇wv ∈ [Pr(T )]d satisfying the following equation

(∇w,r,T v,qqq)T = −(v0,∇ · qqq)T + 〈vb, qqq ·nnn〉∂T , ∀qqq ∈ [Pr(T )]d. (4)

By applying the usual integration by part to the first term on the right hand side
of (4), we can rewrite the equation (4) as

(∇w,r,T v,qqq)T = (∇v0, qqq)K + 〈vb − v0, qqq ·nnn〉∂T , ∀qqq ∈ [Pr(T )]d. (5)

Definition 2.2. ([14]) The discrete weak convective operator, denoted by bbb·∇w,r,T ,
is defined as the unique polynomial bbb · ∇w,r,T v ∈ Pr(T ) satisfying the following
equation

(bbb · ∇w,r,T v, φ)T = −(bbb · ∇φ, v0)T − ((∇ · bbb)φ, v0) + 〈bbb ·nnn, vbφ〉∂K , ∀φ ∈ Pr(T ). (6)
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3. A hybridized weak Galerkin formulation. The goal of this section is to
establish a hybridized weak Galerkin finite element scheme for the problem (1)-(2)
and further obtain the relation between WG method and HWG method.

3.1. Notations. Let Th be a partition of the domain Ω into polygons in 2D or
polyhedra in 3D. Assume that Th is shape regular in the sense as defined in [20].
Denote by Eh the set of all edges or flat faces in Th, and let E0

h = Eh\∂Ω be the set
of all interior edges or flat faces. For every element T ∈ Th, we denote by hT its
diameter and mesh size h = max

T∈Eh
hT for Th.

For each element T ∈ Th, denote by W (T ) the space of weak function defined
by (3). Suppose the trace of W (T ) on the boundary ∂T is the usual Sobolev space
L2(∂T ). Define the spaces W and Λ by

W = ΠT∈ThW (T ), Λ = ΠT∈ThL
2(∂T ).

Note that the values of functions in the space W are not correlated between any
adjacent elements T1 and T2 which share e ∈ E0

h as a common edge or flat face. For
example, on each interior edge e ∈ E0

h, v ∈W has two copies of vb: one taken from
the left (say T1) and the other from the right (say T2). Define the jump of v ∈ W
on e ∈ Eh by

[[v]]e =

{
vb|∂T1

− vb|∂T2
, e ∈ E0

h

vb, e ∈ ∂Ω,
(7)

where vb|∂Ti
is the value of v on e as seen from the element Ti. The order of T1

and T2 is non-essential in (7) as long as the difference is taken in consistent way in
all the formulas. Analogously, for any function λ ∈ Λ, we define its similarity on
e ∈ Eh by

〈〈λ〉〉e =

{
λ|∂T1

+ λ|∂T2
, e ∈ E0

h,

0, e ∈ ∂Ω.
(8)

Denote by 〈〈λ〉〉 the similarity of λ in Eh.
For any given integer k ≥ 2, denote by Vk the discrete weak function space given

by

Vk(T ) = {v = {v0, vb} : v0 ∈ Pk(T ), vb ∈ Pk−1(T ), e ∈ ∂T}.
Define Λk(∂T ) by

Λk(∂T ) = {λ : λ|e ∈ Pk−1(e), e ∈ ∂T}.

By patching Vk(T ) and Λk(∂T ) over all the elements T ∈ Th, we obtain two weak
Galerkin finite element spaces Vh and Λh as follows

Vh = ΠT∈ThVk(T ), Λh = ΠT∈ThΛk(∂T ).

Denote by V 0
h the subspace of Vh with vanishing boundary values on ∂Ω, i.e.,

V 0
h = {v = {v0, vb} ∈ Vh : vb|∂T∩∂Ω = 0,∀T ∈ Th}.

Furthermore, let Vh be the subspace of Vh consisting of functions without jump on
each interior edge or flat face, i.e.,

Vh = {v = {v0, vb} ∈ Vh : [[v]]e = 0, e ∈ E0
h}.

Denote by V0
h the subspace of Vh with vanishing boundary values on ∂Ω, i.e.,

V0
h = {v = {v0, vb} ∈ Vh : vb|∂T∩∂Ω = 0,∀T ∈ Th}.
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Let Ξh be subspace of Λh consisting of functions with similarity zero across each
edge or flat face, i.e.,

Ξh = {λ ∈ Λh : 〈〈λ〉〉e = 0, e ∈ Eh}.
Note that the functions in the space Ξh shall serve as Lagrange multipliers in hy-
bridization methods.

On the finite element space Vh, the discrete weak gradient operator ∇w,k−1 and
the discrete weak convective operator bbb · ∇k−1 are respectively given by

(∇w,k−1v)|T = ∇w,k−1,T (v|T ), (bbb · ∇k−1v)|T = bbb · ∇k−1(v|T ), ∀v ∈ Vh.
With an abuse of notation, from now on we shall drop the subscript k − 1 in the
notation ∇w,k−1 and bbb · ∇k−1.

Let Q0 be the local L2 projection on Th and Qb be the local L2 projection on Eh.
Thus, Q0|T is the L2 projection from L2(T ) onto Pk(T ) and Qb|e is the L2 projection
from L2(e) onto Pk(e). In addition, denote by Qh the local L2 projection onto
[Pk−1(T )]d. For any v ∈ H1(Ω), we define the projection operator Qh : H1(Ω)→ Vh
such that for each element T ∈ Th, we have

Qhv = {Q0v0, Qbvb}, {v0, vb} = iw(v) ∈W (T ).

Lemma 3.1. ([19]) The L2-projection Qh and Qh have the following commutative
property

∇w(Qhφ) = Qh(∇φ), ∀φ ∈ H1(T ). (9)

3.2. Algorithm. In [14], a new variational form of the problem (1)-(2) is given by

(A∇u,∇v) +
1

2
(bbb · ∇u, v)− 1

2
(bbb · ∇v, u) + (c0u, v) = (f, v), v ∈ H1

0 (Ω), (10)

where c0 = 1
2 (∇·bbb) + c. And the variational form (10) was further used to establish

a WG finite element formulation. In this section, we shall establish a hybridized
finite element formulation based on (10) for the problem (1)-(2). To this end, we
introduce two forms on Vh as follows

a(v, w) = (A∇wv,∇ww) +
1

2
(bbb · ∇wv, w0)− 1

2
(bbb · ∇ww, v0) + (c0v0, w0),

s(v, w) =
∑
T∈Th

h−1
T 〈Qbv0 − vb, Qbw0 − wb〉∂T ,

b(v, λ) =
∑
T∈Th

〈vb, λ〉,

where c0 = 1
2 (∇ · bbb) + c ≥ 0 for all x ∈ Ω, and the usual L2 inner product can be

written locally on each element by

(A∇wv,∇ww) =
∑
T∈Th

(A∇wv,∇ww)T , (bbb · ∇wv, w0) =
∑
T∈Th

(bbb · ∇wv, w0)T ,

(bbb · ∇ww, v0) =
∑
T∈Th

(bbb · ∇ww, v0)T , (c0u0, v0) =
∑
T∈Th

(c0u0, v0)T .

Denote by as(·, ·) a stabilization of a(·, ·) given by

as(v, w) = a(v, w) + s(v, w). (11)

For any v ∈ Vh, let

|||v||| :=
√
as(v, v). (12)

It has been verified in [14] that ||| · ||| defines a norm in the space V0
h.
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The following weak Galerkin finite element scheme for the general second-order
elliptic problem (1)-(2) was introduced and analyzed in [14].

Algorithm 3.2. ([14]) A numerical approximation for the problem (1)-(2) can be
obtained by seeking ūh = {ū0, ūb} ∈ Vh satisfying both ūb = Qbg on ∂Ω and the
following equation

as(ūh, v) = (f, v0), ∀v = {v0, vb} ∈ V0
h. (13)

The weak Galerkin finite algorithm 3.2 can be hybridized in the finite element
space Vh by using a Lagrange multiplier that shall enforce the continuity of the
functions in Vh on interior element boundaries. The corresponding formulation can
be described as follows

Algorithm 3.3. A numerical approximation for the problem (1)-(2) can be ob-
tained by seeking (uh, λh) ∈ Vh × Ξh satisfying both ub = Qbg on ∂Ω and the
following equations

as(uh, v)− b(v, λh) = (f, v0), (14)

b(uh, µ) = 0, (15)

for all v = {v0, vb} ∈ V 0
h , µ ∈ Ξh.

Since λ ∈ Ξh indicates λL + λR = 0 on each interior edge and λ = 0 on the
boundary edge, then for any v ∈ Vh and λ ∈ Ξh, we obtain

b(v, λ) =
∑
e∈E0h

〈[[uh]]e, λL〉. (16)

3.3. The relation between WG and HWG. The aim of this subsection is to
show that the HWG scheme (14)-(15) is equivalent to WG scheme (13) in that the
solutions uh from (14)-(15) and ūh from (13). But the HWG scheme is expected to
be advantageous over WG for some special problems such as interface problems.

Theorem 3.4. Let uh = {u0, ub} ∈ Vh be the first component of the solution of the
HWG scheme (14)-(15). Then, one has [[ub]]e = 0 for any e ∈ E0

h; i.e., uh ∈ Vh.
Furthermore, ub = Qbg on ∂Ω and uh satisfies (13). Thus, uh = ūh.

Proof. Let e be an interior edge or flat face shared by two elements T1 and T2. By
letting µ = [[uh]] on e ∈ ∂T1 ( i.e. µ = −[[uh]] on e ∈ ∂T2 ) and µ = 0 otherwise in
(15), we obtain from (16) that

0 = b(uh, µ) =
∑
T∈Th

〈uh, µ〉∂T =

∫
e

[[uh]]2eds,

which implies that [[uh]]e = 0 for each interior edge or flat face e ∈ E0
h.

Now by restricting v ∈ Vh in (14) and using the fact b(v, λh) = 0, we obtain

as(uh, v) = (f, v0), ∀v ∈ V0
h,

which is the same as (13). It follows from the solution uniqueness for (13) that
uh = ūh, which finishes the proof.
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4. Stability condition for HWG. It is easy to check that the following defines
a norm in the finite element space Ξh

‖λ‖Ξh
=

( ∑
T∈Th

he‖λ‖2e
)1/2

. (17)

As to V 0
h , for any v ∈ V 0

h , let

‖v‖V 0
h

=

(
|||v|||+

∑
T∈Th

he‖[[v]]e‖2e
)1/2

. (18)

We claim that ‖ · ‖V 0
h

defines a norm in V 0
h . In fact, if ‖v‖V 0

h
= 0, then [[v]]e = 0

for e ∈ E0
h. Thus, v ∈ Vh. Hence v = 0 since ||| · ||| define a norm in Vh. This proves

the positivity of ‖ · ‖V 0
h

. The other properties for a norm can be checked trivially.

In the rest of the paper, we always suppose Th be a shape regular finite element
partition detailed by [20].

Lemma 4.1. ([20])(Trace Inequality) Let Th be a finite element partition of Ω that
is shape regular. Then, there exists a constant C such that for any T ∈ Th and
edge/face e ∈ ∂T , we have

‖ϕ‖2e ≤ C(h−1
T ‖ϕ‖

2
T + hT ‖∇ϕ‖2T ), (19)

where ϕ ∈ H1(T ) is any function.

Lemma 4.2. ([20])(Inverse Inequality) Let Th be a finite element partition of Ω
that is shape regular. Then, there exists a constant C(n) such that

‖∇ϕ‖T ≤ C(n)h−1
T ‖ϕ‖T , ∀T ∈ Th, (20)

for any piecewise polynomial ϕ of degree n on Th.

Lemma 4.3. (Boundedness) There exists a constant C > 0 such that

|as(w, v)| ≤ C‖w‖V 0
h
‖v‖V 0

h
, ∀w, v ∈ V 0

h , (21)

|b(v, λ)| ≤ C‖v‖V 0
h
‖λ‖Ξh

, ∀v ∈ V 0
h , λ ∈ Ξh. (22)

Proof. To verify (21), we use the Cauchy-Schwarz inequality to obtain

|as(w, v)|

=

∣∣∣∣(A∇ww,∇wv) +
1

2
(bbb · ∇ww, v0)−

1

2
(bbb · ∇wv, w0) + (c0w0, v0)

+
∑
T∈Th

h−1
T 〈Qbw0 − vb, Qbv0 − vb〉∂T

∣∣∣∣
≤

∑
T∈Th

(
‖A‖∞‖∇ww‖T ‖∇wv‖T + ‖bbb‖∞‖∇ww‖T ‖v‖T + ‖bbb‖∞‖∇wv‖T ‖w‖T

+‖c0‖∞‖w‖T ‖v‖T
)
+
∑
T∈Th

h−1‖Qbw0 − vb‖∂T ‖Qbv0 − vb‖∂T

≤ C

(( ∑
T∈Th

‖∇ww‖2T
)1/2( ∑

T∈Th

‖∇wv‖2T
)1/2

+
( ∑
T∈Th

‖∇ww‖2T
)1/2( ∑

T∈Th

‖v‖2T
)1/2
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+
( ∑
T∈Th

‖∇wv‖2T
)1/2( ∑

T∈Th

‖w‖2T
)1/2

+
( ∑
T∈Th

‖w‖2T
)1/2( ∑

T∈Th

‖v‖2T
)1/2

+
( ∑
T∈Th

h−1‖Qbw0 − wb‖2∂T
)1/2(

h−1
∑
T∈Th

‖Qbv0 − vb‖2∂T
)1/2)

≤ C‖w‖V 0
h
‖v‖V 0

h
.

As to (22), it follows from (16) and the Cauchy-Schwarz inequality that

|b(v, λ)| =

∣∣∣∣ ∑
T∈Th

〈vb, λ〉∂T
∣∣∣∣ =

∣∣∣∣ ∑
e∈E0h

〈[[v]]e, λ〉∂T
∣∣∣∣

≤
(
h−1
e

∑
e∈E0h

‖[[v]]e‖2e
)1/2(

h−1
e

∑
e∈E0h

‖λ‖2e
)1/2

≤ ‖v‖V 0
h
‖λ‖Ξh

.

Lemma 4.4. (Coercivity) For any v ∈ V0
h, there exists a constant C > 0 such that

as(v, v) ≥ C‖v‖2V 0
h
. (23)

Proof. For any v ∈ V0
h, we have ‖v‖2

V 0
h

= |||v|||, which implies the estimate (23) holds

true with C = 1.

Lemma 4.5. (Inf-sup condition) There exists a constant C > 0 such that

sup
v∈V 0

h

b(v, ρ)

‖v‖V 0
h

≥ C‖ρ‖Ξh
, ∀ρ ∈ Ξh. (24)

Proof. For any ρ ∈ Ξh, we have 〈〈ρ〉〉e = 0 or equivalently ρL+ρR = 0 on each interior
edge e ∈ Th and ρ = 0 on each boundary edge e ∈ ∂Ω. By letting v = {0, heρ} ∈ V 0

h

in b(v, ρ) and s(v, v), we obtain

b(v, ρ) =
∑
T∈Th

〈vb, ρ〉∂T

=
∑
e∈E0h

〈vLb , ρL〉e +
∑
e∈E0h

〈vRb , ρR〉e

=
∑
e∈E0h

〈vLb − vRb , ρL〉e

= 2
∑
e∈E0h

he‖ρ‖2e, (25)

and

s(v, v) =
∑
T∈Th

h−1
T h2

e‖ρ‖∂T

=
∑
e∈E0h

h−1
T h2

e(‖ρL‖2 + ‖ρR‖2)

≤ 2he
∑
e∈E0h

‖ρ‖2e. (26)
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By (4),the Cauchy-Schwarz inequality, the trace inequality (19) and the inverse
inequality (20), we have

(∇wv,∇wv)T =
∑
e∈∂T

〈v∗b ,∇wv ·nnn〉e ≤
∑
e∈∂T

he‖ρ∗‖e‖∇wv‖e

≤ C
∑
e∈∂T

h
1
2
e ‖ρ∗‖e‖∇wv‖T ,

which implies

‖∇wv‖T ≤ C
∑
e∈∂T

h
1
2
e ‖ρ∗‖2e,

where v∗b is chosen to be v1
b or v2

b according to the relative position of vb and e, and
the same to ρ∗. Summing over all elements yields

(∇wv,∇wv) ≤ C
∑
e∈E0h

he‖ρ∗‖2e. (27)

It follows from (26) and (27) that

|||v|||2 ≤ C
∑
e∈E0h

he‖ρ∗‖2e. (28)

By the fact of ρL + ρR = 0, we obtain

h−1
e ‖[[v]]e‖2e = h−1

e ‖heρL − heρR‖2e = 2he‖ρ‖2e. (29)

Combining(25), (27), (28) and (29) gives

sup
v∈V 0

h

b(v, ρ)

‖v‖V 0
h

≥ C
∑
e∈E0h

‖ρ‖2e∑
e∈E0h

‖ρ‖e
= C‖ρ‖Ξh

,

which finishes the proof.

5. Error analysis. The goal of this section is to establish the error estimate for
the HWG finite element solution {uh;λh} arising from (14)-(15). To this end, we
let (uh;λh) ∈ Vh×Ξh be the WG finite element solution arising from the numerical
scheme (14)-(15), where u = {u0, ub}. Assume that the exact solution of (1)-(2) is
given by u. Let λ be given by

λ =
1

2
(bbb ·nnn)(Qbu+ 2u)−A∇u ·nnn, on ∂T.

Defined error functions by

eh = {e0, eb} = uh −Qhu = {u0 −Q0u, ub −Qbu}, εh = λh −Qbλ.

Lemma 5.1. Let Th be a finite element partition of Ω that is shape regular. Let u
and (uh;λh) ∈ Vh×Ξh be the solutions of (1)-(2) and (14)-(15), respectively. Then,
for any v ∈ V 0

h and ρ ∈ Ξh, the error functions eh and εh satisfies

as(eh, v) + b(v, εh) = ξu,bbb(v) + tu,bbb(v) + λu,bbb(v)− lu(v)− S(Qhu, v), (30)

b(eh, ρ) = 0, (31)
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where

ξu,bbb(v) =
1

2
(∇ · bbb, (Q0u− u)v0) + (bbb · ∇v0, Q0u− u) + c0(u−Q0u, v0),

lu(v) =
∑
T∈Th

〈v0 − vb, (A∇u−AQh(∇u)) ·nnn〉∂T ,

tu,bbb(v) =
1

2

∑
T∈Th

〈bbb ·nnn, (u−Qbu)(v0 − vb)〉∂T ,

λu,bbb(v) =
1

2

∑
T∈Th

〈bbb ·nnn, (u−Q0u)(v0 − vb)〉∂T .

Proof. Equation (31) is obvious by the fact [[eh]] = 0 from Theorem 3.4. It remains
to prove (30). Testing (1) by using v0 of v = {v0, vb} ∈ V 0

h , we arrive at

(f, v0) = (A∇u,∇v0) +
1

2
((∇ · bbb)u, v0) + (bbb · ∇u, v0) + (c0u, v0)

−
∑
T∈Th

〈(A∇u) ·nnn, v0 − vb〉∂T −
∑
T∈Th

〈(A∇u) ·nnn, vb〉∂T , (32)

where c0 = 1
2 (∇ · bbb) + c. We first deal with the form (A∇u,∇v0) in (32). In fact,

for any v ∈ V 0
h , it follows from Lemma 3.1 and (5) that

(A∇w(Qhu),∇wv)T = (AQh(∇u),∇wv)T

= (∇v0,AQh(∇u))T − 〈v0 − vb, (AQh(∇u)) ·nnn)〉∂T
= (A∇u,∇v0)T − 〈(AQh(∇u)) ·nnn, v0 − vb〉∂T

Thus,

(A∇u, v0) = (A∇w(Qhu),∇wv) + 〈(AQh(∇u) ·nnn, v0 − vb〉∂T
Then, we handle the term 1

2 ((∇·bbb)u, v0)+(bbb·∇u, v0) in (32). For w = {w0, wb} ∈ Vh,
according to the definition of discrete weak convective operator (6), we have

(bbb · ∇ww, v0) = −(bbb · ∇v0, w0)− (∇ · bbb, w0v0) +
∑
T∈Th

〈bbb ·nnn,wbv0〉∂T (33)

and

(bbb · ∇wv, w0) = −(bbb · ∇w0, v0)− (∇ · bbb, w0v0) +
∑
T∈Th

〈bbb ·nnn, vbw0〉∂T

= (bbb · ∇v0, w0)−
∑
T∈Th

〈bbb ·nnn, (v0 − vb)w0〉∂T . (34)

By letting w = Qhu in (33) and w0 = Q0u in (34), we obtain the following equations

(bbb · ∇w(Qhu), v0) = −(bbb · ∇v0, Q0u)− (∇ · bbb, (Q0u)v0)

+
∑
T∈Th

〈bbb ·nnn,Qbu(v0 − vb)〉∂T

+
∑
T∈Th

〈(bbb ·nnn)Qbu, vb〉∂T , (35)

(bbb · ∇wv,Q0u) = (bbb · ∇v0, Q0u)−
∑
T∈Th

〈bbb ·nnn,Q0u(v0 − vb)〉∂T . (36)
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Thus, by using the integration by parts and (35) and (36) , we obtain

(bbb · ∇u, v0) +
1

2
((∇ · bbb)u, v0)

= −(bbb · ∇v0, u)− 1

2
(∇ · bbb, uv0) +

∑
T∈Th

〈bbb ·nnn, uv0〉∂T

= −(bbb · ∇v0, Q0u)− 1

2
(∇ · bbb, (Q0u)v0) + (bbb · ∇v0, Q0u− u)

+
1

2
(∇ · bbb, (Q0u− u)v0) +

∑
T∈Th

〈bbb ·nnn, uv0〉∂T

= −1

2
(bbb · ∇v0, Q0u)− 1

2
(∇ · bbb, (Q0u)v0)− 1

2
(bbb · ∇v0, Q0u) + (bbb · ∇v0, Q0u− u)

+
1

2
(∇ · bbb, (Q0u− u)v0) +

∑
T∈Th

〈bbb ·nnn, u(v0 − vb)〉∂T +
∑
T∈Th

〈bbb ·nnn, uvb〉∂T

=
1

2
(bbb · ∇w(Qhu), v0)− 1

2
(bbb · ∇wv,Q0u) +

1

2
(∇ · bbb, (Q0u− u)v0)

+(bbb · ∇v0, Q0u− u) +
1

2

∑
T∈Th

〈bbb ·nnn, (u−Qbu)(v0 − vb)〉∂T

+
1

2

∑
T∈Th

〈bbb ·nnn, (u−Q0u)(v0 − vb)〉∂T +
1

2

∑
T∈Th

〈(bbb ·nnn)(Qbu+ 2u), vb〉∂T . (37)

By the difinition of a(u, v), we can get

a(Qhu, v) = (A∇w(Qhu),∇wv) +
1

2
(bbb · ∇w(Qhu), v0)− 1

2
(bbb · ∇wv,Q0u)

+(c0Q0u, v0). (38)

With λ = 1
2 (bbb ·nnn)(Qbu+ 2u)−A∇u ·nnn we have

b(v,Qbλ) =
∑
T∈Th

〈v,Qbλ〉∂T =
∑
T∈Th

〈v, λ〉∂T

=
∑
T∈Th

〈1
2

(bbb ·nnn)(Qbu+ 2u)−A∇u ·nnn, vb〉∂T

According to the (13) and the definition of eh, we can get

as(eh, v) + b(v, εh) = as(uh, v) + b(v, λh)− as(Qhu, v)− b(v,Qbλ)

= (f, v0)− a(Qhu, v)− s(Qhu, v)− b(v,Qbλ). (39)

Combining the (32), (33) and (37)-(39), we obtain

as(eh, v) + b(v, εh) = ξu,bbb(v) + tu,bbb(v) + λu,bbb(v)− lu(v)− s(Qhu, v),

which completes the proof.

In the rest of the section, we will prove the error estimate for the HWG finite
element solution {uh;λh} arising from (14)-(15). We rewrite the error equations
(30)-(31) by

as(eh, v) + b(v, εh) = ζu(v), ∀v ∈ V 0
h ,

b(eh, ρ) = 0, ∀ρ ∈ Ξh,
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where

ζu(v) = ξu,bbb(v) + tu,bbb(v) + λu,bbb(v)− lu(v)− S(Qhu, v)

is a linear function. The above is a saddle problem for which the Brezzi’s theorem
[4] can be applied for an analysis on its stability and solvability.

Theorem 5.2. Suppose Th is a finite element partition of Ω that is shape regular.
Let u, {uh, λh} ∈ Vh×Ξh be solutions of (1)-(2) and (14)-(15), respectively. Then,
there exists a constant C such that

‖Qhu− uh‖V 0
h

+ ‖Qbλ− λh‖Ξh
≤ Chk‖u‖k+1. (40)

Proof. Since all the conditions of Brezzi’s theorem [4] have been verified in Section
4, it from the Brezzi’s theorem that

‖Qhu− uh‖V 0
h

+ ‖Qbλ− λh‖Ξh
≤ C‖ζu‖V 0

h
′ . (41)

For any v ∈ V 0
h , it has been shown in [14] that

|ζu(v)| ≤ Chk‖u‖k+1|||v|||.

Thus, we have

‖ζu‖V 0
h

′ = sup
v∈V 0

h

|ζu(v)|
‖v‖V 0

h

≤ sup
v∈V 0

h

|ζu(v)|
|||v|||

≤ Chk‖u‖k+1. (42)

Substituting (42) into (41) yields the desired estimate (40), which completes the
proof.

6. Variable reduction. The degrees of freedom in the WG scheme (13) are cre-
ated by the interior variables u0 and the interface variables ub. For the HWG scheme
(14)-(15), more unknowns are added to the picture from the Lagrange multiplier
λh. Hence, the size of the discrete system arising from either (13) or (14)-(15) is
enormously large. In order to reduce the size of the discrete systems, we present a
Schur complement for the WG scheme (13) based on HWG scheme (14)-(15) in the
rest of this section. The method shall eliminate all the interior unknowns u0 and
the interface unknow λh, and produce a much reduced system involving only the
interface variables ub.

6.1. Theory of variable reduction. Define the interface finite element space Bh
as the restriction of the finite element space Vh on the set of edges Eh; i.e.,

Bh = {vb : vb ∈ Pk−1(e), e ∈ Eh}.

Then, Bh is a Hilbert space equipped with the following inner product

〈wb, vb〉Eh =
∑
e∈Eh

〈wb, vb〉e,∀wb, vb ∈ Bh.

Denote by E0
h the subspace of Eh consisting of functions with vanishing boundary.

Now, we define an operator Gf : Eh 7→ E0
h such that for any vb ∈ Eh, the image

Gf (vb) is obtained by the following three steps.

Step 1. On each element T ∈ Th, compute w0 in terms of wb by solving the
following local equations

as,T (wh, v) = (f, v0)T , ∀v = {v0, 0} ∈ Vh(T ). (43)
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Here wh = {w0, wb} ∈ Vh(T ). We denote the solution w0 by w0 = Ff (wb).

Step 2. Compute θh,T ∈ Λk(∂T ) on each element T ∈ Th such that

bT (v, θh,T ) = as,T (wh, v), ∀v = {0, vb} ∈ Vh(T ). (44)

Thus, we can obtain a function θh ∈ Λh. Denote θh by θh = Lf (wb).

Step 3. Set Gf (wb) as the similarity of θh on Eh; i.e.

Gf (wb) = 〈〈θh〉〉.

Adding the two equations (43) and (44) gives

bT (v, θh,T ) = as,T (wh, v)− (f, v0)T , ∀v ∈ {v0, vb} ∈ Vk(T ). (45)

By the superposition principle one has the following Lemma.

Lemma 6.1. For any wb ∈ Bh, one has

Gf (wb) = G0(wb) +Gf (0), (46)

where G0 is the operator with respect to f = 0.

Theorem 6.2. For any wb, vb ∈ B0
h, one has∑

e∈E0h

〈G0(wb), G0(vb)〉e = as(wh, vh),

where wh = {Ff (wb), wb} and vh = {Ff (vb), vb}. In other words, the linear operator
G0, when restricted to the subspace E0

h, is symmetric and positive definite.

Proof. For any wb, vb ∈ E0
h, let

wh = {F0(wb), wb}, θh = L0(wb),

vh = {F0(vb), vb}.

Applying (45) with f = 0 we arrive at∑
e∈E0h

〈G0(wb), vb〉e =
∑
e∈E0h

〈
〈〈θh〉〉e, vb

〉
e

=
∑
T∈Th

〈θh,T , vb〉

=
∑
T∈Th

b(vh, θh,T ) =
∑
T∈Th

as,T (wh, vh),

which finishes the proof.

Theorem 6.3. Suppose ūb ∈ Bh be any function such that ūb = Qbg on ∂Ω. Let
ū0 = Ff (ūb). Then, ūh = {ū0, ūb} is the solution of (13) if and only if ūb satisfies
the following operator equation

Gf (ūb) = 0. (47)

Proof. The proof will be divided into two steps:

Step 1. We will prove the necessity.
Let ūh = {ū0, ūb} be the solution of the WG scheme (13). Then, from Theorem

3.4 there exists λ̄h ∈ Ξh such that (ūh; λ̄h) is the solution of HWG scheme (14)-(15).
Taking v = {v0, 0} ∈ Vk(T ) on T and zero elsewhere in (14), we have

as,T (ūh, v) = (f, v0), ∀v = {v0, 0} ∈ Vk(T ),

which implies that ūh satisfies the local equation (43).
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Next taking v = {0, vb} ∈ Vk(T ) on T and zero elsewhere in (14) gives

bT (λ̄h,T , v) = as,T (ūh, v), ∀v = {0, v} ∈ Vk(T ),

where λ̄h,T is the restriction of λ̄h on ∂T . This implies that λ̄h satisfies (44). Then
from the definition of Gf , we have

Gf (ūb) = 〈〈λ̄h〉〉.
Since λ̄h ∈ Ξh implies 〈〈λ̄h〉〉 = 0,

Gf (ūb) = 0,

which finishes the proof of the necessity.

Step 2. We will prove the sufficiency.
Suppose ūb ∈ Bh satisfies (47) and the boundary condition: ūb = Qbg on ∂Ω.

Let ū0 = Ff (ūb). Then, ū0 is the solution of the following local equations on each
T ∈ Th,

as,T (ūh, v) = (f, v0)T , ∀v = {v0, 0} ∈ Vk(T ), (48)

where ūh = {ū0, ūb}.
Now on each element T , we compute λ̄h,T ∈ Λk(∂T ) by solving the local equation

bT (v, λ̄h,T ) = as,T (ūh, v), ∀v = {0, vb} ∈ Vk(T ). (49)

We let λ̄h ∈ Λh be the function given by λ̄h|∂T = λ̄h,T with modification λ̄h|∂Ω = 0.
By (47) and the definition of Gf , on each e ∈ E0

h we have

〈〈λ̄h〉〉 = Gf (ub) = 0,

which means λ̄h ∈ Ξh. Subtracting (49) from (48) gives

as,T (ūh, v)− bT (v, λ̄h,T ) = (f, v0), ∀v = {v0, vb} ∈ Vk(T ).

Summing up the above equations over all element T ∈ Th yields

as(ūh, v)− b(v, λ̄h) = (f, v0), ∀v = {v0, vb} ∈ V 0
h . (50)

For any σ ∈ Ξh, we obtain from (16) that

b(ūh, σ) =
∑
e∈E0h

〈[[ūh]]e, σL〉e = 0 (51)

Equations (50) and (51) indicate that (ūh; λ̄h) is a solution to HDG scheme (14)-
(15). Recalling that ūb = Qbg on ∂Ω, we see from Theorem 3.4 that ūh is the WG
solution defined by the formulation (13). This completes the proof of the sufficiency.

6.2. Computational algorithm with reduced variables. From (46), the equa-
tion (47) can rewritten as

G0(ūb) = −Gf (0). (52)

Let qb ∈ Bh satisfy qb = Qbg on ∂Ω and zero elsewhere. It follows from the linearity
of G0 that

G0(ūb) = G0(ūb − qb) +G0(qb).

Substituting the above into (52) gives

G0(ūb − qb) = −Gf (0)−G0(qb).

It is easy to check that the function pb = ūb− qb has vanishing boundary value. By
letting rb = −Gf (0)−G0(qb), we have

G0(pb) = rb. (53)
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The reduced system of linear equation (53) is actually a Schur complement formu-
lation for WG scheme (13). Note that (53) involves only the variables representing
the value of the function on E0

h.
Variable Reduction Algorithm The solution uh to the WG scheme (13) can

be obtained step-by-step as fellows

Step 1. On each element T ∈ Th, solve for rb from the following equation

rb = −Gf (0)−G0(qb).

Step 2. Solve for pb ∈ B0
h by the equation (53).

Step 3. Compute ūb = pb + qb to get the solution on element boundaries. Then,
on each element T , compute ū0 = Ff (ub) by solving the local equations (43).

Remark 1. Step 1 requires the inversion of local stiffness matrices and can be
accomplished in parallel. The computational complexity is linear with respect to
the number of unknowns. Step 2 is only computation extensive part of the imple-
mentation.

7. Conclusions. We have presented a hybridized weak Galerkin finite element
scheme for general second-order elliptic problems. The scheme is based on the use
of a Lagrange multiplier defined on the element boundaries. We further developed
a Schur complement formulation for the hybridized weak Galerkin finite element
scheme for implementation purpose. The Schur complement formulation have ar-
rived at a much reduced system involving only the interface variables ub by elim-
ination the interior unknowns and Lagrange multipliers. It is worth pointing out
that a skew symmetric form has been used for handling the convection term to get
the stability in the hybridized weak Galerkin finite element formulation. Optimal
order error estimates are derived for the corresponding hybridized weak Galerkin
finite element approximations.

Acknowledgment. We would like to express our gratitude to the anonymous ref-
erees for their helpful suggestions.
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