Processing math: 100%
Research article

The inequalities for the analysis of a class of ternary refinement schemes

  • Received: 04 July 2020 Accepted: 13 September 2020 Published: 24 September 2020
  • MSC : 65D17, 65D07, 65D05

  • The ternary refinement schemes are the generalized version of the binary refinement schemes. This class of the schemes produce the smooth curves with the less number of refinement steps as compared to the binary class of schemes. In this paper, we present the inequalities for the analysis of a class of ternary refinement schemes. There are three simple algebraic expressions in each inequality. Further these algebraic expressions contain only the coefficients used in the refinement rules of the ternary schemes.

    Citation: Ghulam Mustafa, Syeda Tehmina Ejaz, Dumitru Baleanu, Yu-Ming Chu. The inequalities for the analysis of a class of ternary refinement schemes[J]. AIMS Mathematics, 2020, 5(6): 7582-7604. doi: 10.3934/math.2020485

    Related Papers:

    [1] Sherven Sharma, Pournima Kadam, Ram P Singh, Michael Davoodi, Maie St John, Jay M Lee . CCL21-DC tumor antigen vaccine augments anti-PD-1 therapy in lung cancer. AIMS Medical Science, 2021, 8(4): 269-275. doi: 10.3934/medsci.2021022
    [2] Payal A. Shah, John Goldberg . Novel Approaches to Pediatric Cancer: Immunotherapy. AIMS Medical Science, 2015, 2(2): 104-117. doi: 10.3934/medsci.2015.2.104
    [3] Anuj A. Shukla, Shreya Podder, Sana R. Chaudry, Bryan S. Benn, Jonathan S. Kurman . Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. AIMS Medical Science, 2022, 9(2): 348-361. doi: 10.3934/medsci.2022016
    [4] Elif Basaran, Gulali Aktas . The relationship of vitamin D levels with hemogram indices and metabolic parameters in patients with type 2 diabetes mellitus. AIMS Medical Science, 2024, 11(1): 47-57. doi: 10.3934/medsci.2024004
    [5] Kwon Yong, Martin Brechbiel . Application of 212Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation. AIMS Medical Science, 2015, 2(3): 228-245. doi: 10.3934/medsci.2015.3.228
    [6] Anne A. Adeyanju, Wonderful B. Adebagbo, Olorunfemi R. Molehin, Omolola R. Oyenihi . Exploring the multi-drug resistance (MDR) inhibition property of Sildenafil: phosphodiesterase 5 as a therapeutic target and a potential player in reversing MDR for a successful breast cancer treatment. AIMS Medical Science, 2025, 12(2): 145-170. doi: 10.3934/medsci.2025010
    [7] Snigdha Misra, Yang Wai Yew, Tan Seok Shin . Maternal dietary patterns, diet quality and micronutrient status in gestational diabetes mellitus across different economies: A review. AIMS Medical Science, 2019, 6(1): 76-114. doi: 10.3934/medsci.2019.1.76
    [8] Marcus Martin, Reinand Thompson, Nikhil Tirupathi . Does vitamin D level have effect on COVID-19 outcomes?. AIMS Medical Science, 2023, 10(2): 141-150. doi: 10.3934/medsci.2023012
    [9] Ray Marks . Narrative Review of Vitamin D and Its Specific Impact on Balance Capacity in Older Adults. AIMS Medical Science, 2016, 3(4): 345-358. doi: 10.3934/medsci.2016.4.345
    [10] Ahlam Al-Zahrani, Shorooq Al-Marwani . The effectiveness of an educational session about folic acid on pregnant women's knowledge in Yanbu City, Kingdom of Saudi Arabia. AIMS Medical Science, 2022, 9(3): 394-413. doi: 10.3934/medsci.2022019
  • The ternary refinement schemes are the generalized version of the binary refinement schemes. This class of the schemes produce the smooth curves with the less number of refinement steps as compared to the binary class of schemes. In this paper, we present the inequalities for the analysis of a class of ternary refinement schemes. There are three simple algebraic expressions in each inequality. Further these algebraic expressions contain only the coefficients used in the refinement rules of the ternary schemes.




    [1] G. M. Chaikin, An algorithm for high speed curve generation, Comput. Graphics Image Process., 3 (1974), 346-349.
    [2] G. Deslauriers, S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx., Springer, Boston, MA, 5 (1989), 49-68.
    [3] G. de Rham, Sur une courbe plane, J. Math. Pures Appl., 35 (1956), 25-42.
    [4] N. Dyn, J. A. Gregory, D. Levin, 4-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Des., 4 (1987), 257-268.
    [5] N. Dyn, J. A. Gregory, D. Levin, Analysis of uniform binary subdivision scheme for curve design, Constr. Approx., 7 (1991), 127-147.
    [6] N. Dyn, Analysis of convergence and smoothness by formalism of Laurent polynomials, A. Iske, E. Quak, M. S. Floater, Tutorials on Multiresolution in Geometric Modelling, Eds., Springer, (2002), 51-68 (chapter 3).
    [7] G. Farin, Curves and surfaces for CAGD: A practical guide, Academic Press, 2002.
    [8] M. F. Hassan, N. A. Dodgson, Ternary and three-point univariate subdivision schemes, Tec. Rep. No. 520, University of Cambridge Computer Laboratory, 2001. Available from: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-520.pdf.
    [9] M. F. Hassan, I. P. Ivrissimitzis, N. A. Dodgson, et al. An interpolating 4-point C2 ternary stationary subdivision scheme, Comput. Aided Geom. Des., 19 (2002), 1-18.
    [10] F. Khan, G. Mustafa, Ternary six-point interpolating subdivision scheme, Lobachevskii J. Math., 29 (2008), 153-163.
    [11] C. A. Micchelli, H. Prautzch, Uniform refinement of curves, Linear Algebra Appl., 114 (1989), 841-870.
    [12] G. Mustafa, M. Zahid, Numerical algorithm for analysis of n-ary subdivision schemes, Appl. Appl. Math., 8 (2013), 614-630.
    [13] G. Mustafa, R. Hameed, D. Baleanu, et al. A class of refinement schemes with two shape control parameters, IEEE ACCESS, 8 (2020), 98316-98329.
    [14] R. Qu, Recursive subdivision algorithms for curve and surface design, Ph.D Thesis, Department of Mathematics and Statistics, Brunei University, Uxbridge, Middlesex, Britain, 1990.
    [15] M. Sabin, Analysis and design of univariate subdivision schemes, Geometry and Computing, Springer, ISBN 978-3-642-13647-4, 6 (2010).
    [16] S. S. Siddiqi, K. Rehan, Modified form of binary and ternary 3-point subdivission schemes, Appl. Math. Comput., 216 (2010), 970-982.
    [17] H. Zheng, M. Hu, G. Peng, Ternary even symmetric 2n-point subdivision, Int. Conf. Comput. Intell. Software Eng., IEEE, 978 (2009), 4244-4507.
  • This article has been cited by:

    1. Giacomo Albi, Young-Pil Choi, Massimo Fornasier, Dante Kalise, Mean Field Control Hierarchy, 2017, 76, 0095-4616, 93, 10.1007/s00245-017-9429-x
    2. Ertug Olcay, Boris Lohmann, 2019, Extension of the Cucker-Dong Flocking with a Virtual Leader and a Reactive Control Law, 978-3-907144-00-8, 101, 10.23919/ECC.2019.8796225
    3. Giacomo Albi, Mattia Bongini, Emiliano Cristiani, Dante Kalise, Invisible Control of Self-Organizing Agents Leaving Unknown Environments, 2016, 76, 0036-1399, 1683, 10.1137/15M1017016
    4. Mattia Bongini, Giuseppe Buttazzo, Optimal control problems in transport dynamics, 2017, 27, 0218-2025, 427, 10.1142/S0218202517500063
    5. Massimo Fornasier, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, 2014, Mean-field optimal control by leaders, 978-1-4673-6090-6, 6957, 10.1109/CDC.2014.7040482
    6. Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat, Sparse stabilization and control of alignment models, 2015, 25, 0218-2025, 521, 10.1142/S0218202515400059
    7. Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Sparse Jurdjevic–Quinn stabilization of dissipative systems, 2017, 86, 00051098, 110, 10.1016/j.automatica.2017.08.012
    8. Mattia Bongini, Massimo Fornasier, Francesco Rossi, Francesco Solombrino, Mean-Field Pontryagin Maximum Principle, 2017, 175, 0022-3239, 1, 10.1007/s10957-017-1149-5
    9. M. FORNASIER, S. LISINI, C. ORRIERI, G. SAVARÉ, Mean-field optimal control as Gamma-limit of finite agent controls, 2019, 30, 0956-7925, 1153, 10.1017/S0956792519000044
    10. Jong-Ho Kim, Jea-Hyun Park, Fully nonlinear Cucker–Smale model for pattern formation and damped oscillation control, 2023, 120, 10075704, 107159, 10.1016/j.cnsns.2023.107159
    11. Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trelat, 2016, Sparse feedback stabilization of multi-agent dynamics, 978-1-5090-1837-6, 4278, 10.1109/CDC.2016.7798917
    12. Rafael Bailo, Mattia Bongini, José A. Carrillo, Dante Kalise, Optimal consensus control of the Cucker-Smale model, 2018, 51, 24058963, 1, 10.1016/j.ifacol.2018.07.245
    13. Massimo Fornasier, Benedetto Piccoli, Francesco Rossi, Mean-field sparse optimal control, 2014, 372, 1364-503X, 20130400, 10.1098/rsta.2013.0400
    14. Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf, Sparse control of alignment models in high dimension, 2015, 10, 1556-181X, 647, 10.3934/nhm.2015.10.647
    15. Mattia Bongini, Massimo Fornasier, 2017, Chapter 5, 978-3-319-49994-9, 173, 10.1007/978-3-319-49996-3_5
    16. Giacomo Albi, Lorenzo Pareschi, Selective model-predictive control for flocking systems, 2018, 9, 2038-0909, 4, 10.2478/caim-2018-0009
    17. Young-Pil Choi, Dante Kalise, Jan Peszek, Andrés A. Peters, A Collisionless Singular Cucker--Smale Model with Decentralized Formation Control, 2019, 18, 1536-0040, 1954, 10.1137/19M1241799
    18. Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, 2016, Chapter 4, 978-3-319-55794-6, 58, 10.1007/978-3-319-55795-3_4
    19. Mattia Bongini, Francesco Salvarani, Mean field games of controls with Dirichlet boundary conditions, 2024, 30, 1292-8119, 32, 10.1051/cocv/2024020
    20. Emiliano Cristiani, Nadia Loy, Marta Menci, Andrea Tosin, Kinetic description and macroscopic limit of swarming dynamics with continuous leader–follower transitions, 2025, 228, 03784754, 362, 10.1016/j.matcom.2024.09.006
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3402) PDF downloads(90) Cited by(1)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog