
AIMS Mathematics, 2020, 5(4): 28132842. doi: 10.3934/math.2020181.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model
1 Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115, Indonesia
2 Faculty of Natural and Agricultural Sciences, University of the Free State, South Africa
3 Department of Mathematics Education, University of Education Winneba, Kumasi Campus, Kumasi, Ghana
4 Departement de Mathématiques, Faculté des Sciences et Techniques Errachidia, Université Moulay Ismail, Morocco
Received: , Accepted: , Published:
Special Issues: Recent Advances in Fractional Calculus with Real World Applications
Keywords: tuberculosis; twoageclass transmission; fractional differential equations; Caputo
Citation: Fatmawati, Muhammad Altaf Khan, Ebenezer Bonyah, Zakia Hammouch, Endrik Mifta Shaiful. A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model. AIMS Mathematics, 2020, 5(4): 28132842. doi: 10.3934/math.2020181
References:
 1. World Health Organization, Antituberculosis Drug Resistance in the World: Third Global Report, No. WHO / HTM / TB / 2004. 343, World Health Organization, 2004.
 2. J. Cohen, Extensively drugresistant TB gets foothold in South Africa, Science 313 (2006), 1554.
 3. L. B. Reichman, J. H. Tanne, Timebomb: The Global Epidemic of MultiDrug Resistant Tuberculosis, 2002.
 4. Y. Zhou, K. Khan, Z. Feng, et al. Projection of tuberculosis incidence with increasing immigration trends, J. Theor. Biol., 254 (2008), 215–228.
 5. P. Rodrigues, M. G. M. Gomes, C. Rebelo, Drug resistance in tuberculosis: a reinfection model, Theor. Popul. Biol., 71 (2007), 196–212.
 6. N. Blaser, C. Zahnd, S. Hermans, et al. Tuberculosis in Cape Town: an agestructured transmission model, Epidemics, 14 (2016), 54–61.
 7. C. P. Bhunu, W. Garira, Z. Mukandavire, et al. Tuberculosis transmission model with chemoprophylaxis and treatment, B. Math. Biol., 70 (2008), 1163–1191.
 8. Centers for Disease Control and Prevention, TB in Children in the United States, CDC, 2014. Available from: https://www.cdc.gov/tb/topic/populations/tbinchildren/default.htm.
 9. S. M. Blower, P. M. Small, P. C. Hopewell, Control strategies for tuberculosis epidemics: new models for old problems, Science, 273 (1996), 497–500.
 10. Fatmawati, H. Tasman, An optimal treatment control of TBHIV coinfection, International Journal of Mathematics and Mathematical Sciences, 2016 (2016).
 11. R. I. Hickson, G. N. Mercer, K. M. Lokuge, A metapopulation model of tuberculosis transmission with a case study from high to low burden areas, PLoS One, 7 (2012).
 12. R. M. G. J. Houben, T. Sumner, A. D. Grant, et al. Ability of preventive therapy to cure latent Mycobacterium tuberculosis infection in HIVinfected individuals in highburden settings, P. Natl. A. Sci., 111 (2014), 5325–5330.
 13. R. Kaplan, J. Caldwell, K. Middelkoop, et al. Impact of ART on TB case fatality stratified by CD4 count for HIVpositive TB patients in Cape Town, South Africa (20092011), J. Acq. Imm. Def., 66 (2014), 487–494.
 14. Fatmawati, U. D. Purwati, F. Riyudha, et al. Optimal control of a discrete agestructured model for tuberculosis transmission, Heliyon, 6 (2020).
 15. S. G, Samko, A. A, Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993.
 16. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, California, USA, 1999.
 17. T. Sardar, S. Rana, J. Chattopadhyay, A mathematical model of dengue transmission with memory, Commun. Nonlinear Sci., 22 (2015), 511–525.
 18. J. Huo, H. Zhao, L. Zhu, The effect on backward bifurcation in a fractional orde HIV model, Nonlinear Analysis: Real World Applications, 26 (2015), 289–305.
 19. M. Saeedian, M. Khalighi, N. AzimiTafreshi, et al. Memory effects on epidemic evolution: the susceptibleinfectedrecovered epidemic model, Phys. Rev. E., 95 (2017).
 20. C. M. A. Pinto, A. R. M. Carvalho, The HIV/TB coinfection severity in the presence of TB multidrug resistant strains, Ecol. Complex., 32 (2017), 1–20.
 21. Fatmawati, E. M. Shaiful, M. I. Utoyo, A fractional order model for HIV dynamics in a twosex population, International Journal of Mathematics and Mathematical Sciences, 2018 (2018).
 22. G. C. Wu, Z. G. Deng, D. Baleanu, et al. New variableorder fractional chaotic systems for fast image encryption, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019).
 23. G. C. Wu, T. Abdeljawad, J. Liu, et al. MittagLeffler stability analysis of fractional discretetime neural networks via fixed point technique, Nonlinear Analysis: Modelling and Control, 24 (2019), 919–936.
 24. G. C. Wu, D. Q. Zeng, D. Baleanu, Fractional impulisve differential equations: Exact solutions, integral equations and short memory case, Frac. Calc. Appl. Anal., 22 (2019), 180–192.
 25. M. Itik, S. P. Banks, Chaos in a threedimensional cancer model, Int. J. Bifurcat. Chaos, 20 (2010), 71–79.
 26. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1–13.
 27. M. Caputo, M. Fabrizio, On the notion of fractional derivative and applications to the hysteresis phenomena, Meccanica, 52 (2017), 3043–3052.
 28. T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072.
 29. A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016).
 30. A. Atangana, I. Koca, Chaos in a simple nonlinear system with AtanganaBaleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447–454.
 31. A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Pheno., 13 (2018).
 32. A. Atangana, J. F. GomezAguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018).
 33. M. A. Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via AtanganaBaleanu derivative, Chaos, Solitons & Fractals, 116 (2018), 227–238.
 34. E. Bonyah, Chaos in a 5D hyperchaotic system with four wings in the light of nonlocal and nonsingular fractional derivatives, Chaos, Solitons & Fractals, 116 (2018), 316–331.
 35. K. Muhammad Altaf, A. Atangana, Dynamics of Ebola disease in the framework of different fractional derivatives, Entropy, 21 (2019).
 36. R. Jan, M. A. Khan, P. Kumam, et al, Modeling the transmission of dengue infection through fractional derivatives, Chaos, Solitons & Fractals, 127 (2019), 189–216.
 37. W. Wang, M. A. Khan, P. Kumam, et al. A comparison study of bank data in fractional calculus, Chaos, Solitons & Fractals, 126 (2019), 369–384.
 38. M. A. Khan, The dynamics of a new chaotic system through the CaputoFabrizio and AtanaganBaleanu fractional operators, Adv. Mech. Eng., 11 (2019).
 39. Fatmawati, M. A. Khan, M. Azizah, et al. A fractional model for the dynamics of competition between commercial and rural banks in Indonesia, Chaos, Solitons & Fractals, 122 (2019), 32–46.
 40. S. Ullah, M. A. Khan, M. Farooq, et al. A fractional model for the dynamics of tuberculosis (TB) using AtanganaBaleanu derivative, Discrete Cont. Dyn. S, 13 (2019).
 41. A. A. Velayati, Tuberculosis in children, International Journal of Mycobacteriology, 5 (2016).
 42. C. CastilloChaves, B. Song, Dynamic models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404.
 43. Z. M. Odibat, N. T. Shawagfeh, Generalized Taylors formula, Appl. Math. Comput., 186 (2007), 286–293.
 44. W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726.
 45. P. van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
 46. K. Diethelm, N. J. Ford, A. D. Freed, A predictorcorrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29 (2002), 3–22.
 47. K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numerical Algorithms, 36 (2004), 31–52.
 48. C. P. Bhunu, Mathematical analysis of a threestrain tuberculosis transmission model, Appl. Math. Model., 35 (2011), 4647–4660.
 49. S. Athithan, M. Ghosh, Optimal control of tuberculosis with case detection and treatment, World Journal of Modelling and Simulation, 11 (2015), 111–122.
 50. Word Health Organization, Factsheet on the World Tuberculosis Report 2017, WHO, 2017. Available from: https://www.who.int/en/newsroom/factsheets/detail/tuberculosis.
 51. J. J. Tewa, S. Bowong, B. Mewoli, Mathematical analysis of twopatch model for the dynamical transmission of tuberculosis, Appl. Math. Model., 36 (2012), 2466–2485.
 52. M. Toufik, A. Atangana, New numerical approximation of fractional derivative with nonlocal and nonsingular kernel: application to chaotic models, The European Physical Journal Plus, 132 (2017), 444.
 53. L. Xu, H. Hub, F. Qinc, Ultimate boundedness of impulsive fractional differential equations, Appl. Math. Lett., 62 (2016), 110–117.
 54. L. Xu, J. Li, S. S. Ge, Impuls ivestabilization of fractional differential systems, ISA T., 70 (2017), 125–131.
 55. L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of nonautonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *