Citation: Faheem Khan, Tayyaba Arshad, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. Numerical solutions of 2D Fredholm integral equation of first kind by discretization technique[J]. AIMS Mathematics, 2020, 5(3): 2295-2306. doi: 10.3934/math.2020152
[1] | J. P. Kauthen, Continuous time collocation methods for Volterra-Fredholm integral equations, Numeriche Math., 5 (1989), 409-424. |
[2] | F. Khan, G. Mustafa, M. Omar, et al., Numerical approach based on Bernstein polynomials for solving mixed Volterra-Fredholm integral equations, AIP Adv., 7 (2017), 125123. |
[3] | M. M. Mustafa, N. I. Ghanim, Numerical solution of linear Volterra-Fredholm integral equations using Lagrange polynomials, Math. Theory Model., 4 (2014), 158-167. |
[4] | A. Alipanah, S. Esmaeili, Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function, J. Comput. Appl. Math., 235 (2011), 5342-5347. doi: 10.1016/j.cam.2009.11.053 |
[5] | C. Heitzinger, A. Hössinger, S. Selberherr, An algorithm for the smoothing three-dimensional monte carlo ion implantation simulation results, Proc. 4th Mathmod Vienna, (2003), 702-711. |
[6] | A. Fallahzadeh, Solution of two-dimensional Fredholm integral equation via RBF-triangular method, J. Interpolat. Approx. Sci. Comput., 12 (2012), Article ID jiasc-00002. |
[7] | F. Khan, M. Omar, Z. Ullah, Discretization method for the numerical solution of 2D Volterra integral equation based on two-dimensional Bernstein polynomial, AIP Adv., 8 (2018), 125209. |
[8] | F. H. Shekarabi, K. Maleknejad, R. Ezzati, Application of two-dimensional Bernstein polynomials for solving mixed Volterra Fredholm integral equations, Afr. Mat., 26 (2015), 1237-1251. doi: 10.1007/s13370-014-0283-6 |
[9] | A. Tari, S. Shahmorad, A computational method for solving two-dimensional linear Fredholm integral equations of the second kind, ANZIAM J., 49 (2008), 543-549. doi: 10.1017/S1446181108000126 |
[10] | W. J. Xie, F. R. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind, Appl. Numer. Math., 59 (2009), 1709-1719. doi: 10.1016/j.apnum.2009.01.009 |
[11] | H. Guoqiang, W. Jiong, Extrapolation of Nystrom solution for two dimensional nonlinear Fredholm integral equations, J. Comput. Appl. Math., 134 (2001), 259-268. doi: 10.1016/S0377-0427(00)00553-7 |
[12] | X. Wang, R. A Wildman, D. S Weile, et al., A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics, IEEE Trans. Antennas Propag., 8 (2008), 2442-2452. |
[13] | T. N. Narasimhan, P. A. Witherspoon, An integrated finite difference method for analyzing fluid flow in porous media, Water Resorces Res., 12 (1976), 57-64. doi: 10.1029/WR012i001p00057 |
[14] | M. Jalalvanda, B. Jazbib, M. R. Mokhtarzadehc, A finite difference method for the smooth solution of linear volterra integral equations, Int. J. Nonlinear Anal. Appl., 2 (2013), 1-10. |
[15] | A. Khalid, M. N. Naeem, Z. Ullah, et al., Numerical solution of the boundary value problems arising in magnetic fields and cylindrical shells, Mathematics, 7 (2019), doi:10.3390/math7060508. |
[16] | S. S. Ray, Om P. Agrawal, R. K. Bera, et al., Analytical and numerical methods for solving partial differential equations and integral equations arising in Physical Models, Abstr. Appl. Anal., 14 (2014), Available from: https://doi.org/10.1155/2014/635235. |
[17] | A. Shaikh, A. Tassaddiq, K. S. Nisar, et al., Analysis of differential equations involving CaputoFabrizio fractional operator and its applications to reaction diffusion equations, Adv. Difference Equ., 178 (2019), Available from: https://doi.org/10.1186/s13662-019-2115-3. |
[18] | A. Shaikh, K. S Nisar, Transmission dynamics of fractional order Typhoid fever model using CaputoFabrizio operator, Chaos Solitons Fractals, 128 (2019), 355-365. doi: 10.1016/j.chaos.2019.08.012 |
[19] | M. Khader, K. M. Saad, A numerical study using Chebyshev collocation method for a problem of biological invasion: Fractional Fisher equation, Int. J. Biomath., 11 (2018), Available from: https://doi.org/10.1142/S1793524518500997. |
[20] | J. F. Aguiler, K. M. Saad, D. Baleanu, Fractional dynamics of an erbium-doped fiber laser model, Opt. Quantum Electron., 51 (2019), Available from: https://doi.org/10.1007/s11082-019-2033-3. |