Processing math: 61%
Research article Special Issues

Solution for fractional forced KdV equation using fractional natural decomposition method

  • Received: 03 October 2019 Accepted: 10 December 2019 Published: 27 December 2019
  • MSC : 35Axx, 35Qxx, 35R11

  • The fractional natural decomposition method (FNDM) is employed in the present investigation to find the solution for fractional forced Korteweg-de Vries (FF-KdV) equation. Three distinct cases are chosen for each equation to validate and illustrate the effectiveness of the future technique. The behaviour for different values of Froude number (Fr) has been presented to assure the proficiency and reliability and of the considered method. Moreover, we captured the behaviour of the FNDM solution for distinct arbitrary order. The obtained results elucidate that, the considered method is very effective and easy to employ while analyse the behaviour of nonlinear fractional differential equations arising in connected areas of science and technology.

    Citation: P. Veeresha, D. G. Prakasha, Jagdev Singh. Solution for fractional forced KdV equation using fractional natural decomposition method[J]. AIMS Mathematics, 2020, 5(2): 798-810. doi: 10.3934/math.2020054

    Related Papers:

    [1] Francesca Romana Lugeri, Piero Farabollini, Francesco De Pascale, Nicola Lugeri . PPGIS applied to environmental communication and hazards for a community-based approach: a dualism in the Southern Italy "calanchi" landscape. AIMS Geosciences, 2021, 7(3): 490-506. doi: 10.3934/geosci.2021028
    [2] Francesca Romana Lugeri, Piero Farabollini, Nicola Lugeri . Landscape analysis as a tool for risk reduction. AIMS Geosciences, 2019, 5(3): 617-630. doi: 10.3934/geosci.2019.3.617
    [3] Nicola Gabellieri, Ettore Sarzotti . Forest planning, rural practices, and woodland cover in an 18th-century Alpine Valley (Val di Fiemme, Italy): A geohistorical and GIS-based approach to the history of environmental resources. AIMS Geosciences, 2024, 10(4): 767-791. doi: 10.3934/geosci.2024038
    [4] Alessia Nannoni, Federica Meloni, Marco Benvenuti, Jacopo Cabassi, Francesco Ciani, Pilario Costagliola, Silvia Fornasaro, Pierfranco Lattanzi, Marta Lazzaroni, Barbara Nisi, Guia Morelli, Valentina Rimondi, Orlando Vaselli . Environmental impact of past Hg mining activities in the Monte Amiata district, Italy: A summary of recent studies. AIMS Geosciences, 2022, 8(4): 525-551. doi: 10.3934/geosci.2022029
    [5] Lorenzo Brocada . Sociopolitical conflicts on the establishment of protected natural areas: The case of Portofino National Park (Genoa, North-West Italy). AIMS Geosciences, 2023, 9(4): 713-733. doi: 10.3934/geosci.2023038
    [6] Gianni Petino, Donatella Privitera . Uncovering the local foodscapes. Exploring the Etna volcano case study, Italy. AIMS Geosciences, 2023, 9(2): 392-408. doi: 10.3934/geosci.2023021
    [7] Gianni Petino, Gaetano Chinnici, Donatella Privitera . Heritage and carob trees: Where the monumental and landscape intersect. AIMS Geosciences, 2024, 10(3): 623-640. doi: 10.3934/geosci.2024032
    [8] Rahman Mashrur, Nigar Neema Meher . A GIS Based Integrated Approach to Measure the Spatial Equity of Community Facilities of Bangladesh. AIMS Geosciences, 2015, 1(1): 21-40. doi: 10.3934/geosci.2015.1.21
    [9] Emil Drápela . Prevention of damage to sandstone rocks in protected areas of nature in northern Bohemia. AIMS Geosciences, 2021, 7(1): 56-73. doi: 10.3934/geosci.2021003
    [10] Konstantinos X Soulis, Evangelos E Nikitakis, Aikaterini N Katsogiannou, Dionissios P Kalivas . Examination of empirical and Machine Learning methods for regression of missing or invalid solar radiation data using routine meteorological data as predictors. AIMS Geosciences, 2024, 10(4): 939-964. doi: 10.3934/geosci.2024044
  • The fractional natural decomposition method (FNDM) is employed in the present investigation to find the solution for fractional forced Korteweg-de Vries (FF-KdV) equation. Three distinct cases are chosen for each equation to validate and illustrate the effectiveness of the future technique. The behaviour for different values of Froude number (Fr) has been presented to assure the proficiency and reliability and of the considered method. Moreover, we captured the behaviour of the FNDM solution for distinct arbitrary order. The obtained results elucidate that, the considered method is very effective and easy to employ while analyse the behaviour of nonlinear fractional differential equations arising in connected areas of science and technology.


    Let T be a linear operator. Given a function a, the commutator [T,a] is defined by

    [T,a](f):=T(af)aT(f).

    There is an increasing interest to the study of T being a pseudo-differential operator because of its theory plays an important role in many aspects of harmonic analysis and it has had quite a success in linear setting. As one of the most meaningful branches, the study of bilinear pseudo-differential operators was motivated not only as generalizations of the theory of linear ones but also its natural appearance and important applications. This topic is continuously attracting many researchers.

    Let a be a Lipschitz function and 1<p<. The estimates of the form

    [T,a](f)LpaLip1fLp,forallfLp(Rn) (1.1)

    have been studied extensively. In particular, Calderón proved that (1.1) holds when T is a pseudo-differential operator whose kernel is homogeneous of degree of n1 in [7]. Coifman and Meyer showed (1.1) when T=Tσ and σ is a symbol in the Hörmander class S11,0 go back to [10,11], this result was later extended by Auscher and Taylor in [4] to σBS11,1, where the class BS11,1, which contains S11,0 modulo symbols associated to smoothing operators, consists of symbols whose Fourier transforms in the first n-dimensional variable are appropriately compactly supported. The method in the proofs of [10,11] was mainly showed that, for each Lipschitz continuous functions a on Rn, [T,a] is a Calderón-Zygmund singular integral whose kernel constants are controlled by aLip1. For another thing, Auscher and Taylor proved (1.1) in two different ways: one method is based on the paraproducts while the other is based on the Calderón-Zygmund singular integral operator approach that relies on the T(1) theorem. Fore a more systematic study of these (and even more general) spaces, we refer the readers to see [38,39].

    Given a bilinear operator T and a function a, the following two kinds commutators are respectively defined by

    [T,a]1(f,g)=T(af,g)aT(f,g)

    and

    [T,a]2(f,g)=T(f,ag)aT(f,g).

    In 2014, Bényi and Oh proved that (1.1) is also valid to this bilinear setting in [6]. More precisely, given a bilinear pseudo-differential operator Tσ with σ in the bilinear Hörmander class BS11,0 and a Lipschitz function a on Rn, it was proved in [6] that [T,a]1 and [T,a]2 are bilinear Calderón-Zygmund operators. The main aim of this paper is to study (1.1) of [Tσ,a]j(j=1,2) on the products of weighted Lebesgue spaces and variable exponent Lebesgue spaces with σBBS11,1. Before stating our main results, we need to recall some definitions and notations. We say that a function a defined on Rn is Lipschitz continuous if

    aLip1:=supx,yRn|a(x)a(y)||xy|<.

    Let δ0, ρ>0 and mR. An infinitely differentiable function σ:Rn×Rn×RnC belongs to the bilinear Hörmander class BSmρ,δ if for all multi-indices α,β,γNn0 there exists a positive constant Cα,β,γ such that

    |αxβξγησ(x,ξ,η)|C(1+|ξ|+|η|)m+δ|α|ρ(|β|+|γ|).

    Given a σ(x,ξ,η)BSmρ,δ, the bilinear pseudo-differential operator associated to σ is defined by

    Tσ(f,g)(x)=RnRnσ(x,ξ,η)ˆf(ξ)ˆg(η)e2πix(ξ+η)dξdη,forallxRn,f,gS(Rn).

    In 1980, Meyer [34] firstly introduced the linear BSm1,1, and corresponding boundedness of [Tσ,a]j(j=1,2) is obtained by Bényi-Oh in [6], that is, given mR and r>0, an infinitely differentiable function σ:Rn×Rn×RnC belongs to BrBSm1.1 if

    σBSm1,1,supp(ˆσ1){(τ,ξ,η)R3n:|τ|r(|ξ|+|η|)},

    where ˆσ1 denotes the Fourier transform of σ with respect to its first variable in Rn, that is, ˆσ1(τ,ξ,η)=^σ(,ξ,η)(τ), for all τ,ξ,ηRn. The class BBSm1,1 is defined as

    BBSm1,1=r(0,17)BrBSm1,1.

    Recently, many authors are interested in bilinear operators, which is a natural generalization of linear case. With the further research, Árpád Bényi and Virginia Naibo proved that boundedness for the commutators of bilinear pseudo-differential operators and Lipschitz functions with σBBS11,1 on the Lebesgue spaces in [5]. In 2018, Tao and Li proved that the boundedness of the commutators of bilinear pseudo-differential operators was also true on the classical and generalized Morrey spaces in [40]. Motivated by the results mentioned above, a natural and interesting problem is to consider whether or not (1.1) is true on the weighted Lebesgue spaces and variable exponent Lebesgue spaces with σBBS11,1. The purpose of this paper is to give an surely answer. And also, the endpoint estimate is obtained on L×L. Our proofs are based on the pointwise estimates of the sharp maximal function proved in the next section.

    Many results involving bilinear pseudo-differential operators theory have been obtained in parallel with the linear ones but some new interesting phenomena have also been observed. One aspect developed rapidly is the one related to the compactness of the bilinear pseudo-differential operators, especially, the properties of compactness for the commutators of bilinear pseudo-differential operators and Lipschitz functions. As the commutators [Tσ,a]j (j=1,2) are bilinear Calderón-Zygmund operators if σBBS11,1, similar to the proof of [15] (Theorem A and Theorem 2.12), we can obtain easily that [Tσ,a]j and [[Tσ,a]j,b]i (i,j=1,2) are compact operators on the Lebesgue spaces and the Morrey spaces. For the sake of convenience, there are no further details below.

    Suppose that σBBS11,1. Let K and Kj denote the kernel of Tσ and [Tσ,a]j(j=1,2), respectively. We have

    K(x,y,z)=eiξ(xy)eiη(xz)σ(x,ξ,η)dξdη,
    K1(x,y,z)=(a(y)a(x))K(x,y,z),K2(x,y,z)=(a(z)a(x))K(x,y,z).

    Then the following consequences are true.

    Theorem A. [6] If xy or xz, then we have

    (1) αxβyγzK(x,y,z)∣≲(|xy|+|xz|)2n1|α||β||γ|;

    (2) |Kj(x,y,z)|aLip1(|xy|+|xz|+|yz|)2n.

    The statement of our main theorems will be presented in follows.

    Theroem 1.1. Let q>1, σBBS11,1 and a be a Lipschitz function on Rn. Suppose for fixed 1r1,r2q with 1/r=1/r1+1/r2, [Tσ,a]j(j=1,2) is bounded from Lr1×Lr2 into Lr, with norm controlled by aLip1. If 0<δ<1/2, then

    Mδ([Tσ,a]j(f,g))(x)CaLip1Mq(f)(x)Mq(g)(x),j=1,2

    for all f,g of bounded measurable functions with compact support.

    Theorem 1.2. Let q>1, σBBS11,1 and a be a Lipschitz function on Rn. Suppose for fixed 1r1,r2q with 1/r=1/r1+1/r2, [Tσ,a]j(j=1,2) is bounded from Lr1×Lr2 into Lr, with norm controlled by aLip1. If bBMO, 0<δ<1/2, δ<ε<, q<s<, then

    Mδ([[Tσ,a]j,b]i)(x)CbBMO((Mε([Tσ,a]j(f,g))(x)+aLip1(Ms(f)(x))(Ms(g)(x))),

    where i,j=1,2 and above inequality is valid for all f,g of bounded measurable functions with compact support.

    Theorem 1.3. Let q>1, σBBS11,1 and a be a Lipschitz function on Rn. Suppose for fixed 1r1,r2q with 1/r=1/r1+1/r2, [Tσ,a]j(j=1,2) is bounded from Lr1×Lr2 into Lr, with norm controlled by aLip1. If (ω1,ω2)(Ap1/q,Ap2/q) and ω=ωpp11ωpp22, then for q<p1,p2< with 1/p=1/p1+1/p2, [Tσ,a]j(j=1,2) is bounded from Lp1(ω)×Lp2(ω) into Lp(ω).

    Theorem 1.4. Let q>1, σBBS11,1 and a be a Lipschitz function on Rn. Suppose for fixed 1r1,r2q with 1/r=1/r1+1/r2, [Tσ,a]j(j=1,2) is bounded from Lr1×Lr2 into Lr, with norm controlled by aLip1. If bBMO, (ω1,ω2)(Ap1/q,Ap2/q) and ω=ωpp11ωpp22, then for q<p1,p2< with 1/p=1/p1+1/p2, [[Tσ,a]j,b]i(i,j=1,2) is bounded from Lp1(ω)×Lp2(ω) into Lp(ω).

    Theorem 1.5. Let p(),p1(),p2()B(Rn) with 1/p()=1/p1()+1/p2(), and qj0 be given as in Lemma 4.4 for pj(), j = 1, 2. Suppose that σBBS11,1, a is a Lipschitz function on Rn and 1<qmin{q10,q20}. If for fixed 1r1,r2q with 1/r=1/r1+1/r2, [Tσ,a]j(j=1,2) is bounded from Lr1×Lr2 into Lr, with norm controlled by aLip1, then [Tσ,a]j(j=1,2) is bounded from Lp1()(Rn)×Lp2()(Rn) into Lp()(Rn).

    Theorem 1.6. Let p(),p1(),p2()B(Rn) with 1/p()=1/p1()+1/p2(), and qj0 be given as in Lemma 4.4 for pj(), j = 1, 2. Suppose that σBBS11,1, a is a Lipschitz function on Rn and 1<qmin{q10,q20}. If for fixed 1r1,r2q with 1/r=1/r1+1/r2, [Tσ,a]j(j=1,2) is bounded from Lr1×Lr2 into Lr, with norm controlled by aLip1, and bBMO, then [[Tσ,a]j,b]i(i,j=1,2) is bounded from Lp1()(Rn)×Lp2()(Rn) into Lp()(Rn).

    Theorem 1.7. Let σBBS11,1 and a be a Lipschitz function. Suppose for fixed 1r1,r2q with 1/r=1/r1+1/r2, [Tσ,a]j(j=1,2) is bounded from Lr1×Lr2 into Lr, with norm controlled by aLip1. Then [Tσ,a]j(j=1,2) is bounded from L×L into BMO.

    We use the following notation: For 1p, p is the conjugate index of p, that is, 1/p+1/p=1. B(x,R) denotes the ball centered at x with radius R>0 and fB=1|B(x,R)|B(x,R)f(y)dy. The paper is organized as follows. The pointwise estimates of the sharp maximal functions are presented in Section 2. The weighted boundedness is given in Section 3. The proofs of the boundedness on the product of variable exponent Lebesgue spaces are showed in Section 4. The endpoint estimate is proved in Section 5.

    In this section, we shall prove Theorems 1.1 and 1.2. In order to do this, let's recall some definitions.

    Given a function fLloc(Rn), the sharp maximal function is defined by

    M(f)(x)=supxB1|B|B|f(y)fB|dysupxBinfaC1|B|B|f(y)a|dx,

    where the supremum is taken over all balls B containing x. Let 0<δ<. We denote by Mδ the operator

    Mδ(f)=[M(|f|δ)]1/δ.

    Similarly, we use Mδ to denote the operator Mδ(f)=[M(|f|δ)]1/δ, where M is the Hardy-Littlewood maximal function defined by

    Mf(x)=supxB1|B|Bf(y)dy.

    The operator Mδ was appeared implicitly in a paper by John [20] and was introduced by Strömberg [37]. The sharp maximal function M and Mδ not only have close relation to BMO, but also are important tools to obtain pointwise inequalities regarding many operators in harmonic analysis (see [3,12,21,25,26,36]).

    To prove the Theorems 1.1 and 1.2, we need the following Kolmogorov's inequality and the inequality regarding the BMO functions.

    Lemma 2.1. [19,28] Let 0<p<q<. Then there is a constant C=Cp,q>0, such that

    |Q|1/pfLp(Q)C|Q|1/qfLq,(Q)

    for all measurable functions f.

    Lemma 2.2. [27] Let fBMO(Rn). Suppose 1p<, r1>0, r2>0 and xRn. Then

    (1|B(x,r1)|B(x,r1)|f(y)fB(x,r2)|pdy)1/pC(1+|lnr1r2|)fBMO,

    where C is a positive constant independent of f, x, r1 and r2.

    Lemma 2.3. [5] If σBBS11,1 and a is a Lipschitz function on Rn, then the commutators [Tσ,a]j,j=1,2 are bilinear Calderón-Zygmund operators. In particular, [Tσ,a]j,j=1,2 are bounded from Lp1×Lp2 into Lp for 1p=1p1+1p2 and 1<p1,p2< and verify appropriate end-point boundedness properties. Moreover, the corresponding norms of the operators are controlled by aLip1.

    Proof of Theorem 1.1. Let f,g be bounded measurable functions with compact support. Then for any ball B=B(x0,rB) containing x, we decompose f and g as follows:

    f=fχ16B+fχ(16B)c:=f1+f2,g=gχ16B+gχ(16B)c:=g1+g2.

    Choose a z03B2B. Then

    (1|B|||[Tσ,a]j(f,g)(z)|δ|[Tσ,a]j(f2,g2)(z0)|δ|dz)1/δC(1|B||[Tσ,a]j(f,g)(z)[Tσ,a]j(f2,g2)(z0)|δdz)1/δC(1|B||[Tσ,a]j(f1,g1)(z)|δdz)1/δ+C(1|B|B|[Tσ,a]j(f2,g1)(z)|δdz)1/δ+C(1|B||[Tσ,a]j(f1,g2)(z)|δdz)1/δ+C(1|B|B|[Tσ,a]j(f2,g2)(z)[Tσ,a]j(f2,g2)(z0)|δdz)1/δ:=4s=1Is.

    For any 0<δ<r<, it follows from Lemma 2.1 that

    I1C|B|1/δ[Tσ,a]j(f1,g1)Lδ(B)C|B|1/r[Tσ,a]j(f1,g1)Lr,(B)CaLip1(1|16B|16B|f(y1)|r1dy1)1r1(1|16B|16B|g(y2)|r2dy2)1r2CaLip1Mr1(f)(x)Mr2(g)(x)CaLip1Mq(f)(x)Mq(g)(x).

    If zB,y1(16B)c,y216B, noticing that |zy1|+|zy2|+|y1y2||zy1|+|zy2||zy1|, then we have by Theorem A,

    I2C(1|B|B((16B)c16B|K(z,y1,y2)|f(y1)||g(y2)dy2dy1)δdz)1/δC(1|B|B((16B)c(16B|g(y2)dy2)aLip1f(y1)|zy1|2ndy1)δdz)1/δC(16B|g(y2)dy2)aLip1k=42k+1B2kBf(y1)|x0y1|2ndy1CaLip1(1|16B|16B|g(y2)dy2)k=42kn1|2k+1B|2k+1B|f(y1)|dy1CaLip1M(f)(x)M(g)(x)k=42knCaLip1Mq(f)(x)Mq(g)(x).

    By the similar way, we can get that

    I3CaLip1Mq(f)(x)Mq(g)(x).

    As zB and y1,y2(16B)c, then |y1z0|2|zz0|, |y2z0|2|zz0| and rB|zz0|4rB. It follows from Hölder's inequality that

    I4C(1|B|B(RnRn|K(z,y1,y2)K(z0,y1,y2)||f2(y1)||g2(y2)|dy1dy2)δdz)1/δC(1|B|B(k1=1k2=12k2|zz0||y2z0|2k2+1|zz0|2k1|zz0||y1z0|2k1+1|zz0|×|K(z,y1,y2)K(z0,y1,y2)||f(y1)||g(y2)|dy1dy2)δdz)1/δC(1|B|B(k1=1k2=12k2|zz0||y2z0|2k2+1|zz0||g(y2)|×(2k1|zz0||y1z0|2k1+1|zz0||K(z,y1,y2)K(z0,y1,y2)||f(y1)|qdy1)1q×(2k1+4B|f(y1)|qdy1)1qdy2)δdz)1δC(1|B|B(k1=1k2=1(2k1+4B|f(y1)|qdy1)1q(2k2+4B|g(y2)|qdy2)1q×(2k2|zz0||y2z0|2k2+1|zz0|2k1|zz0||y1z0|2k1+1|zz0||K(z,y1,y2)
    K(z0,y1,y2)|qdy1dy2)1q)δdz)1δCaLip1(1|B|B(k1=1k2=1(1|2k1+4B|2k1+4B|f(y1)|qdy1)1q×(1|2k1+4B|2k2+4B|g(y2)|qdy2)1q×|2k1+4B|1/q|2k2+4B|1/q|zz0|2nqCk12k1nqCk22k2nq)δdz)1/δCaLip1Mq(f)(x)Mq(g)(x)(k1=1Ck1)(k2=1Ck2)CaLip1Mq(f)(x)Mq(g)(x), (2.1)

    where we use the fact of a weaker size condition of standard m-linear Calderón-Zygmund kernel than its classical size condition given in [31], that is: For any k1,,kmN+, there are positive constant Cki, i=1,,m, such that

    (2km|y0y0||ymy0|2km+1|z0z0|2k1|y0y0||y1y0|2k1+1|z0z0||K(y0,y1ym)K(y0,y1ym)|qdy1dym)1qC|y0y0|mnqmi=1Cki2nqki, (2.2)

    where ki=1Cki<,i=1,2, 1<q<. Together with the commutators [Tσ,a]j,j=1,2 are bilinear Calderón-Zygmund operators and Theorem A, then we obtain the fact that

    (2k2|y0y0||y2y0|2k2+1|z0z0|2k1|y0y0||y1y0|2k1+1|z0z0||K(y0,y1,y2)K(y0,y1,y2)|qdy1dy2)1qCaLip1|y0y0|2nq2i=1Cki2nqki. (2.3)

    Thus, we have

    Mδ([Tσ,a]j(f,g))(x)supxBinfaC(1|B|B|[Tσ,a]j(f,g)(z)|δa|dz)1/δsupxB(1|B|B||[Tσ,a]j(f,g)(z)|δ|[Tσ,a]j(f2,g2)(z0)|δ|dz)1/δCaLip1Mq(f)(x)Mq(g)(x).

    Thus we finish the proof of Theorem 1.1.

    Proof of Theorem 1.2. Without loss of generality, we consider the case i=1, the proof of the case i=2 is similar. Let f1, f2 be bounded measurable functions with compact support. As in the proof of Theorem 1.1, we write f and g as

    f=fχ16B+fχ(16B)c:=f1+f2,g=gχ16B+gχ(16B)c:=g1+g2.

    Then

    [[Tσ,a]j,b]1(f,g)(z)=(b(z)b16B)[Tσ,a]j(f,g)(z)[Tσ,a]j((bb16B)f,g)(z)=(b(z)b16B)[Tσ,a]j(f,g)(z)[Tσ,a]j((bb16B)f1,g1)(z)[Tσ,a]j((bb16B)f1,g2)(z)[Tσ,a]j((bb16B)f2,g1)(z)[Tσ,a]j((bb16B)f2,g2)(z),

    where b16B=1|16B|16Bb(z)dz. Therefore, for any fixed z03B2B, we have

    (1|B|B|[[Tσ,a]j,b]1(f,g)(z)+[Tσ,a]j((bb16B)f2,g2)(z0)|δdz)1δC(1|B|B|(b(z)b16B)[Tσ,a]j(f,g)(z)|δdz)1δ+C(1|B|B|[Tσ,a]j((bb16B)f1,g1))(z)|δdz)1δ+C(1|B|B|[Tσ,a]j((bb16B)f1,g2)(z)|δdz)1δ+C(1|B|B|[Tσ,a]j((bb16B)f2,g1)(z)|δdz)1δ+C(1|B|B|[Tσ,a]j((bb16B)f2,g2)(z)[Tσ,a]j((bb16B)f2,g2)(z0)|δdz)1δ:=5t=1IIt.

    Since 0<δ<1/2 and δ<ε<, there exists an l such that 1<l<min{εδ,11δ}. Then δl<ε and δl>1. By Hölder's inequality, we have

    II1C(1|B|B|(b(z)b16B|δldz)1δl(1|B|B|[Tσ,a]j(f,g)(z)|δldz)1δlCbBMO(1|B|B|[Tσ,a]j(f,g)(z)|εdz)1εCbBMOMε([Tσ,a]j(f,g))(x).

    Since q<s<, denoting t=s/q, then 1<t<. Noticing that 0<δ<r<, it follows from Lemmas 2.1 and 2.3 that

    II2C|B|1/δ[Tσ,a]j((bb16B)f1,g1)Lδ(B)C|B|1/r[Tσ,a]j((bb16B)f1,g1)Lr,(B)CaLip1(1|16B|16B|b(y1)b16B|r1|f(y1)|r1dy1)1r1(1|16B|16B|g(y2)|r2dy2)1r2CaLip1(1|16B|16B|b(y1)b16B|r1tdy1)1r1t(1|16B|16B|f(y1)|r1tdy2)1r1t×(1|16B|16B|g(y2)|r2dy2)1r2CaLip1bBMO(1|16B|16B|f(y1)|sdy2)1s×(1|16B|16B|g(y2)|sdy2)1sCaLip1bBMOMs(f)(x)Ms(g)(x).

    By Theorem A, as zB,y1(16B),y216Bc, noticing that |zy1|+|zy2|+|y1y2||zy1|+|zy2||zy2|, then we have

    II3C(1|B|B((16B)c(16B)|K(z,y1,y2)||b(y1b16B)||f(y1)||g(y2)|dy1dy2)δdz)1/δCaLip1(1|B|B((16B)c((16B)|b(y1b16B)||f(y1)|dy1)f(y2)|zy2|2ndy2)δdz)1/δCaLip1((16B)|b(y1b16B)||f(y1)|dy1)k=42k+1B2kBf(y2)|z0y2|2ndy2CaLip1((16B)|b(y1b16B)|qdy1)1/q((16B)|f(y1)|qdy1)1/q×k=42kn1|2k+1B|2k+1B|g(y2)|dy2CaLip1bBMOMq(f)(x)M(g)(x)k=42knCaLip1bBMOMs(f)(x)Ms(g)(x).

    Similar to estimate II3, by Lemma 2.2, we can get that

    II4CaLip1((16B)|g(y2)|dy2)k=42k+1B2kB|b(y1b16B)||f(y1)||x0yq|2ndy1CaLip1M(g)(x)k=42kn1|2k+1B|2k+1B|b(y1b16B)||f(y1)|dy1
    CaLip1M(g)(x)k=42kn(1|2k+1B||b(y1b16B)|qdy1)1/q×(1|2k+1B|2k+1B|f(y1)|qdy1)1qCaLip1bBMOMq(f)(x)M(g)(x)k=42knCaLip1bBMOMs(f)(x)Ms(g)(x).

    As zB and y1,y2(16B)c, then |y1z0|2|zz0|, |y2z0|2|zz0| and rB|zz0|4rB. Noticing that 1q+1tq+1tq=1. It follows from Hölder's inequality, Theorem A and the fact (2.3) that

    II5C(1|B|B(RnRn|K(z,y1,y2)K(z0,y1,y2)||b(y1)b16B|×|f2(y1)||g2(y2)|dy1dy2)δ)1/δC(1|B|B(k1=1k2=12k2|zz0||y2z0|2k2+1|zz0|2k1|zz0||y1z0|2k1+1|zz0|×|K(z,y1,y2)K(z0,y1,y2)||b(y1)b16B||f(y1)||g(y2)|dy1dy2)δdz)1/δC(1|B|B(k1=1k2=12k2|zz0||y2z0|2k2+1|zz0||g(y2)|×(2k1|zz0||y1z0|2k1+1|zz0||K(z,y1,y2)K(z0,y1,y2)|qdy1)1q×(2k1+4B|b(y1)b16B|tqdy1)1tq(2k1+4B|f(y1)|tqdy1)1tqdy2)δdz)1δC(1|B|B(k1=1k2=1(2k1+4B|b(y1)b16B|tqdy1)1tq×(2k2+4B|f(y1)|tqdy1)1tq(2k2+4B|g(y2)|qdy2)1q×(2k2|zz0||y2z0|2k2+1|zz0|2k1|zz0||y1z0|2k1+1|zz0||K(z,y1,y2)K(z0,y1,y2)|qdy1dy2)1q)δdz)1δCaLip1(1|B|B(k1=1k2=1(1|2k1+4B|2k1+4B|b(y1)b16B|tqdy1)1tq×(1|2k1+4B|2k1+4B|f(y1)|tqdy1)1tq×(1|2k1+4B|2k2+4B|g(y2)|qdy2)1q×|2k1+4B|1/q|2k2+4B|1/q|zz0|2nqCk12k1nqCk22k2nq)δdz)1/δ
    CaLip1bBMOMs(f)(x)Mq(g)(x)(k1=1Ck1)(k2=1Ck2)CaLip1bBMOMs(f)(x)Ms(g)(x).

    Combining the estimate of II_{j}, j = 1, 2, 3, 4, 5 , we get

    \begin{eqnarray*} &(&\frac{1}{|B|}\int_{B}|[[T_{\sigma}, a]_{j}, b]_{1}(f, g)(z)+[T_{\sigma}, a]_{j} ((b-b_{16B})f^{2}, g^{2})(z_{0})|^{\delta}\mathrm{d}z)^{\frac{1}{\delta}}\\ &\leq& C\|b\|_{\mathrm{BMO}}(M_{\varepsilon}([T_{\sigma}, a]_{j}(f, g))(x)+\|a\|_{\mathrm{Lip^{1}}}M_{s}(f)(x)M_{s}(g)(x)). \end{eqnarray*}

    Similarly, for the case i = 2 , we can obtain that

    \begin{eqnarray*} &(&\frac{1}{|B|}\int_{B}|[[T_{\sigma}, a]_{j}, b]_{2}(f, g)(z)+[T_{\sigma}, a]_{j} ((b-b_{16B})f^{2}, g^{2})(z_{0})|^{\delta}\mathrm{d}z)^{\frac{1}{\delta}}\\ &\leq& C\|b\|_{\mathrm{BMO}}(M_{\varepsilon}([T_{\sigma}, a]_{j}(f, g))(x)+\|a\|_{\mathrm{Lip^{1}}}M_{s}(f)(x)M_{s}(g)(x)). \end{eqnarray*}

    Thus,

    \begin{eqnarray*} &M_{\delta}^{\sharp}&([[T_{\sigma}, a]_{j}, b]_{i}(f, g))(x)\approx \sup _{x\in B} \inf _{a\in \mathbb{C}}\left(\frac{1}{|B|}\int_{B}|[[T_{\sigma}, a]_{j}, b]_{1}(f, g)(z)|^{\delta}-a|\mathrm{d}z\right)^{1/\delta}\\ &\leq& C\|b\|_{\mathrm{BMO}}(M_{\varepsilon}([T_{\sigma}, a]_{j}(f, g))(x)+\|a\|_{\mathrm{Lip^{1}}}M_{s}(f)(x)M_{s}(g)(x)). \end{eqnarray*}

    This finishes the proof of Theorem 1.2.

    The theory of weighted estimates has played very important roles in modern harmonic analysis with lots of extensive applications in the others fields of mathematics, which has been extensively studied (see [35,29,30,33], for instance). In this section, for the commutators of bilinear pseudo-differential operators and Lipschitz functions, we will establish its boundedness of product of weighted Lebesgue spaces owning to the pointwise estimate of its sharp maximal function, that is, Theorem 1.1. The boundedness of the corresponding bilinear commutators with \mathrm{BMO} function on the product of weighted Lebesgue spaces is also obtained by using Theorem 1.1 and Theorem 1.2.

    Let us recall the definition of the class of Muckenhoupt weights A_{p} before proving Theorems 1.3 and 1.4. Let 1 < p < \infty and \omega be a non-negative measurable function. We say \omega\in A_{p} if for every cube Q in \mathbb{R}^{n} , there exists a positive C independent of Q such that

    \left(\frac{1}{|Q|}\int_{Q}\omega(x)\mathrm{d}x \right) \left(\frac{1}{|Q|}\int_{Q}\omega(x)^{1-p^{\prime}}\mathrm{d}x\right)^{p-1}\leq C.

    Denote by A_{\infty} = \bigcup_{p\geq 1}A_{p} . It is well known that if \omega\in A_{p} with 1 < p < \infty , then \omega\in A_{r} for all r > p , and \omega\in A_{p} for some q , 1 < q < p .

    To prove Theorems 1.3 and 1.4, we need the following inequality regarding maximal functions which is a version of the classical ones due to Fefferman and Stein in (see [17]), and a property of A_{p} .

    Lemma 3.1. [17] Let 0 < p, \delta < \infty , and \omega\in A_{\infty} . Then there exists a positive constant C depending on the A_{\infty} constant of \omega such that

    \int_{\mathbb{R}^{n}}[M_{\delta}(f)(x)]^{p}\omega(x)\mathrm{d}x\leq C \int_{\mathbb{R}^{n}}[M_{\delta}^{\sharp}(f)(x)]^{p}\omega(x)\mathrm{d}x,

    for every function f such that the left-hand side is finite.

    Lemma 3.2 [18] For (\omega_{1}, \cdots, \omega_{m})\in (A_{p_{1}}, \cdots, A_{p_{m}}) with 1\leq p_{1}, \cdots, p_{m} < \infty , and for 0 < \theta_{1}, \cdots, \theta_{m} < 1 such that \theta_{1}+\cdots+\theta_{m} = 1 , we have \omega_{1}^{\theta_{1}}\cdots\omega_{m}^{\theta_{m}}\in A_{\max\{p_{1}, \cdots, p_{m}\}} .

    Proof of Theorem 1.3. It follows from Lemma 3.2 that \omega\in A_{\max\{p_{1}/q^{\prime}, p_{2}/q^{\prime}\}}\subset A_{\infty} . Take a \delta such that 0 < \delta < 1/2 . Then by Lemma 3.1 and Theorem 1.1, we get

    \begin{eqnarray*} \|[T_{\sigma}, a]_{j}(f, g)\|_{L^{p}(\omega)}&\leq& \|M_{\delta}([T_{\sigma}, a]_{j}(f, g))\|_{L^{p}(\omega)}\\ &\leq &C \|M_{\delta}^{\sharp}([T_{\sigma}, a]_{j}(f, g))\|_{L^{p}(\omega)}\\ &\leq& C\|a\|_{\mathrm{Lip^{1}}}\|M_{q^{\prime}}(f)M_{q^{\prime}}(g)\|_{L^{p}(\omega)}\\ &\leq & C\|a\|_{\mathrm{Lip^{1}}}\|M_{q^{\prime}}(f)\|_{L^{p_{1}}(\omega_{1})}\|M_{q^{\prime}}(g)\|_{L^{p_{2}}(\omega_{2})}\\ & = &C\|a\|_{\mathrm{Lip^{1}}}\|M(|f|^{q^{\prime}})\|^{1/q^{\prime}}_{L^{p_{1}/q^{\prime}}(\omega_{1})}M(|g|^{q^{\prime}})\|^{1/q^{\prime}}_{L^{p_{2}/q^{\prime}}(\omega_{2})}\\ &\leq& C\|a\|_{\mathrm{Lip^{1}}}\||f|^{q^{\prime}}\|^{1/q^{\prime}}_{L^{p_{1}/q^{\prime}}(\omega_{1})}\||g|^{q^{\prime}}\|^{1/q^{\prime}}_{L^{p_{2}/q^{\prime}}(\omega_{2})}\\ & = &C\|a\|_{\mathrm{Lip^{1}}}\|f\|_{L^{p_{1}}(\omega_{1})}\|g\|_{L^{p_{2}}(\omega_{2})}. \end{eqnarray*}

    We complete the proof of the Theorem 1.3.

    Proof of Theorem 1.4. It follows from Lemma 3.2 that \omega\in A_{\infty} . Take \delta and \varepsilon such that 0 < \delta < \varepsilon < 1/2 . Then by Lemma 3.1 and Theorem 1.1, let \vec{f} = (f_{1}, f_{2}) , we get

    \begin{eqnarray*} \|M_{\varepsilon}([T_{\sigma}, a]_{j}(\vec{f}))\|_{L^{p}(\omega)}&\leq & C\|M_{\varepsilon}^{\sharp}([T_{\sigma}, a]_{j}(\vec{f}))\|_{L^{p}(\omega)}\\ &\leq& C \|a\|_{\mathrm{Lip^{1}}}\|\prod\limits_{t = 1}^{2}M_{q^{\prime}}(f_{t})\|_{L^{p}(\omega)}. \end{eqnarray*}

    Since \omega_{t}\in A_{p_{t}/q^{\prime}} , t = 1, 2 , there exists an l_{t} such that 1 < l_{t} < p_{t}/q^{\prime} and \omega_{t}\in A_{l_{t}} . It follows from q^{\prime} < p_{t}/l_{t} that there is an s_{t} such that q^{\prime} < s_{t} < p_{t}/l_{t} < p_{t} . Let s = \min\{s_{1}, s_{2}\} . Then s > q^{\prime} and s < p_{t} .

    Since l_{t} < p_{t}/s_{t}\leq p_{t}/s , then \omega_{i}\in A_{l_{t}}\subset A_{p_{t}/s} , t = 1, 2 . It follows from Lemma 3.1 and Theorem 1.2 that

    \begin{eqnarray*} \|[[T_{\sigma}, a]_{j}, b]_{i}(\vec{f})\|_{L^{p}(\omega)}&\leq& \|M_{\delta}([[T_{\sigma}, a]_{j}, b]_{i}(\vec{f}))\|_{L^{p}(\omega)}\leq C \|M_{\delta}^{\sharp}([[T_{\sigma}, a]_{j}, b]_{i}(\vec{f}))\|_{L^{p}(\omega)}\\ &\leq& C\|b\|_{\mathrm{BMO}}\left(\|M_{\varepsilon}([T_{\sigma}, a]_{j}(\vec{f}))\|_{L^{p}(\omega)}+\|a\|_{\mathrm{Lip^{1}}}\|\prod\limits_{t = 1}^{2}M_{s}(f_{t})\|_{L^{p}(\omega)}\right) \\ &\leq &C\|b\|_{\mathrm{BMO}}\left(\|a\|_{\mathrm{Lip^{1}}}\|\prod\limits_{t = 1}^{2}M_{q^{\prime}}(f_{t})\|_{L^{p}(\omega)}+\|a\|_{\mathrm{Lip^{1}}}\|\prod\limits_{t = 1}^{2}M_{s}(f_{t})\|_{L^{p}(\omega)}\right) \\ &\leq& C\|b\|_{\mathrm{BMO}}\|a\|_{\mathrm{Lip^{1}}}\left(\|\prod\limits_{t = 1}^{2}M_{s}(f_{t})\|_{L^{p}(\omega)}\right) \\ & = & C\|b\|_{\mathrm{BMO}}\|a\|_{\mathrm{Lip^{1}}}\prod\limits_{t = 1}^{2}\|M_{s}(f_{t})\|_{L^{p_{t}}(\omega_{t})}\\ &\leq& C\|b\|_{\mathrm{BMO}}\|a\|_{\mathrm{Lip^{1}}}\prod\limits_{t = 1}^{2}\|M(|f_{t}|^{s})\|^{1/s}_{L^{p_{t}/s}(\omega_{t})}\\ & = &C\|b\|_{\mathrm{BMO}}\|a\|_{\mathrm{Lip^{1}}}\prod\limits_{t = 1}^{2}\|f_{t}\|_{L^{p_{t}}(\omega_{t})}. \end{eqnarray*}

    We complete the proof of the Theorem 1.4.

    The spaces with variable exponent have been widely studied in recent ten years. The results show that they are not only the generalized forms of the classical function spaces with invariable exponent, but also there are some new breakthroughs in the research techniques. These new real variable methods help people further understand the function spaces. Due to the fundamental paper [24] by Kovóčik and Rákosník, Lebesgue spaces with variable exponent L^{p(\cdot)}(\mathbb{R}^{n}) becomes one of the important class function spaces. The theory of the variable exponent function spaces have been applied in fluid dynamics, elastlcity dynamics, calculus of variations and differential equations with non-standard growth conditions (for example, see [1,2,16]). In [8], authors proved the extrapolation theorem which leads the boundedness of some classical operators including the commutators on L^{p(\cdot)}(\mathbb{R}^{n}) . Karlovich and Lerner also obtained the bundedness of the singular integral commutators in [23]. The boundedness of some typical operators is being studied with keen interest on spaces with variable exponent (see [9,22,41,42,43]).

    In this section, we will establish the boundedness of [T_{\sigma}, a]_{j} and [[T_{\sigma}, a]_{j}, b]_{i}(i, j = 1, 2) on the product of variable exponent Lebesgue spaces, that is, we shall prove Theorems 1.5 and 1.6.

    Denote \mathcal{P}(\mathbb{R}^{n}) to be the set of all measurable functions p(\cdot):\mathbb{R}^{n}\rightarrow [1, \infty) with

    p_{-} = :\mathrm{ess}\inf\limits_{x\in \mathbb{R}^{n}}p(x) > 1 \; {\rm{and} }\; p_{+} = :\mathrm{ess}\sup\limits_{x\in \mathbb{R}^{n}}p(x) < \infty,

    and \mathcal{B}(\mathbb{R}^{n}) to be the set of all functions p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) satisfying the condition that the Hardy-littlewood maximal operator M is bounded on L^{p(\cdot)}(\mathbb{R}^{n}) .

    Definition 4.1. [23] Let p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) . The variable exponent Lebesgue space is defined by

    L^{p(\cdot)}(\mathbb{R}^{n}) = \left\{f \; {\rm {measurable}}: \int_{\mathbb{R}^{n}}\left(\frac{|f(x)|}{\eta}\right)^{p(x)}\mathrm{d}x < \infty \; {\rm {for\; some \;constant}}\; \; \lambda > 0\right\}.

    As p(\cdot) = p is a constant, then L^{p(\cdot)}(\mathbb{R}^{n}) = L^p(\mathbb{R}^{n}) coincides with the usual Lebesgue space. It is pointed out in [23] that L^{p(\cdot)}(\mathbb{R}^{n}) becomes a Banach space with respect to the norm

    \|f\|_{L^{p(\cdot)}(\mathbb{R}^{n})} = \inf\left\{\eta > 0:\int_{\mathbb{R}^{n}}\left(\frac{|f(x)|}{\eta}\right)^{p(x)}\mathrm{d}x\leq1\right\}.

    Lemma 4.2. [13] Let p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) . Then M is bounded on L^{p(\cdot)}(\mathbb{R}^{n}) if and only if M_{q_{0}} is bounded on L^{p(\cdot)}(\mathbb{R}^{n}) for some 1 < q_{0} < \infty , where M_{q_{0}}(f) = [M(|f|^{q_{0}})]^{1/q_{0}} .

    Lemma 4.3. [32] Let p(\cdot), p_{1}(\cdot), \cdots, p_{m}(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) so that 1/p(x) = 1/p_{1}(x)+\cdots+1/p_{m}(x) . Then for any f_{j}\in L^{p_{j}}(\mathbb{R}^{n}) , j = 1, 2, \cdots, m , there has

    \|\prod\limits_{j = 1}^{m}f_{j}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq 2^{m-1}\prod\limits_{j = 1}^{m}\|f_{j}\|_{L^{p_{j}(\cdot)}(\mathbb{R}^{n})}.\\

    Lemma 4.4. [14] Given a family \mathcal{F} of ordered pairs of measurable functions, suppose for some fixed 0 < p_{0} < \infty , every (f, g)\in \mathcal{F} and every \omega\in A_{1} ,

    \int_{\mathbb{R}^{n}}|f(x)|^{p_{0}}\omega(x)\mathrm{d}x\leq C_{0}\int_{\mathbb{R}^{n}}|g(x)|^{p_{0}}\omega(x)\mathrm{d}x.

    Let p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) with p_{0}\leq p_{-} . If (\frac{p(\cdot)}{p_{0}})^{\prime}\in \mathcal{B}(\mathbb{R}^{n}) , then there exists a constant C > 0 such that for all (f, g)\in \mathcal{F} , \|f\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C\|g\|_{L^{p(\cdot)}(\mathbb{R}^{n})} .

    Lemma 4.5. [14] If p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , then C_{0}^{\infty} is dense in L^{p(\cdot)}(\mathbb{R}^{n}) .

    Lemma 4.6. [13] Let p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) . Then the following conditions are equivalent.

    (1) p(\cdot)\in \mathcal{B}(\mathbb{R}^{n}) ;

    (2) p^{\prime}(\cdot)\in \mathcal{B}(\mathbb{R}^{n}) ;

    (3) p(\cdot)/p_{0}\in \mathcal{B}(\mathbb{R}^{n}) for some 1 < p_{0} < p_{-} ;

    (4) (p(\cdot)/p_{0})^{\prime}\in \mathcal{B}(\mathbb{R}^{n}) for some 1 < p_{0} < p_{-} .

    Proof of Theorem 1.5. Here we note \vec{f} = (f_{1}, f_{2}) , where f_{1} and f_{2} are bounded measurable functions with compact support. Since p(\cdot)\in \mathcal{B}(\mathbb{R}^{n}) , then by Lemma 4.6, there exists a p_{0} such that 1 < p_{0} < p_{-} and (p(\cdot)/p_{0})^{\prime}\in \mathcal{B}(\mathbb{R}^{n}) . Take a \delta such that 0 < \delta < 1/2 . For any \omega\in A_{1} , it follows from Lemma 3.1 and Theorem 1.1 that

    \begin{eqnarray*} \int_{\mathbb{R}^{n}}|[T_{\sigma}, a]_{j}(\vec{f})|^{p_{0}}\omega(x)\mathrm{d}x&\leq & C\int_{\mathbb{R}^{n}}[M_{\delta}([T_{\sigma}, a]_{j}(\vec{f}))(x)]^{p_{0}}\omega(x)\mathrm{d}x\\ &\leq& C\int_{\mathbb{R}^{n}}[M^{\sharp}_{\delta}([T_{\sigma}, a]_{j}(\vec{f}))(x)]^{p_{0}}\omega(x)\mathrm{d}x\\ &\leq& C\|a\|_{\mathrm{Lip^{1}}}\int_{\mathbb{R}^{n}}\left[\prod\limits_{t = 1}^{2}M_{q^{\prime}}(f_{t})(x)\right]^{p_{0}}\omega(x)\mathrm{d} x\\ &\leq &C\|a\|_{\mathrm{Lip^{1}}}\int_{\mathbb{R}^{n}}\left[\prod\limits_{t = 1}^{2}M_{q_{0}^{j}}(f_{t})(x)\right]^{p_{0}}\omega(x)\mathrm{d} x. \end{eqnarray*}

    Applying Lemma 4.4 to the pair ([T_{\sigma}, a]_{j}(\vec{f}), \prod_{t = 1}^{2}M_{q_{0}^{t}}(f_{t})) , we can get

    \|[T_{\sigma}, a]_{j}(\vec{f})\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C\|a\|_{\mathrm{Lip^{1}}}\left\|\prod\limits_{t = 1}^{2}M_{q_{0}^{j}}(f_{t}))\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}.

    Then by Lemmas 4.2 and 4.3, we have

    \|[T_{\sigma}, a]_{j}(\vec{f})\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C\|a\|_{\mathrm{Lip^{1}}}\left\|\prod\limits_{t = 1}^{2}M_{q_{0}^{j}}(f_{t}))\right\|_{L^{p_{t}(\cdot)}(\mathbb{R}^{n})}\leq C\|a\|_{\mathrm{Lip^{1}}}\prod\limits_{t = 1}^{2}\left\|f_{t}\right\|_{L^{p_{t}(\cdot)}(\mathbb{R}^{n})}.

    This completes the proof of the Theorem 1.5.

    Proof of Theorem 1.6. Denote q_{0} = \min \{q_{0}^{1}, q_{0}^{2}\} , then q^{\prime} < q_{0} < \infty . Let \vec{f} = (f_{1}, f_{2}) , where f_{1} and f_{2} are bounded measurable functions with compact support. Since p(\cdot)\in \mathcal{B}(\mathbb{R}^{n}) , then by Lemma 4.6, there exists a p_{0} such that 1 < p_{0} < p_{-} and (p(\cdot)/p_{0})^{\prime}\in \mathcal{B}(\mathbb{R}^{n}) . Take \delta and \varepsilon such that 0 < \delta < \varepsilon < 1/2 . For any \omega\in A_{1} , it follows from Lemma 3.1, Theorem 1.1 and Theorem 1.2 that

    \begin{eqnarray*} &&\int_{\mathbb{R}^{n}}|[[T_{\sigma}, a]_{j}, b]_{i}(\vec{f})|^{p_{0}}\omega(x)\mathrm{d}x\leq C\int_{\mathbb{R}^{n}}[M_{\delta}([[T_{\sigma}, a]_{j}, b]_{i}(\vec{f}))(x)]^{p_{0}}\omega(x)\mathrm{d}x\\ &\leq& C\int_{\mathbb{R}^{n}}[M^{\sharp}_{\delta}([[T_{\sigma}, a]_{j}, b]_{i}(\vec{f}))(x)]^{p_{0}}\omega(x)\mathrm{d}x\\ &\leq& C\|b\|_{\mathrm{BMO}}^{p_{0}}\int_{\mathbb{R}^{n}}\left(M_{\varepsilon}([T_{\sigma}, a]_{j}(\vec{f}))(x)\mathrm{d}x+\|a\|_{\mathrm{Lip^{1}}}\prod\limits_{t = 1}^{2}M_{q_{0}}(f_{t})(x)\right)^{p_{0}}\omega(x)\mathrm{d} x\\ &\leq & C\|b\|_{\mathrm{BMO}}^{p_{0}}\left(\int_{\mathbb{R}^{n}}[M_{\varepsilon}^{\sharp}([T_{\sigma}, a]_{j}(\vec{f}))]^{p_{0}}\omega(x)\mathrm{d}x+\|a\|_{\mathrm{Lip^{1}}}^{p_{0}}\int_{\mathbb{R}^{n}}\left[\prod\limits_{t = 1}^{2}M_{q^{\prime}}(f_{t})(x)\right]^{p_{0}}\omega(x)\mathrm{d} x\right)\\ &\leq& C\|b\|_{\mathrm{BMO}}^{p_{0}}\|a\|^{p_{0}}_{\mathrm{Lip^{1}}}\left(\int_{\mathbb{R}^{n}}\left[\prod\limits_{t = 1}^{2}M_{q^{\prime}}(f_{t})(x)\right]^{p_{0}}\omega(x)\mathrm{d} x+\int_{\mathbb{R}^{n}}\left[\prod\limits_{t = 1}^{2}M_{q_{0}}(f_{t})(x)\right]^{p_{0}}\omega(x)\mathrm{d} x\right)\\ &\leq& C\|b\|_{\mathrm{BMO}}^{p_{0}}\|a\|^{p_{0}}_{\mathrm{Lip^{1}}}\int_{\mathbb{R}^{n}}\left[\prod\limits_{t = 1}^{2}M_{q_{0}^{j}}(f_{t})(x)\right]^{p_{0}}\omega(x)\mathrm{d} x. \end{eqnarray*}

    Applying Lemma 4.4 to the pair ([[T_{\sigma}, a]_{j}, b]_{i}(\vec{f}), \prod_{t = 1}^{2}M_{q_{0}^{t}}(f_{t})) , we can get

    \|[[T_{\sigma}, a]_{j}, b]_{i}(\vec{f})\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C\|a\|_{\mathrm{Lip^{1}}}\left\|\prod\limits_{t = 1}^{2}M_{q_{0}^{j}}(f_{t}))\right\|_{L^{p(\cdot)}(\mathbb{R}^{n})}.

    Then by Lemmas 4.2 and 4.3, we have

    \begin{eqnarray*} \|[[T_{\sigma}, a]_{j}, b]_{i}(\vec{f})\|_{L^{p(\cdot)}(\mathbb{R}^{n})}&\leq& C\|a\|_{\mathrm{Lip^{1}}}\left\|\prod\limits_{t = 1}^{2}M_{q_{0}^{t}}(f_{t}))\right\|_{L^{p_{t}(\cdot)}(\mathbb{R}^{n})}\\ &\leq& C\|a\|_{\mathrm{Lip^{1}}}\prod\limits_{t = 1}^{2}\left\|f_{t}\right\|_{L^{p_{t}(\cdot)}(\mathbb{R}^{n})}. \end{eqnarray*}

    We complete the proof of Theorem 1.6.

    In this section, we will show the endpoint estimate for the [T_{\sigma}, a]_{j} \; {\rm{with} }\; j = 1, 2 , that is, we will give the proof of Theorem 1.7.

    Proof of Theorem 1.7. Take p_{1}, p_{2} such that \max\{q^{\prime}, 2\} < p_{1}, p_{2} < \infty . Let 1/p = 1/p_{1}+1/p_{2} . Then 1 < p < \infty . It follows from Lemma 2.3 that [T_{\sigma}, a]_{j}(j = 1, 2) is bounded from L^{p_{1}}\times L^{p_{2}} into L^{p} .

    Let f, g\in L^{\infty} . Then for any ball B = B(x_{0}, r_{B}) with r_{B} > 0 , we decompose f and g as follows

    f = f\chi_{2B}+ f\chi_{(2B)^{c}}: = f^{1}+f^{2}, \; \; g = g\chi_{2B}+g\chi_{(2B)^{c}}: = g^{1}+g^{2}.

    Then

    \begin{eqnarray*} &&\frac{1}{|B|}\int_{B}|[T_{\sigma}, a]_{j}(f, g)(z)|-[T_{\sigma}, a]_{j}(f^{2}, g^{2})(x_{0})|\mathrm{d}z\\ &\leq&\frac{1}{|B|}\int_{B}|[T_{\sigma}, a]_{j}(f^{1}, g^{1})(z)|+\frac{1}{|B|}\int_{B}|[T_{\sigma}, a]_{j}(f^{2}, g^{1})(z)|\mathrm{d}z\\ &&+\frac{1}{|B|}\int_{B}|[T_{\sigma}, a]_{j}(f^{1}, g^{2})(z)|\mathrm{d}z\\ &&+\frac{1}{|B|}\int_{B}|[T_{\sigma}, a]_{j}(f^{2}, g^{2})(z)-[T_{\sigma}, a]_{j}(f^{2}, g^{2})(x_{0})|\mathrm{d}z\\ &: = &\sum\limits_{s = 1}^{4}J_{s}. \end{eqnarray*}

    It follows from the Hölder's inequality and Lemma 2.3 that

    \begin{eqnarray*} J_{1}&\leq& \left(\frac{1}{|B|}\int_{B}|[T_{\sigma}, a]_{j}(f^{1}, g^{1})(z)|^{p}\right)^{1/p}\\ &\leq& C |B|^{-1/p}\|a\|_{\mathrm{Lip^{1}}}\|f^{1}\|_{L^{p_{1}}}\|g^{1}\|_{L^{p_{2}}}\\ &\leq& \|a\|_{\mathrm{Lip^{1}}}\|f\|_{\infty}\|g\|_{\infty}. \end{eqnarray*}

    By the size conditions in Theorem A of the kernel, we have

    \begin{eqnarray*} J_{2}&\leq &\frac{1}{|B|}\int_{B} \left(\int_{(2B)^{c}}\int_{2B}|K(z, y_{1}, y_{2})|f(y_{1})||g(y_{2})|\mathrm{d}y_{2}\mathrm{d}y_{1}\right)\mathrm{d}z\\ &\leq &C\|a\|_{\mathrm{Lip^{1}}} \frac{1}{|B|}\int_{B} \left(\int_{(2B)^{c}}\left(\int_{2B}|g(y_{2})|\mathrm{d}y_{2}\right)\frac{|f(y_{1})|}{|z-y_{1}|^{2n}}\mathrm{d}y_{1}\right)\mathrm{d}z\\ &\leq &C \|a\|_{\mathrm{Lip^{1}}}\|f\|_{\infty}\|g\|_{\infty}\left(\int_{2B}\mathrm{d}y_{2}\right)\left(\int_{(2B)^{c}}\frac{1}{|x_{0}-y_{1}|^{2n}}\mathrm{d}y_{1}\right)\\ &\leq &C \|a\|_{\mathrm{Lip^{1}}}\|f\|_{\infty}\|g\|_{\infty}. \end{eqnarray*}

    Similarly, we can obtain that

    J_{3}\leq C \|a\|_{\mathrm{Lip^{1}}}\|f\|_{\infty}\|g\|_{\infty}.

    Noting that as z\in B , and y_{1}, y_{2}\in (2B)^{c} , then |y_{1}-x_{0}|\geq 2|z-x_{0}| and |y_{2}-x_{0}|\geq 2|z-x_{0}| . It follows from the Hölder's inequality and (2.3) that

    \begin{eqnarray*} J_{4}&\leq &\frac{1}{|B|}\int_{B} \left(\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|K(z, y_{1}, y_{2})|f(y_{1})-K(x_{0}, y_{1}, y_{2})|f^{2}(y_{1})||g^{2}(y_{2})|\mathrm{d}y_{1}\mathrm{d}y_{2}\right)\mathrm{d}z\\ &\leq& C\sum\limits_{k_{1} = 1}^{\infty}\sum\limits_{k_{2} = 1}^{\infty} \frac{1}{|B|}\int_{B} \int_{2^{k_{2}}|z-z_{0}|\leq|y_{2}-z_{0}|\leq 2^{k_{2}}|z-z_{0}|} \int_{2^{k_{1}}|z-z_{0}|\leq|y_{1}-z_{0}|\leq 2^{k_{1}+1}|z-z_{0}|} \end{eqnarray*}
    \begin{eqnarray*} &&|K(z, y_{1}, y_{2})-K(x_{0}, y_{1}, y_{2})||f(y_{1})||g(y_{2})| \mathrm{d}y_{1}\mathrm{d}y_{2}|\mathrm{d}y_{1}\mathrm{d}y_{2}\mathrm{d}z\\ &\leq& C \|a\|_{\mathrm{Lip^{1}}}\|f\|_{\infty}\|g\|_{\infty}\sum\limits_{k_{1} = 1}^{\infty}\sum\limits_{k_{2} = 1}^{\infty} \frac{1}{|B|}\int_{B} \int_{2^{k_{2}}|z-z_{0}|\leq|y_{2}-z_{0}|\leq 2^{k_{2}+1}|z-z_{0}|}(2^{k_{1}}|z-x_{0}|)^{\frac{n}{q^{\prime}}}\\ &&\times \left(\int_{2^{k_{1}}|z-z_{0}|\leq|y_{1}-z_{0}|\leq 2^{k_{1}+1}|z-z_{0}|}|K(z, y_{1}, y_{2})-K(x_{0}, y_{1}, y_{2})|^{q}\mathrm{d}y_{1}\right)^{1/q}\mathrm{d}y_{2}\mathrm{d}z\\ &\leq& C \|a\|_{\mathrm{Lip^{1}}}\|f\|_{\infty}\|g\|_{\infty}\sum\limits_{k_{1} = 1}^{\infty}\sum\limits_{k_{2} = 1}^{\infty} \frac{1}{|B|}(2^{k_{1}}|z-x_{0}|)^{\frac{n}{q^{\prime}}}(2^{k_{2}}|z-x_{0}|)^{\frac{n}{q^{\prime}}}\\ &&\times (\int_{2^{k_{2}}|z-z_{0}|\leq|y_{2}-z_{0}|\leq 2^{k_{2}+1}|z-z_{0}|} \int_{2^{k_{1}}|z-z_{0}|\leq|y_{1}-z_{0}|\leq 2^{k_{1}+1}|z-z_{0}|}\\ &&\times |K(z, y_{1}, y_{2})-K(x_{0}, y_{1}, y_{2})|^{q}\mathrm{d}y_{1}\mathrm{d}y_{2})^{1/q}\mathrm{d}z\\ &\leq &C \|a\|_{\mathrm{Lip^{1}}}\|f\|_{\infty}\|g\|_{\infty}\sum\limits_{k_{1} = 1}^{\infty}\sum\limits_{k_{2} = 1}^{\infty}2^{\frac{k_{1}n}{q^{\prime}}}2^{\frac{k_{2}n}{q^{\prime}}}(C_{k_{1}}2^{-\frac{k_{1}n}{q^{\prime}}}) (C_{k_{2}}2^{-\frac{k_{2}n}{q^{\prime}}})\\ &\leq &C \|a\|_{\mathrm{Lip^{1}}}\|f\|_{\infty}\|g\|_{\infty}. \end{eqnarray*}

    Thus,

    \begin{eqnarray*} \|[T_{\sigma}, a]_{j}(f, g)\|_{\mathrm{BMO}}& = &\sup\limits_{B}\frac{1}{|B|}\int_{B}|[T_{\sigma}, a]_{j}(f, g)(z)-([T_{\sigma}, a]_{j}(f, g))_{B}|\mathrm{d}z\\ &\leq&\sup\limits_{B}\frac{1}{|B|}\int_{B}|[T_{\sigma}, a]_{j}(f, g)(z)-[T_{\sigma}, a]_{j}(f^{2}, g^{2})(x_{0})|\mathrm{d}z\\ &\leq& C\|a\|_{\mathrm{Lip^{1}}}\|f\|_{\infty}\|g\|_{\infty}. \end{eqnarray*}

    Which completes the proof of the Theorem 1.7.

    In this paper, we consider the commutators of bilinear pseudo-differential operators and the operation of multiplication by a Lipschitz function. By establishing the pointwise estimates of the corresponding sharp maximal function, the boundedness of the commutators is obtained respectively on the products of weighted Lebesgue spaces and variable exponent Lebesgue spaces with \sigma \in\mathcal{B}BS_{1, 1}^{1} . Moreover, the endpoint estimate of the commutators is also established on L^{\infty}\times L^{\infty} .

    This work is supported by the Doctoral Scientific Research Foundation of Northwest Normal University (202003101203), Young Teachers ^{'} Scientific Research Ability Promotion Project of Northwest Normal University (NWNU-LKQN2021-03) and National Natural Science Foundation of China (11561062).

    The authors declare that they have no conflict of interest.



    [1] J. Liouville, Memoire surquelques questions de geometrieet de mecanique, et sur un nouveau genre de calcul pour resoudreces questions, J. Ec. Polytech., 13 (1832), 1-69.
    [2] G. F. B. Riemann, Auffassung der Integration und Differentiation, Gesammelte Mathematische Werke, Leipzig, 1896.
    [3] M. Caputo, Elasticita e Dissipazione, Zanichelli, Bologna, 1969.
    [4] K. S. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations, Wiley, New York, 1993.
    [5] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
    [6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
    [7] D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Springer Dordrecht Heidelberg, London and New York, 2010.
    [8] N. H. Sweilam, M. M. A. Hasan, D. Baleanu, New studies for general fractional financial models of awareness and trial advertising decisions, Chaos, Solitons Fractals, 104 (2017), 772-784. doi: 10.1016/j.chaos.2017.09.013
    [9] D. Baleanu, G. C. Wu, S. D. Zeng, Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos, Solitons Fractals, 102 (2017), 99-105. doi: 10.1016/j.chaos.2017.02.007
    [10] P. Veeresha, D. G. Prakasha, H. M. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos, 29 (2019), 013119.
    [11] W. Gao, P. Veeresha, D. G. Prakasha, H. M. Baskonus, A powerful approach for fractional Drinfeld-Sokolov-Wilson equation with Mittag-Leffler law, Alexandria Eng. J., (2019). DOI: 10.1016/j.aej.2019.11.002.
    [12] E. F. D. Goufo, Application of the Caputo-Fabrizio Fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Math. Model. Numer. Anal., 21 (2016), 188-198. doi: 10.3846/13926292.2016.1145607
    [13] P. Veeresha, D. G. Prakasha, H. M. Baskonus, Novel simulations to the time-fractional Fisher's equation, Math. Sci., 13 (2019), 33-42. doi: 10.1007/s40096-019-0276-6
    [14] A. Prakash, P. Veeresha, D. G. Prakasha, A homotopy technique for fractional order multidimensional telegraph equation via Laplace transform, Eur. Phys. J. Plus, 134 (2019), 19.
    [15] B. Li, Y. Chen, H. Zhang, Explicit exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order, Chaos, Solitons Fractals, 15 (2003), 647-654. doi: 10.1016/S0960-0779(02)00152-2
    [16] E. F. D. Goufo, H.M. Tenkam, M. Khumalo, A behavioral analysis of KdVB equation under the law of Mittag-Leffler function, Chaos, Solitons Fractals, 125 (2019), 139-145. doi: 10.1016/j.chaos.2019.05.020
    [17] P. Veeresha, D. G. Prakasha, H. M. Baskonus, Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method, Math. Sci., 13 (2019), 115-128. doi: 10.1007/s40096-019-0284-6
    [18] A. Prakash, P. Veeresha, D. G. Prakasha, A homotopy technique for fractional order multidimensional telegraph equation via Laplace transform, Eur. Phys. J. Plus, 134 (2019), 1-18. doi: 10.1140/epjp/i2019-12286-x
    [19] P. Dubard, P. Gaillard, C. Kleina, On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation, Eur. Phys. J. Special Topics, 185 (2010), 247-258. doi: 10.1140/epjst/e2010-01252-9
    [20] P. Veeresha, D. G. Prakasha, M. A. Qurashi, A reliable technique for fractional modified Boussinesq and approximate long wave equations, Differ Equ, 2019 (2019), 253.
    [21] E. F. D. Goufo, A. Atangana, Dynamics of traveling waves of variable order hyperbolic Liouville equation, Regulation and control, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 645-662.
    [22] P. Veeresha, D. G. Prakasha, D. Kumar, An efficient technique for nonlinear time-fractional KleinFock-Gordon equation, Appl. Math. Comput., 364 (2020), 124637.
    [23] D. G. Prakasha, P. Veeresha, J. Singh, Fractional approach for equation describing the water transport in unsaturated porous media with Mittag-Leffler kernel, Front. Phys., 7 (2019), 193.
    [24] E. F. D. Goufo, I. T. Toudjeu, Around chaotic disturbance and irregularity for higher order traveling waves, J. Math., 2018 (2018), 1-11.
    [25] P. Veeresha, D. G. Prakasha, A novel technique for (2 + 1)-dimensional time-fractional coupled Burgers equations, Math. Comput. Simulation, 116 (2019), 324-345.
    [26] E. F. D. Goufo, A. Atangana, Extension of fragmentation process in a kinetic-diffusive-wave system, Thermal Science, 19 (2015), 13-23. doi: 10.2298/TSCI15S1S13D
    [27] P. Veeresha, D. G. Prakasha, Solution for fractional Zakharov-Kuznetsov equations by using two reliable techniques, Chinese J. Phys., 60 (2019), 313-330. doi: 10.1016/j.cjph.2019.05.009
    [28] K. B. Liaskos, A. A. Pantelous, I. A. Kougioumtzoglou, Implicit analytic solutions for the linear stochastic partial differential beam equation with fractional derivative terms, Systems Control Lett., 121 (2018), 38-49. doi: 10.1016/j.sysconle.2018.09.001
    [29] A. Jeffrey, M. N. B. Mohamad, Exact solutions to the KdV-Burgers' equation, Wave Motion, 14 (1991), 369-375. doi: 10.1016/0165-2125(91)90031-I
    [30] E. F. D. Goufo, S. Kumar, Shallow Water Wave Models with and without Singular Kernel: Existence, Uniqueness, and Similarities, Math. Probl. Eng., 2017 (2017), 1-9.
    [31] W. Zhang, Q. Chang, B. Jiang, Explicit exact solitary-wave solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order, Chaos, Solitons Fractals, 13 (2002), 311-319. doi: 10.1016/S0960-0779(00)00272-1
    [32] F. Dias, J. M. Vanden-Broeck, Generalized critical free-surface flows, J. Eng. Math., 42 (2002), 291-301. doi: 10.1023/A:1016111415763
    [33] S. S. Shen, On the accuracy of the stationary forced Korteweg-De Vries equation as a model equation for flows over a bump, Q. Appl. Math., 53 (1995), 701-719. doi: 10.1090/qam/1359506
    [34] R. Camassa, T. Wu, Stability of forced solitary waves, Philos. Trans. R. Soc. Lond. A, 337 (1991), 429-466. doi: 10.1098/rsta.1991.0133
    [35] N. J. Zabuski, M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240-243.
    [36] D. G. Crighton, Applications of KdV, Acta Appl. Math., 15 (1995), 39-67.
    [37] W. Hereman, Shallow Water Waves and Solitary Waves, In: R. Meyers, Ed., Mathematics of Complexity and Dynamical Systems, Springer, New York, USA, 2012.
    [38] T. Y. T. Wu, Generation of upstream advancing solitons by moving disturbances, J. Fluid Mech., 184 (1987), 75-99. doi: 10.1017/S0022112087002817
    [39] V. D. David, Z. A. Aziz, F. Salah, Analytical approximate solution for the forced Korteweg-de Vries (FKdV) on critical flow over a hole using homotopy analysis method, Journal Teknologi (Sciences & Engineering), 78 (2016), 107-112.
    [40] G. Adomian, A new approach to nonlinear partial differential equations, J. Math. Anal. Appl., 102 (1984), 420-434. doi: 10.1016/0022-247X(84)90182-3
    [41] M. S. Rawashdeh, H. Al-Jammal, New approximate solutions to fractional nonlinear systems of partial differential equations using the FNDM, Advances in Difference Equations, 235 (2016), 1-19.
    [42] M. S. Rawashdeh, H. Al-Jammal, Numerical solutions for system of nonlinear fractional ordinary differential equations using the FNDM, Mediterr. J. Math., 13 (2016), 4661-4677. doi: 10.1007/s00009-016-0768-7
    [43] M. S. Rawashdeh, The fractional natural decomposition method: theories and applications, Math. Meth. Appl. Sci., 40 (2017), 2362-2376. doi: 10.1002/mma.4144
    [44] D. G. Prakasha, P. Veeresha, M. S. Rawashdeh, Numerical solution for (2+1)-dimensional timefractional coupled Burger equations using fractional natural decomposition method, Math. Meth. Appl. Sci., 42 (2019), 3409-3427. doi: 10.1002/mma.5533
    [45] D. G. Prakasha, P. Veeresha, H. M. Baskonus, Two novel computational techniques for fractional Gardner and Cahn-Hilliard equations, Comp. and Math. Methods, 1 (2019), 1-19.
    [46] Z. J. Xiao, G. B. Ling, Analytic solutions to forced KdV equation, Commun. Theor. Phys. 52 (2009), 279-283. doi: 10.1088/0253-6102/52/2/18
    [47] P. A. Milewski, The forced Korteweg-De Vries equation as a model for waves generated by topography, Cubo, 6 (2014), 33-51.
    [48] V. D. David, F. Salah, M. Nazari, Approximate analytical solution for the forced Korteweg-de Vries equation, J. Appl. Math., 2013 (2013), 1-9.
    [49] S. Lee, Dynamics of trapped solitary waves for the forced KdV equation, Symmetry, 10 (2018), 1-13.
    [50] K. G. Tay, W. K. Tiong, Y. Y. Choy, Method of lines and pseudospectral solutions of the forced Korteweg-De Vries equation with variable coefficients arises in elastic tube, International Journal of Pure and Applied Mathematics, 116 (2017), 985-999.
    [51] G. M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), C. R. Acad. Sci. Paris, 137 (1903), 554-558.
    [52] Z. H. Khan, W. A. Khan, N-Transform - Properties and Applications, NUST J. Engg. Sci., 1 (2008), 127-133.
    [53] D. Loonker, P. K. Banerji, Solution of fractional ordinary differential equations by natural transform, Int. J. Math. Eng. Sci., 12 (2013), 1-7.
  • This article has been cited by:

    1. Gianni Petino, Donatella Privitera, Uncovering the local foodscapes. Exploring the Etna volcano case study, Italy, 2023, 9, 2471-2132, 392, 10.3934/geosci.2023021
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5914) PDF downloads(713) Cited by(49)

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog