Citation: Akbar Moradi, Alireza Amirteimoori, Sohrab Kordrostami, Mohsen Vaez-Ghasemi. Closest reference point on the strong efficient frontier in data envelopment analysis[J]. AIMS Mathematics, 2020, 5(2): 811-827. doi: 10.3934/math.2020055
| [1] |
R. D. Banker, A. Charnes, W. W. Cooper, Some models for estimating technical and scale inefficiency in data envelopment analysis, Manage. Sci., 30 (1984), 1078-1092. doi: 10.1287/mnsc.30.9.1078
|
| [2] |
A. Emrouznejad, R. Banker, L. Neralić, Advances in data envelopment analysis: Celebrating the 40th anniversary of DEA and the 100th anniversary of Professor Abraham Charnes' birthday, Eur. J. Oper. Res., 278 (2019), 365-367. doi: 10.1016/j.ejor.2019.02.020
|
| [3] |
A. Emrouznejad, B. R. Parker, G. Tavares, Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA, Socio-Econ. Plan. Sci., 42 (2008), 151-157. doi: 10.1016/j.seps.2007.07.002
|
| [4] |
W. Briec, B. Lemaire, Technical efficiency and distance to a reverse convex set, Eur. J. Oper. Res., 114 (1999), 178-187. doi: 10.1016/S0377-2217(98)00089-7
|
| [5] |
F. X. Frei, P. T. Harker, Projections onto efficient frontiers: Theoretical and computational extensions to DEA, J. Prod. Anal., 11 (1999), 275-300. doi: 10.1023/A:1007746205433
|
| [6] |
E. Gonzaxlez, A. Axlvarez, From efficiency measurement to efficiency improvement: The choice of a relevant benchmark, Eur. J. Oper. Res., 133 (2001), 512-520. doi: 10.1016/S0377-2217(00)00195-8
|
| [7] |
S. Lozano, G. Villa, Determining a sequence of targets in DEA, J. Oper. Res. Soc., 56 (2005), 1439-1447. doi: 10.1057/palgrave.jors.2601964
|
| [8] |
A. Amirteimoori, S. Kordrostami, A Euclidean distance-based measure of efficiency in data envelopment analysis, Optimization, 59 (2010), 985-996. doi: 10.1080/02331930902878333
|
| [9] | J. Aparicio, J. T. Pastor, A well-defined efficiency measure for dealing with closest targets in DEA, Appl. Math. Comput., 219 (2013), 9142-9154. |
| [10] |
J. Aparicio, J. T. Pastor, On how to properly calculate the Euclidean distance-based measure in DEA, Optimization, 63 (2014), 421-432. doi: 10.1080/02331934.2012.655692
|
| [11] |
J. Aparicio, J. L. Ruiz, I. Sirvent, Closest targets and minimum distance to the Pareto-efficient frontier in DEA, J. Prod. Anal., 28 (2007), 209-218. doi: 10.1007/s11123-007-0039-5
|
| [12] |
J. Aparicio, J. T. Pastor, Closest targets and strong monotonicity on the strongly efficient frontier in DEA, Omega, 44 (2014), 51-57. doi: 10.1016/j.omega.2013.10.001
|
| [13] |
Q. An, Z. Pang, H. Cen, et al. Closest targets in environmental efficiency evaluation based on enhanced Russell measure, Ecol. Indic., 51 (2015), 59-66. doi: 10.1016/j.ecolind.2014.09.008
|
| [14] |
R. R. Russell, Measures of technical efficiencies, J. Econ. Theor., 35 (1985), 109-126. doi: 10.1016/0022-0531(85)90064-X
|
| [15] |
J. Aparicio, J. M. Cordero, J. T. Pastor, The determination of the least distance to the strongly efficient frontier in data envelopment analysis oriented models: modelling and computational aspects, Omega, 71 (2017), 1-10. doi: 10.1016/j.omega.2016.09.008
|
| [16] | S. Razipour-GhalehJough, F. H. Lotfi, G. Jahanshahloo, et al. Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis, Ann. Oper. Res., 27 (2019), 1-33. |
| [17] |
A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978), 429-444. doi: 10.1016/0377-2217(78)90138-8
|
| [18] |
K. Tone, A slack-based measure of efficiency in DEA, Eur. J. Oper. Res., 130 (2001), 498-509. doi: 10.1016/S0377-2217(99)00407-5
|
| [19] | S. C. Ray, Data Envelopment Analysis: Theory and Techniques for Economics and Operations Research, Cambridge University Press, 2004. |