Research article

Air quality at La Plata Conglomerate, Argentina: Review and prospective study to improve the present situation

  • Many Latin American cities today face the misbalance between economic productivity and environmental sustainability while they have to tackle both global and local threats to ecosystems and people’s health. La Plata Conglomerate (800,000 inhabitants)—placed in an area where the atmosphere has low self-cleansing capacity—has intense industrial, power plant and traffic activities; nevertheless and considering the importance it deserves, air pollution monitoring has been largely denied to the public. Taking into account historical, social, geographical and environmental aspects, the present prospective work compiles for the first time significant information and reports that allow gaining insight in the sources’ role linked to the air quality status as well as getting a panoramic view of the present needs. The involved discussion, together with a robust statistical analysis of winds carried out at four weather stations, permitted providing guidelines for the installation of a primary continuous air quality network. The establishment of such network (which has many advantages) is considered a key tool to improve the present situation in which people deserve knowing the air quality they breathe as an aspect of their life quality. Our analysis suggest the installation of seven monitoring sites to follow up ten species such as SO2, NOx, VOCs (Volatile Organic Compounds) and PM2.5 (Particulate Matter ≤ 2.5 µm) among others together with basic meteorological parameters (surface winds, mixing height, etc.). Time frames and equipment to be employed are also suggested. Considering the broad context of the study, it was possible to infer that there is a great need for the creation of a law to make mandatory the installation and operation of networks for cities with similar problems. Finally, the study recalls that several environmental closely related issues (such as urban heat island, traffic air pollution, landfill control, etc.) should be addressed in the future.

    Citation: Gustavo E. Ratto, Fabián Videla, Jorge Reyna Almandos, Ricardo Maronna. Air quality at La Plata Conglomerate, Argentina: Review and prospective study to improve the present situation[J]. AIMS Geosciences, 2018, 4(1): 88-125. doi: 10.3934/geosci.2018.1.88

    Related Papers:

    [1] Larisa I. Fedoreyeva, Boris F. Vanyushin, Ekaterina N. Baranova . Peptide AEDL alters chromatin conformation via histone binding. AIMS Biophysics, 2020, 7(1): 1-16. doi: 10.3934/biophy.2020001
    [2] Yuri M. Moshkin . Chromatin—a global buffer for eukaryotic gene control. AIMS Biophysics, 2015, 2(4): 531-554. doi: 10.3934/biophy.2015.4.531
    [3] Davood Norouzi, Ataur Katebi, Feng Cui, Victor B. Zhurkin . Topological diversity of chromatin fibers: Interplay between nucleosome repeat length, DNA linking number and the level of transcription. AIMS Biophysics, 2015, 2(4): 613-629. doi: 10.3934/biophy.2015.4.613
    [4] Raghvendra P Singh, Guillaume Brysbaert, Marc F Lensink, Fabrizio Cleri, Ralf Blossey . Kinetic proofreading of chromatin remodeling: from gene activation to gene repression and back. AIMS Biophysics, 2015, 2(4): 398-411. doi: 10.3934/biophy.2015.4.398
    [5] Mauro Mandrioli, Gian Carlo Manicardi . Cytosine methylation in insects: new routes for the comprehension of insect complexity. AIMS Biophysics, 2015, 2(4): 412-422. doi: 10.3934/biophy.2015.4.412
    [6] Audrey Lejart, Gilles Salbert, Sébastien Huet . Cytosine hydroxymethylation by TET enzymes: From the control of gene expression to the regulation of DNA repair mechanisms, and back. AIMS Biophysics, 2018, 5(3): 182-193. doi: 10.3934/biophy.2018.3.182
    [7] Larisa I. Fedoreyeva, Boris F. Vanyushin . Regulation of DNA methyltransferase gene expression by short peptides in nicotiana tabacum regenerants. AIMS Biophysics, 2021, 8(1): 66-79. doi: 10.3934/biophy.2021005
    [8] Michael-Christian Mörl, Tilo Zülske, Robert Schöpflin, Gero Wedemann . Data formats for modelling the spatial structure of chromatin based on experimental positions of nucleosomes. AIMS Biophysics, 2019, 6(3): 83-98. doi: 10.3934/biophy.2019.3.83
    [9] Larisa I. Fedoreyeva, Tatiana A. Dilovarova, Boris F. Vanyushin, Inna A. Chaban, Neonila V. Kononenko . Regulation of gene expression in Nicotiana tabacum seedlings by the MKASAA peptide through DNA methylation via the RdDM pathway. AIMS Biophysics, 2022, 9(2): 113-129. doi: 10.3934/biophy.2022011
    [10] Edward N Trifonov . Columnar structure of SV40 minichromosome. AIMS Biophysics, 2015, 2(3): 274-283. doi: 10.3934/biophy.2015.3.274
  • Many Latin American cities today face the misbalance between economic productivity and environmental sustainability while they have to tackle both global and local threats to ecosystems and people’s health. La Plata Conglomerate (800,000 inhabitants)—placed in an area where the atmosphere has low self-cleansing capacity—has intense industrial, power plant and traffic activities; nevertheless and considering the importance it deserves, air pollution monitoring has been largely denied to the public. Taking into account historical, social, geographical and environmental aspects, the present prospective work compiles for the first time significant information and reports that allow gaining insight in the sources’ role linked to the air quality status as well as getting a panoramic view of the present needs. The involved discussion, together with a robust statistical analysis of winds carried out at four weather stations, permitted providing guidelines for the installation of a primary continuous air quality network. The establishment of such network (which has many advantages) is considered a key tool to improve the present situation in which people deserve knowing the air quality they breathe as an aspect of their life quality. Our analysis suggest the installation of seven monitoring sites to follow up ten species such as SO2, NOx, VOCs (Volatile Organic Compounds) and PM2.5 (Particulate Matter ≤ 2.5 µm) among others together with basic meteorological parameters (surface winds, mixing height, etc.). Time frames and equipment to be employed are also suggested. Considering the broad context of the study, it was possible to infer that there is a great need for the creation of a law to make mandatory the installation and operation of networks for cities with similar problems. Finally, the study recalls that several environmental closely related issues (such as urban heat island, traffic air pollution, landfill control, etc.) should be addressed in the future.


    1. Introduction

    The interdisciplinary field of chromatin and epigenetics advances very fast. For example, in the last several months this research area has been highlighted in special issues in Journal of Experimental Biology [1,2], Molecular Plant [3], Plant Journal [4], Genome Biology [5,6], Genes [7], FEBS Journal [8], Journal of Physics: Condensed Matter [9], Chromosome Research [10], Proteomics [11], and now AIMS Biophysics (http://www.aimspress.com/newsinfo/133.html). It is fascinating to see how many faces this field has. Our special issue adds a new perspective to this field, considering new developments in chromatin and epigenetics from the point of view of classical biophysics, both experimental and theoretical. Eighteen articles in this issue provide a snapshot of the established and emerging concepts in the field.

    2. Protein-DNA Binding in Chromatin

    The basic mechanical principles required to understand epigenetic regulation in chromatin are based on the classical views of interactions between nucleic acids, proteins and small ions in the crowded environment of the cell cytoplasm and the nucleus [12,13]. With the development of new experimental techniques, the current interest in this area has also shifted from model in vitro systems to in vivo functioning. Some of the basic mechanistic processes which need to be considered for this system include protein-DNA binding, wrapping of DNA double helices around the nucleosome core particle and the formation of chromatin fibers.

    The generic problem of protein-DNA interactions in chromatin is addressed in two articles in this issue: a paper by Shubert and Längst proposing a new experimental method to study the thermodynamics of protein-DNA binding [14], and an extensive review of theoretical methods to describe such experiments using statistical-mechanical lattice models by Bereznyak et al. [15]. The work of Shubert and Längst introduces the MicroScale Thermophoresis (MST) as a method of choice to study the thermodynamics of protein-DNA binding in chromatin [14]. This is a rapid and precise method to characterize epigenetic interactions/linkages in solutions at microliter scale, requiring low concentrations of binding partners. The technology is based on the movement and diffusion of molecules through temperature gradients, a physical effect called thermophoresis (see e.g. [16]). This method allows measuring binding affinities in a broad range of molecular concentrations from pM to mM, which is important for the interactions of chromatin proteins with each other and with nucleic acids, taking into account the recognition of covalent epigenetic modifications. Once ligand binding curves are determined experimentally, e.g. using the MST method mentioned above, a quantitative analysis has to be performed to extract the thermodynamic parameters (binding constants, stoichiometry, cooperativity, etc) and allow further modelling. An extensive review by Bereznyak et al. [15] lists several classes of one-dimensional (1D) lattice binding models needed for such modelling and experimental data analysis. This review goes back to the classical models for the ligand-induced DNA melting and DNA-ligand binding and mentions some of the recent modifications of these methods which are being actively applied to the description of protein-DNA binding in vivo as reviewed elsewhere [17,18].

    3. Chromatin Mechanics and Electrostatics

    All interactions and processes in chromatin depend on the packing and 3D structure of the genome. One basic problem in this area concerns the physics of nucleosome formation. The work of Yanao and coauthors in this issue [19] presents a detailed computer simulation analysis of braiding of DNA molecules around uniform rods and spheres to mimic DNA wrapping which takes place in nucleosome core particles [20]. The right-handed DNA geometry appears as one of the major effects in this system, which gives rise to asymmetric coupling of elastic modes of DNA deformations, such as bending, stretching and twisting. The authors of Ref. [19] predict the preferred state of DNA wrapping to be a left-handed superhelix for both DNA-rod and DNA-sphere wrapping. This purely mechanical conclusion of the model [19] is in agreement with the predictions of electrostatic theory of interactions of charged DNA double helices [21]. Two juxtaposed elastic DNA molecules prefer to form a left-handed braiding configuration for nearly all strengths of DNA-DNA interaction. As a next step, it would be interesting to understand the implications of helically positioned charges on the DNA in this elaborate elastic model, and the corresponding effects on gene regulation.

    At a larger scale, the mechanics of long chromatin fibers needs to be considered [22,23,24,25,26,27]. This problem is addressed in the current issue in the work of Norouzi and coauthors [28]. Their article unravels the implications of differences in the length of the linker DNA between nucleosomes on topological and folding properties of chromatin fibers, as well as their transcriptional behaviour. The analysis is based on two most common linker lengths L, with L = 10n and L = 10n + 5 bp, where n is an integer number. Very different structures of chromatin fibers distinguished by the orientation of individual nucleosomes with respect to the fiber axis have been obtained depending on the chosen n value in Ref. [28]. The authors have focused on the topological, deformation-invariant parameter called the linking number, and computed linking numbers per nucleosome for different arrangements of the core particle as a function of the chromatin fiber length. For the range of L = 10-70bp, energetically optimal fibers with L = 10n belong to the topological type T2, characterized by the linking number per nucleosome in the range [−1.4; −1.2], while fibers with L = 10n + 5 belong to the family T1 characterized by a smaller linking number in the range [-1.0; -0.8] (meaning less negative DNA supercoiling). The authors proposed a model that explains the role of such topological polymorphism of chromatin fibers in regulation of DNA transcription in yeast. Namely, as RNA polymerase (RNAP) gives rise to higher DNA twisting in front of the transcription complex, the model predicts that T1 fibers with L = 10n + 5 are formed downstream from the RNAP (because they are less negatively supercoiled). The analysis of baker yeast genes performed in the paper indeed shows that L = 10n + 5 chromatin fibers are getting transcribed more often, as compared to L = 10n fibers. It is an intriguing question whether these tendencies will persist in other species, often with longer DNA linker lengths.

    This special issue also touches the classical question of the electrostatics of DNA and chromatin [29,30,31,32]. All chromatin objects are highly charged (negatively charged DNA and RNA, positively charged histones, the solution contains metal ions and charged proteins). Yet, this molecular soup is mostly neutralized. A delicate interplay between small changes of electroneutrality governs this tightly packed nucleoprotein system. Bohinc and Leu [33] provide in this issue a systematic review of simplistic electrostatic models required for the understanding of DNA-DNA and DNA-protein-DNA interactions in chromatin. These interactions were highlighted especially in situations where molecules possess spatially distributed charges such as those in three-valent spermidine and four-valent spermine cations strongly influencing DNA-DNA interactions [34,35]. Thus, the work presented in Ref. [33] follows a large number of articles offering electrostatic descriptions of this system, and it finishes with formulating an open question: how to model explicitly the electrostatics of nucleosome arrays? Despite many efforts of scientists in this field, more work is needed to understand e.g. the effects of long-range electrostatics, charge discreetness and heterogeneities, and low dielectric permittivity inside DNA and histones on the large scale properties of chromatin fibers.

    4. Nucleosome Positioning

    Another important problem in the field of chromatin and epigenetics is nucleosome positioning. Nucleosomes are not positioned randomly along the genomic DNA, but rather bear a distinct signature of the underlying DNA sequence in their location sites [36,37,38]. Therefore, it is extremely important to know where each nucleosome is located on a particular stretch of the DNA, because this determines the accessibility of a given DNA site to transcription factors and other regulatory molecules. Three particular aspects of nucleosome positioning are reflected in this special issue of AIMS Biophysics: a novel type of columnar nucleosome arrangement determined by the DNA sequence, a recently introduced nucleosome repositioning mechanism known as kinetic proofreading, and a concept of nucleosome remodelling as a “buffer” for gene regulatory processes:

    The first of these questions is addressed in this issue by one of the pioneers of the field, who proposed more than 35 years ago that DNA sequence at least partially encodes nucleosome positions on the DNA [39], the statement which later has been confirmed in a number of genome-wide studies. In an original work featured in this special issue, Trifonov describes a new structural entity called “columnar chromatin structure”, which means that often several nucleosomes are regularly arranged organized by long periodic sequences, with the nucleosome DNA period of 10.4 bases [40]. This effect can be seen visually when the periodicity along DNA sequences is mapped using the consensus motif characteristic for “strong nucleosomes” previously developed by the author [41]. The columnar structures may have a range of implications, for example predicting the nucleosome switch positions at promoters when an array of nucleosomes sitting at their preferred sequence-determined positions is disturbed by transcription and then relaxes to the initial position.

    Nucleosome positioning on the DNA is not a static quantity, but rather undergoes perpetual changes driven by the DNA unwrapping from the histone octamer [42]. The work of Singh et al. in this special issue [43] offers an extensive coverage of the mechanisms of kinetic proofreading for the processes of chromatin remodelling. Chromatin remodelers of different families are known to control nucleosome positions in the genome [44,45,46] and the transcription of the corresponding genes [47]. The authors of Ref. [43] propose a system of rate equations for the formation of remodeler-nucleosome complexes, treating explicitly different binding events of this proofreading scenario. To quantify the implications of histone tail modifications, the authors compared the binding affinities of different bromodomains and modified histone tails using a combination of molecular dynamics, peptide docking and umbrella sampling techniques. In particular, the authors present new simulation results of pulling experiments of H3 and H4 histone tails bound to the bromodomain GCN5 in yeast and human, which are aimed at determining the free energies of binding and dissociation of the complexes. The authors discuss challenges of model parameterization using the experimental data and propose possible solutions.

    In another paper of this issue Yuri Moshkin discussed nucleosome positioning and chromatin remodelling from a general point of view of the Jacob-Monod theory [48]. In a strict spirit of the classical works of Jacob and Monod [49], regulatory events can be tied to a specific gene orchestrated by a number of transcription factors [50]. However, genome-wide nucleosome remodelling offers more possibilities. The author argues that remodelers act not only locally, but also globally through genome-wide changes [48]. By modulating the concentrations of chromatin remodelers the whole nucleosome landscape can be changed. At the same time, the single-base pair specificity also remains, which makes the author to conclude that chromatin remodelling acts as a global buffer maintaining some average chromatin properties, while specifically regulating expression of individual genes.

    5. Chromatin Domains

    The next scale of chromatin organization is usually defined by so called chromatin domains characterized by some common physicochemical properties [51,52,53,54,55,56,57]. A systematic review by Bianchi and Lanzuolo in this special issue [58] lists a number of nuclear architecture elements and explains their interconnections. These structures include, for example, chromosome territories; topologically associated domains (TADs), which are defined as the regions characterized by a similar number of long-range DNA-DNA contacts revealed by high-throughput experiments; lamina-associated domains (LADs), which are defined by the proximity to the nuclear lamina; nucleolar-associated domains (NADs), etc. A specific focus of this review is on the nuclear periphery (lamina, nuclear pores, etc). This work introduces several open questions concerning chromatin domains, which are considered in more detail in the next articles:

    The work of Caré et al. from this special issue considers the process of chromosome segregation in TADs based on two-colour block copolymer model introduced by Jost et al. [60]. This model was shown to reproduce a variety of selective chromatin folding patterns observed experimentally. In the present paper, Caré et al. use this model in Langevin dynamics simulations for predicting the compaction properties of chromatin fibers [59]. Interaction potentials of various intensity are used to describe the size-dependent coil-globule transition, with every bead representing 10 kb of chromatin or about 60 nucleosomes. The authors propose an expression for the finite-size Boltzmann-Gibbs distribution of chain conformations to describe a globule-like, coil-like, and stretched domain growth of the fiber, as based on their scaling properties with the chain length. The theory is in very good agreement with the results of computer simulations. The authors observe a size-dependent coil-globule transition for epigenomic domains (modelled as copolymer blocks), with the transition temperature (so called θ-point) increasing with the block length N. The main conclusion of the paper is that blocks of length N appear as globules if θ (N) > T (long blocks), whereas they are in a coil-like conformation for θ (N) < T (small blocks). This statement holds for homopolymers, block copolymers, and thus for epigenomic chromatin domains. A key prediction of the model is that chromatin compaction should increase with block size for a given epigenomic state (i.e. for a given interaction between beads of chromatin in a block). The results presented in this work open new perspectives linking epigenomes and chromosome conformation data.

    Following a similar theme, the work of Moskalets et al. in this special issue [61] addresses the question of how the structure of topological domains of chromosomes is reflected in the loci colocalization data as obtained in the Hi-C experiments. In particular, the authors develop a method to extract the data about the natural separation of a chain into topological domains from the colocalization data. They also show that their algorithm is able to distinguish, based on the same data, the conformations with well-developed hierarchical domain structure from those where the domain structure is smeared and the position of domain walls somewhat arbitrary (as it is, e.g., in a regular equilibrium polymer globule [62]). The method employs modularity-based community structure detection algorithms developed in the complex network theory, but due to the linear structure of the underlying chain works substantially faster than for generic complex networks. The efficiency of the methods is checked on several artificially constructed chain conformations, including regular Peano curves, random fractal globule and equilibrium globule conformations.

    A more dynamical view of large-scale chromatin organization [63,64] is considered in this special issue in the work of Lebaupin and coauthors [65]. This article focuses on the dynamical and conformational properties of chromatin fibers and on the interplay between the chromatin dynamics and DNA repair mechanisms. The authors consider e.g. how recent chromatin polymer models combined with high-resolution spatio-temporal data analysis provide new insights regarding changes of the chromatin organization induced by DNA repair processes. After a short overview of experimental methods used for studying the chromatin dynamics on various length scales from several kbp (kilo base pairs) to Mbp (mega base pairs), the authors describe the anomalously slow diffusion of chromatin fragments. The enhanced chromatin dynamics and changes in the chromatin architecture in the context of DNA repair mechanisms in yeast and mammal cells are then compared and contrasted. In particular, the effects of chromatin repair machinery on the nucleosome destabilization and repositioning as well as on altering the inter-nucleosomal interactions within the chromatin fiber are discussed. A particular emphasis is put on active chromatin remodeling pathways. The models of chromatin organization including the fractal globule are also reviewed [66]. Finally, the authors explain the limitations of optical methods of tracking of tagged chromatin fragments.

    6. Roles of Noncoding DNA and RNA

    Regulatory regions can sometimes be very far away along the DNA from the gene they regulate. These are sensitive to the chromosomal environment and generally they work to limit expression of the genes to a specific tissue. Grant et al. [67] describe in this special issue several strategies to investigate the conserved noncoding DNAs. The authors note that introducing into the animal sensors capable of reporting on the regulatory potential of such chromosomal environments does little to associate the enhancer sequence on the chromosomal DNA with its long-range regulatory influence on a specific gene. This makes it difficult to examine the contribution of specific mutations in enhancers to a particular human disease. The authors of Ref. [67] argue in favour of the approach which is based on engineering large fragments of chromosomal DNA of known sequence and containing both the gene and its distant regulators with reporter genes, such as the Green Fluorescent Protein (GFP), before introducing them into the germ-line of zebrafish for expression. The use an example of the zebrafish amyloid precursor protein (appb) to demonstrate this approach, and show that the chromosomal context of the enhancer sequence is of utmost importance in specifying the tissue in which the gene is expressed.

    Another emerging theme of epigenetic regulation is the noncoding RNA [68]. The article of Hamilton et al. in this special issue provides a comprehensive review of a particular class of noncoding RNAs, called long noncoding RNAs (lnkRNAs) [69]. Furthermore, the authors discuss in detail several interesting aspects of lnkRNA interaction with transcription factors by considering the case of a paradigmatic oncogene MYC. This article further reviews our current understanding of how MYC proteins regulate and are regulated by lnkRNAs in cancer.

    7. Covalent Modifications of DNA and Histones

    Covalent modifications of DNA and histones are believed to be at the core of epigenetic regulation [70,71], and are also in the focus of a number of recent biophysical studies [72]. This special issue contains several articles addressing covalent chromatin modifications and modifiers. For example, the article of Chen et al. [73] provides a systematic overview of an important chromatin modifier, MOF, which specifically deposits acetyl groups to histone H4 lysine 16. MOF plays important roles in diverse processes ranging for stem cell identity and Xist repression to DNA damage repair, and has implications in cancers. Another acetyltransferase was featured in this special issue in the work of Kagansky and coauthors [74], who have performed a pilot RNAi screen for epigenetic silencing factors in mammalian cells and suggested new silencing proteins with unexpected roles. In particular, knock-down of the acetyltransferase Kat5/Tip60 (that is known to be down-regulated in many cancers) was found to affect the silencing in this system, likely due to the resulting changes to the lysine acetylation. The effects of DNA methylation are addressed in another article of this special issue, focusing on a controversial question of DNA methylation in insects [75]. The authors propose aphids and honey bees as an experimental model system to understand how the cytosine methylation is directly or indirectly linked to various environmental factors.

    8. Linker Histones

    Linker histones (H1) have been for some time understudied in comparison with the large amount of works devoted to the modifications of core histones. However, very recently several new important results connecting linker histones to epigenetic regulation have been obtained [76,77,78]. This issue has a special focus on linker histones. The article of Parseghian [79] provides a systematic and comprehensive review of linker histone variants followed by the author’s original hypothesis of the role of H1 variants in chromatin organization and gene regulation. There appears to be a trend with organisms of greater multicellularity harboring a greater number of variants (11 in mammals) with the number and type of variants being conserved amongst the mammals throughout evolution. Each of the H1 subtypes varies in chromatin affinity, compaction ability and nucleosomal repeat length generation, providing a broad continuum of molecules capable of regulating transcriptional and replicational access to regions of chromatin in differentiated cells. Since H1 proteins are intrinsically disordered and take on different structural forms depending on their interactions with other cellular components, these proteins can have general effects on broad regions of chromatin and still evolve interactions with specific genes. This review provides a significant contribution to the histone H1 field and allows interested readers to understand both its history and unsolved challenges.

    To summarize, eighteen articles of this special issue of AIMS Biophysics provide an exciting selection of research areas within the chromatin and epigenetics field. Of course, many important aspects of this large and rapidly progressing scientific field are not covered here, but at least some of the major current concepts are captured.

    Acknowledgments

    We thank all the authors of this special issue as well as external researchers involved in the peer-review process for their friendly cooperation, free flow of ideas and constructive criticism, which allowed fast, professional processing of submissions, as well as the preparation of this Editorial Note.

    Conflict of Interest

    The authors declare that there are no conflicts of interest related to this study.

    [1] Kelly F, Fuller G, Walton H, et al. (2012) Monitoring air pollution: Use of early warning systems for public health. Respirology 17: 7–19.1. NU (2009) HOME (Cine documental dirigido por Yann Arthus-Bertrand y producido por Luc Besson y la participación de Naciones Unidas, Nueva York). 
    [2] Boubel R, Fox D, Turner D, et al. (1994) The Fundamentals of Air Pollution, Third Edition. San Diego, Academic Press, 1–574. 
    [3] Mage D, Ozolins G, Peterson P, et al. (1996) Urban air pollution in megacities of the world. Atmos Environ 30: 681–686. 
    [4] Hoffman DJ, Rattner BA, Allen Burton Jr, G et al. (2002) Introduction, In: Hoffman DJ, Rattner BA, Allen Burton Jr, G, Cairus Jr, J, Eds., Handbook of Ecotoxicology, Second Edition, Boca Raton: Lewis Publishers, 1–15. 
    [5] Fenger J (2009) Air pollution in the last 50 years-from local to global. Atmos Environ 43:13–22. 
    [6] Hughes D (2009) An Environmental History of the World-Humankind's changing role in the community of life, Second Edition. Routledge 1–306. 
    [7] Moldoveanu AM (2011) Advanced Topics in Environmental Health and Air Pollution Case Studies. Croatia InTech 1–470. 
    [8] Rückerl R, Schneidr A, Breitner S, et al. (2011) Health effects of particulate air pollution: A review of epidemiological evidence. Inhalation Toxicol 23: 555–592. 
    [9] WMO (2012) Impacts of Megacities on air pollution and climate. Global Atmosphere Watch, Technical Report No. 205, CH-1211, Geneva, Switzerland. 
    [10] Mainka A, Kozielska B (2016) Assessment of the BTEX concentrations and health risk in urban nursery schools in Gliwice, Poland. AIMS Environ Sci 3: 199–219. 
    [11] Lebel J (2005) Salud. Un enfoque ecosistémico, Centro Internacional de Investigaciones para el Desarrollo. Ottawa, Eds., Alfaomega, 1–49. 
    [12] Andrade MI, Scarpati OE (2007) Recent changes in flood risk in the Gran La Plata, Buenos Aires province, Argentina: Causes and management strategy. Geojournal 70: 245–250. 
    [13] Soria J, Fernández M, Más allá del cambio climático: Las dimensiones psicosociales del cambio ambiental global, 2006. Primera edición. Instituto Nacional de Ecología (INE-Semarnat), Universidad Nacional Autónoma de México (UNAM), Facultad de Psicología. Available from: http//:www.ine.gob.mx. 
    [14] Cafaro P (2001) Thoreau, Leopold, and Carson: Toward an environmental virtue ethics. Environ Ethics 23: 3–17. 
    [15] PNUMA (2001) Justicia Ambiental: Construcción y defensa de los nuevos derechos ambientales culturales y colectivos en América Latina. Coord. E. Leff, Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) y Universidad Nacional Autónoma de México, Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, México D.F., 1–275. 
    [16] Minteer BA (2009) Nature in Common? Environmental Ethics and the Contested Foundations of Environmental Policy. Philadelphia: Temple University Press, 1–301. 
    [17] Gardiner S (2011) A Perfect Moral Storm: The Ethical Tragedy of Climate Change. Univ Oxford 1–408. 
    [18] Prieto Méndez JM (2013) Derechos de la Naturaleza, Fundamento, contenido y exigibilidad jurisdiccional. Centro de Estudios y Difusión del Derecho Constitucional-Corte Constitucional del Ecuador, Quito. 
    [19] Tosun J (2013) Environmental Policy Change in Emerging Market Democracies, Central and Eastern Europe and Latin America Compared. Toronto: University of Toronto Press, 1–253. 
    [20] Muller C, Chapman L, Grimmond C, et al. (2013) Sensors and the city: A review of urban meteorological networks. Int J Climatol 33: 1585–1600. 
    [21] Ramsey NR, Klein PM, Iii BM (2014) The impact of meteorological parameters on urban air quality. Atmos Environ 86: 58–67. 
    [22] Cochrane A, (2008) Cities: Urban Worlds, In: Daniels P., Bradshaw M., Shaw D., Sidaway J., Eds., An Introduction To Human Geography-Issues For The 21st Century, Third Edition, London: Pearson Education Limited, Prentice-Hall, 205–217. 
    [23] Koonings K, Kruijt D, (2009) The rise of megacities and the urbanization of informality, exclusion and violence, In: Koonings, Kruijt, Eds., Megacities: The politics of urban exclusion and violence in the global South, London: Zed Books, 8–16. 
    [24] Fernández MA (1996) Ciudades en riesgo, degradaciòn ambiental, riesgos urbanos y desastres. Red de Estudios Sociales en Prevención de Desastres en América Latina, Ed. La Red, 1–30. Available from: http://www.desenredando.org. 
    [25] PNUMA. Proyecto Geo Ciudades, PNUMA, 2012. Available from: http://www.pnuma.org. 
    [26] BID-AIDIS-OPS (2010) Informe de la evaluación regional del manejo de residuos sólidos urbanos en Amperica Latina y el Caribe 2010. Banco Interamericano de Desarrollo, Asociación Interamericana de Ingeniería Sanitaria y Ambiental, Organización Panamericana de la Salud. Available from: https://publications.iadb.org. 
    [27] UNEP­WHO (1992) Urban Air Pollution in Megacities of the World. United Nations Environmental Programme-World Health Organization, Blackwell, Oxford. 
    [28] Smook RAF, (1998) Chapter 62 European sustainable cities: The chanllenge of citylife: Being exposed to an air polluted urban environment, In: Schneider T, Ed., Air Pollution in the 21st Century: Priority Issues and Policy, Amsterdam, Elsevier, 1043–1056. 
    [29] Bicknell J, Dodman D, Satterthwaite D (2009) Adapting cities to climate change-understanding and Addressing the Development challenges. London, Ed. Earthscan, 1–397. 
    [30] Romero-Lankao P, Qin H, Borbor-Cordova M (2013) Exploration of health risks related to air pollution and temperature in three Latin American cities. Soc Sci Med 83: 110–118. 
    [31] Jabareen J (2015) The risk city: Cities countering climate change: Emerging planning theories and practices around the world. Springer Neth 1–204. 
    [32] Fenger J (1999) Urban air quality. Atmos Environ 33: 4877–4900. 
    [33] OECD (2010) Cities and Climate Change. OECD Publishing, Available from: http://dx.doi.org/10.1787/9789264091375-en. 
    [34] WB, (2011) Introduction: Cities and the Urgent Challenges of Climate Change, In: Hoornweg D., Freire M., Lee M., Bhada-Tata P., Yuen B., Eds., Cities and climate change-Responding to an urgent agenda, Washington: The World Bank, 1–14. 
    [35] UNEP (2014) La Asamblea histórica de la ONU para el Medio Ambiente reclama una acción más fuerte para mejorar la calidad del aire, responsable de 7 millones de muertes al año, junto a otras 16 resoluciones, Nairobi, June 2014. Available from: http://www.unep.org/Documents.Multilingual/Default.Print.asp? DocumentID =2791&ArticleID=10931&l=es. 
    [36] Riojas Rodríguez H, Soares da Silva A, Texcalac-Sangrador JL, et al. (2016) Air pollution management and control in Latin America and the Caribbean: Implications for climate change. Pan Am J Public Health 40: 150–159. 
    [37] Erikson LE, Jennings M (2017) Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health. AIMS Public Health 4: 47–61. 
    [38] Khare A, Beckman T (2013) Mitigating Climate Change-the Emerging Face of Modern Cities, Heidelberg, Springer, 1–281. 
    [39] Thornbush MJ (2015) Vehicular Air Pollution and Urban Sustainability An Assessment from Central Oxford, UK. Heidelberg, Springer Cham, 1–71. 
    [40] De Flander K, (2013) Resource-Centered Cities and the Opportunity of Shrinkage, In: Khare A., Beckman T., Eds., Mitigating Climate Change-the Emerging Face of Modern Cities, Heidelberg, Springer, 45–58. 
    [41] Wais de Badgen IR (1998) Ecología de la Contaminación Ambiental, 1ra Edición, Buenos Aires, Ediciones Universo, 1–208. 
    [42] Korc ME, Sáenz R (1999) Monitoreo de la calidad del aire en América Latina. Korc Marcelo E 1–22. 
    [43] Petcheneshsky T, Gravarotto MC, Benitez R, et al. (2002) La Evaluación de la Calidad del Aire en la República Argentina. Departamento de Salud Ambiental del Ministerio de Salud y Acción Social de La Nación, Buenos Aires, AIDIS, 1–13. 
    [44] PNUMA (2004) Geo Argentina. Perspectivas del Medio Ambiente de la Argentina. Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) y Secretaría de Ambiente y Desarrollo Sustentable de la República Argentina (SAyDS), 1–303. 
    [45] Mazzeo NA, Venegas LE, Choren H (2005) Analysis of NO, NO2, O3 and NOx concentrations measured at a green area of Buenos Aires City during wintertime. Atmos Environ 39: 3055–3068. 
    [46] Arkouli M, Ulke AG, Endlicher W, et al. (2010) Distribution and temporal behavior of particulate matter over the urban area of Buenos Aires. Atmos Pollut Res 1: 1–8. 
    [47] Fujiwara FG, Gomez D, Faggi A (2013) Perfiles químicos y patrones espaciales del polvo de la calle colectado en la megaciudad de Buenos Aires. Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 385–392. Available from: http://www.utn.edu.ar/secretarias/pp(Memorias). 
    [48] Olcese LE, Toselli BM (2002) Some aspects of air pollution in Córdoba, Argentina. Atmos Environ 36: 299–306. 
    [49] Diez S, Fonseca JM, Piccioni M, et al. (2013) Dispersión de PM10 generado por el tráfico vehicular en la ciudad universitaria, Córdoba capital. Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 469–482. Available from: http://www.utn.edu.ar/secretarias /pp(Memorias). 
    [50] Achad M (2015) Aerosoles: Efectos sobre la Radiación UV-B y sobre la Calidad de Aire en la Región Central de Argentina. Tesis Doctoral, Universidad Nacional de Córdoba, Córdoba, Argentina. 
    [51] Puliafito E, Guevar M, Puliafito C (2003) Characterization of urban air quality using GIS as a management system. Environ Pollut 122: 105–117. 
    [52] Allende D, Romero G, Cremades P, et al. (2013) Caracterización horaria y diaria de la concentración del número total de partículas en ambientes urbanos y suburbanos en Mendoza, Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 393–409. Available from: http://www.utn.edu.ar/secretarias /pp(Memorias). 
    [53] Allende D, Flores P, Ruggeri R, et al. (2015) Medición y caracterización de las fuentes de PM10, PM2.5 y PM1 en las áreas urbanas y suburbanas del Gran Mendoza y Gran San Juan, Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 157–172. Available from: http://www.utn.edu.ar/secretarias /pp(Memorias). 
    [54] Caminos JA, Enrique C, Ghirardi R, et al. (2011) Calidad de Aire en la Ciudad de Santa Fe. Facultad Regional Santa Fe, Universidad Tecnológica Nacional, Editorial UTN, 1–42. 
    [55] PNUMA (2007) Perspectivas del Medio Ambiente Urbano: Geo San Miguel de Tucumán, Programa de las Naciones Unidas para el Medio Ambiente (PNUMA), Facultad de arquitectura y urbanismo de la Universidad Nacional de Tucumán, Municipalidad de San Miguel de Tucumán, 1–249. Available from: http://www.pnuma.org/. 
    [56] Puliafito E, Rey Saravia F, Pereyra M, et al. (2007) Calidad del aire en el polo petroquímico de Bahía Blanca, Libro de Actas PROIMCA (publicado en 2009), Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 113–121. Available from: http://www.utn.edu.ar/secretarias /pp(Memorias). 
    [57] Arranz G, Pereyra M, Cifuentes O (2015) Herramienta de gestión: Monitoreo perimetral en tiempo real de emisiones industriales de VCM (Caso Polo Petroquímico de Bahía Blanca), Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 173–188. Available from: http://www.utn.edu.ar/secretarias/pp(Memorias). 
    [58] Puliafito E (2009) Gestión de la calidad del aire en la Argentina, Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 67–82. Available from: http://www.utn.edu.ar/secretarias/pp(Memorias). 
    [59] Bell M, Davis DL, Gouveia N, et al. (2006) The avoidable health effects of air pollution in three Latin American cities: Santiago, São Paulo, and Mexico City. Environ Res 100: 431–440. 
    [60] Garcia-Huidobro T, Marshall FM, Bell JNB (2001) A risk assessment of potential agricultural losses due to ambient SO2 in the central regions of Chile, Atmos Environ 35: 4903–4915. 
    [61] Mölders N (2012) Land Use and Land Cover Changes-Impact on Climate and Air Quality. New York Springer, 1–189. 
    [62] Miranda JJ (2006) Impacto Económico en la Salud por Contaminación del Aire en Lima Metropolitana, Programa de Investigaciones ACDI, IDRC (International Development Research Centre), Consorcio de Investigación Económica y Social (CIES), Instituto de Estudios Peruanos, 1–38. Available from: http://redpeia.minam.gob.pe. 
    [63] Sánchez Triana E, Kulsum A, Yewande A (2007) Prioridades ambientales para la reducción de la pobreza en Colombia. Un análisis ambiental del país para Colombia. Banco Internacional de Reconstrucción y Fomento/Banco Mundial, Washington. Bogotá, Banco Mundial y Mayol Ediciones S.A., 1–501. 
    [64] OECD (2014) The Cost of Air Pollution: Health Impacts of Road Transport. OECD Publishing, 1–80. Available from: http://dx.doi.org/10.1787/9789264210448-en. 
    [65]   Lovett GM, Burns DA, Driscoll CT, et al. (2007) Who needs environmental monitoring? Front Ecol Environ 5: 253–260. 
    [66] GPBA-UNLP (1982) La Plata, una obra de arte 1882–1982, GPBA (Gobierno de la Provincia de Buenos Aires)-UNLP (Universidad Nacional de La Plata), 1–437. Disponible en: Biblioteca Pública-Universidad Nacional de La Plata, Plaza Rocha 137. Available from: http://biblio.unlp.edu.ar. 
    [67] Cowen MP (2010) Viejos problemas en ciudades nuevas: La Plata: Agua potable y problemas sanitarios en la época fundacional. Res Gesta 2010: 69–96. 
    [68] Ravella O, Giacobbe N (2003) Sustentabilidad, movilidad y transporte: El caso del Gran La Plata. Av Energías Renov y Medio Ambiente 7: 19–24. 
    [69] LINTA-IIT (2016) Patrimonio cultural y turismo en La Plata, Berisso y Ensenada. Provincia de Buenos Aires, Argentina. Ed. LINTA (Laboratorio de Investigaciones del Territorio y el Ambiente) y IIT (Instituto de Investigaciones en Turismo), 1–110. Available from: http://sedici.unlp.edu.ar/handle/10915/55598. 
    [70] Lerange C, Pardo D, Diyelsi M, et al. (1982) La Plata ciudad milagro. Buenos Aires, Ed. Corregidor, 1–683. 
    [71] Romero LA (2012) Breve historia contemporánea de la Argentina, 3ra Ed., Buenos Aires, Fondo de Cultura Económica, 1–431. 
    [72] Lopez I, Etulain J (1992) Emergentes de los planes urbanos y nuevas estrategias. Estudio del casco del partido de La Plata. En: La Plata, de la ciudad antigua a la ciudad nueva. Sueños y Realidades. LINTA (Laboratorio de Investigaciones del Territorio y el Ambiente)-UNLP (Universidad Nacional de La Plata), La Plata, 67–72. Disponible en Biblioteca Pública-Universidad Nacional de La Plata, Plaza Rocha 137. Available from: http://biblio.unlp.edu.ar. 
    [73] Katz RS (2007) Ciudad de La Plata y su historia. Buenos Aires, Edición de Autor, 1–524. Disponible en: Biblioteca Pública- Universidad Nacional de La Plata, Plaza Rocha 137. Available from: http://biblio.unlp.edu.ar. 
    [74] Oszlak O (1991) Mereced la ciudad. Los pobres y el derecho al espacio urbano. Buenos Aires, Ed. CEDES- Hvumanitas, 1–315. 
    [75] Frediani J (2010) Lógicas y tendencias de la expansión residencial en áreas periurbanas-El partido de La Plata, Buenos Aires, Argentina, entre 1990 y 2010, Tesis de Doctorado, Argentina, Facultad de Humanidades y Ciencias de la Educación-Universidad Nacional de La Plata, 1–458. Available from: http://sedici.unlp.edu.ar/. 
    [76] VA (2017) Mapas de Villas de la Argentina. Obtenido en Febrero de 2017 de. Available from: http://relevamiento.techo.org.ar. 
    [77] Hurtado M, Cabral M, Gimenez J, et al. (1992) Cavas, Degradación ambiental producto de la actividad extractiva, In: La Plata, de la ciudad antigua a la ciudad nueva. Sueños y Realidades, LINTA (Laboratorio de Investigaciones del Territorio y el Ambiente)-UNLP (Universidad Nacional de La Plata), La Plata, 94–97. Disponible en: Biblioteca Pública- Universidad Nacional de La Plata, Plaza Rocha 137. Available from: http://biblio.unlp.edu.ar. 
    [78] MLP-UNLP (2001) Observatorio de Calidad de Vida La Plata. Diagnóstico de Calidad de Vida en el Partido de La Plata, Municipalidad de La Plata (MLP) y Universidad Nacional de La Plata (UNLP), La Plata, 1–316. Disponible en: Biblioteca Pública-Universidad Nacional de La Plata, Plaza Rocha, 137, Available from: http://biblio.unlp.edu.ar. 
    [79] Rozadilla G, Solimano F, Correa L, et al. (2015) Análisis de potabilidad de aguas subterráneas en La Plata y alrededores, Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 519–530. Available from: http://www.utn.edu.ar/secretarias /pp(Memorias). 
    [80] FCLP (2011) El futuro de la ciudad, Fundación Ciudad de La Plata, Centro Cultural Dardo Rocha, La Plata. Available from: http://www.fundciudaddelaplata.org.ar. 
    [81] La Nación (2011) Advierten que La Plata pierde su esencia, National Dairy Newspaper "La Nación", Noviembre 21. Available from: http://www.lanacion.com.ar. 
    [82] Lauría D, Brugallera R, Couselo R, et al. (2010) Caracterización productiva regional, La Plata-Berisso-Ensenada, Fac. de Ciencias Económicas-Universidad Nacional de La Plata, La Plata, 1–52. Available from: http://www.mba.econo.unlp.edu.ara. 
    [83] Frediani JC, López MJ (2014) Diseño de una matriz de medidas tendientes a la integración ciudad-movilidad a partir de las componentes ambiental, energética y social. Rev Transp y Territorio 6: 33–52. 
    [84] Blanco EE, Porta AA (2013) La contaminación atmosférica y la salud de la población en la micro región La Plata, Berisso y Ensenada. Definición de variables e indicadores de gestión en el marco de políticas públicas. Reporte de la Editorial Universitaria de la Universidad Tecnológica Nacional (UTN-Argentina), 1–11. Available from: http://www.edutecne.utn.edu.ar/coini_2013/trabajos/COA20_TC.pdf. 
    [85] CIPPEC (2016) Gobernanza metropolitana en América Latina y el Caribe, Documento de Trabajo Nro. 51. Programa de Ciudades-Area de Instituciones y Gestión Pública, Centro de Implementación de Políticas Públicas para la Equidad y el Crecimiento (CIPPEC) y Banco Interamericano de Desarrollo (BID), Buenos Aires, 1–222. Available from: http://www.cippec.org. 
    [86] Barros V, Menéndez A, Nagy G (2005) El Cambio Climático en el Río de La Plata, CIMA Textos del reporte técnico de los proyectos: Impactos del Cambio Global en las áreas costeras del Río de la Plata y Variabilidad hidroclimática del estuario del Río de la Plata: Influencia humana, ENSO y estado trófico. Proyecto "Assessments of Impacts and Adaptations to Climate Change (AIACC)", START-TWAS-UNEP, 1–204. 
    [87] Scarpati O, Benitez M (2005) Las inundaciones en la ciudad de La Plata. Su análisis en relación con las precipitaciones durante las últimas décadas del siglo XX, Geograficando, 1: 1–11. Available from: http://geogra_cando.fahce.unlp.edu.ar. 
    [88] Dutton K (2013) La Vulnerabilidad de la Tercera edad en Desastres Naturales: Un Estudio de la Inundación en La Plata, Argentina el 2 de abril de 2013, Paper 1583. Independent Study Project (ISP) Collection, 1–57. Available from: http://digitalcollections.sit.edu/isp_collection/1583. 
    [89] Guerrero E, Agnolin F (2016) Recent changes in plant and animal distribution in the southern extreme of the Paranaense biogeographical province (northeastern Buenos Aires province, Argentina): Ecological responses to climate change? Rev Mus Argent Cienc Nat 18: 9–30. 
    [90] CAI (2012) La Calidad del Aire en América Latina: Una Visión Panorámica. Clean Air Institute, EUA, Washington DC, 1–36. Available from: http://www.cleanairinstitute.org/calidad delaireamericalatina/TransporteyAireLimpio-cai-april2013.pdf. 
    [91] WHO (2006) Planning to protect children against hazards, Europe, World Health Organization, 1–25. Available from: http://www.euro.who.int/eehc. 
    [92] WHO (2006) Principles for evaluating health risks in children associated with exposure to chemicals. Environmental Health Criteria 237, Geneva, World Health Organization, 1–351. 
    [93] Sánchez-González D, Rodríguez-Rodríguez V (2016) Environmental Gerontology in Europe and Latin America, Policies and Perspectives on Environment and Aging. Heidelberg, Springer International Publishing, 1–306. 
    [94] INDEC (2017) Informes Técnicos Vol. 1 Nro. 53, Condiciones de Vida Vol.1 Nro. 4, Incidencia de la pobreza y la indigencia en 31 aglomerados urbanos. Segundo Semestre 2016. Instituto Nacional de Estadísticas y Censos, ISSN 2545-6636, Ministerio de Hacienda, Argentina. Available from: http://indec.gob.ar. 
    [95] El Día (2017) La Plata es la ciudad bonaerense con más asentamientos y villas: Tiene 129, Local Daily Newspaper "El Día", January 15, La Plata. Available from: http://www.eldia.com. 
    [96] UN-HABITAT (2012) State of the World's Cities. Prosperity of Cites. Nairobi: United Nations Human Settlements Programme, 1–149. 
    [97] Lipfert FW (2004) Air pollution and poverty: Does the sword cut both ways? J Epidemiol Community Health 58: 2–3. 
    [98] Petcheneshsky T, Gravarotto MC, Benitez R, et al. (1998) Gestión de la Calidad de Aire Urbano-Industrial. Situación del Monitoreo de la Calidad del Aire (GEMS-AIRE) en la República Argentina. Departamento de Salud Ambiental del Ministerio de Salud y Acción Social de La Nación, Buenos Aires, AIDIS, 1–12. 
    [99] AAPLP (2006) Análisis Ambiental del Partido de La Plata. Aportes al Ordenamiento Territorial, Instituto de Geomorfología y Suelos-UNLP y Centro de Investigaciones de Suelos y Aguas de Uso Agropecuario (CISAUA), Provincia de Buenos Aires, Consejo Federal de Inversiones, Municipalidad de La Plata, 1–124. Available from: http://sedici.unlp.edu.ar/handle/10915/27046. 
    [100] Gassmann MI, Mazzeo NA (2000) Air pollution Potential: Regional Study in Argentina. Environ Manage 25: 375–382. 
    [101] WHO (1998) La Salud en las Américas, Vol. 1 & 2, Washington. Publicación Científica Nº 569, World Health Organization, 1–972. 
    [102] SPA (2007) Exp.2145-7007/06 Secretaría de Política Ambiental de la Provincia de Buenos Aires, La Plata, Argentina (Ref.: Solicitud de información ambiental de La Plata y alrededores según los beneficios de la Ley 25.831/04―Régimen de libre acceso a la información pública ambiental). 
    [103] Ratto G (2016) Estudio de parámetros ambientales utilizando técnicas espectroscópicas, datos meteorológicos y métodos estadísticos, Tesis de Doctorado, Centro de Investigaciones Opticas y Universidad Nacional de La Plata, Argentina. Available from: http://sedici.unlp.edu.ar/. 
    [104] Cabrera Christiansen F, Sosa E, Dobal M, et al. (2015) Polos: Injusticias ambientales e industrialización petrolera en Argentina. Ediciones del Jinete Insomne 1–136. 
    [105] McGregor GR, (1999) Basic Meteorology (Chapter 3), In: Holgate ST, Samet JM, Koren HS, Maynard RL, Eds., Air Pollution and Health, San Diego, Academic Press, 21–49. 
    [106] Wieringa J (1996) Does representative wind information exist? J Wind Eng Ind Aerod 65: 1–12. 
    [107] Wieringa J (1980) Representativeness of Wind Observations at Airports, Bull Am Meteorol Soc 61: 962–971. 
    [108] Holzworth GC (1967) Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J Appl Meteorol 6: 1039–1044. 
    [109] Mazzeo NA, Nicolini M, Müler C, et al. (1974) Algunos aspectos climatológicos de la contaminación atmosférica en el área de La Plata (Prov. de Buenos Aires). Meteorológica 3: 99–134. 
    [110] Nieto AE, Macchi C, Digiani AR, (1971) Air pollution levels in the city of La Plata, In: Englund HM, W.T. Beery, Eds., Proceedings of the Second International Clean Air Congress, Washington: Academic Press Inc, 1–2. 
    [111] Mazzeo NA, Nicolini M, Moledo L, et al. (1972) Condiciones de Estabilidad Atmosférica y Capacidad de Dilución Vertical de Contaminantes en la Ciudad de La Plata. Congreso Interamericano de Ingeniería Sanitaria, Paraguay: Agosto, 1972: 101–114. 
    [112] Mazzeo NA, Nicolini M (1974) Eficiencia de las dispersión atmosférica en la zona de La Plata (Provincia de Buenos Aires). Meteorológica 5: 33–43. Available from: http://www.cenamet.org.ar. 
    [113] Cattogio J, Succar SD, Roca AF (1989) Polynuclear aromatic hydrocarbon content of particulate matter suspended in the atmosphere of La Plata, Argentina. Sci Total Environ 79: 43–58. 
    [114] Herbarth O, Rehwagen M, Ronco A (1997) The influence of localized emittants on the concentration of volatile organic compounds in the ambient air measured close to ground level. Environ Toxicol 12: 31–37. 
    [115] Colombo JC, Landoni P, Bilos C (1999) Sources, distribution and variability of airborne particles and hydrocarbons in La Plata area, Argentina. Environ Pollut 104: 305–314. 
    [116] Bilos C, Colombo JC, Skorupka CN, et al. (2001) Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ Pollut 111: 149–158. 
    [117] Díscoli CA, Barbero DA (2001) Insustentabilidad urbano-energética-ambiental. Determinación y cuantificación de contaminantes aéreos y sumideros. Avances en Energías Renovables y Medio Ambiente Vol. 5 (Reunión Nacional de ASADES-Asociación Argentina de Energías Renovables y Ambiente). Available from: http://www.cricyt.edu.ar/asades/. 
    [118] San Juan G, Díscoli C, Martini I, et al. (2006) Estructura de un atlas urbano-ambiental para la región del Gran La Plata. Sistematización de las variables intervinientes, Avances en Energías Renovables y Medio Ambiente, Vol.10. (Reunión Nacional de ASADES-Asociación Argentina de Energías Renovables y Ambiente). Available from: http://www.cricyt.edu.ar/asades/. 
    [119] Díscoli CA (2009) Metodología para el diagnóstico urbano-energético-ambiental en aglomeraciones intermedias-El caso del Gran La Plata, Tesis de Doctorado, Facultad de Ciencias Exactas-Universidad Nacional de Salta. Publicada por Editorial de la Universidad Nacional de La Plata, La Plata. Available from: http://sedici.unlp.edu.ar/. 
    [120] Dicroce L, Esparza J, Díscoli C, et al. (2010) Evaluación de contrastes urbanos a partir del grado de percepción en patologías urbano-ambientales presentes en el área del gran la plata, Avances en Energías Renovables y Medio Ambiente, Vol. 14 (Reunión Nacional de ASADES-Asociación Argentina de Energías Renovables y Ambiente). Available from: http://www.cricyt.edu.ar/asades/. 
    [121] Massolo L, Müller A, Tueros M, et al. (2002) Assessment of Mutagenicity and Toxicity of Different-Size Fractions of Air articulates from La Plata, Argentina, and Leipzig, Germany. Environ Toxicol 17: 219–231. 
    [122] Marañon Di Leo J, Del Nero S, Ragaini JC, et al. (2004) Air Concentrations of SO2 and Wind Turbulence near La Plata Petrochemical Pole (Argentina). Lat Am Appl Res 34: 55–58. 
    [123] Rehwagen M, Müller A, Massolo L, et al. (2005) Polycyclic aromatic hydrocarbons associated with particles in ambient air from urban and industrial areas. Sci Total Environ 348: 199–210. 
    [124] Nitiu DS (2003) Annual, daily and intradiurnal variation of Celtis pollen in the city of La Plata, Argentina. Aerobiologia 19: 71–78. 
    [125] Nitiu DS (2006) Aeropalynologic analysis of La Plata City (Argentina) during 3-year period. Aerobiologia 22: 79–87. 
    [126] Negrin M, Del Panno T, Ronco A (2007) Study of bioaerosols and site influence in the La Plata area (Argentina) using conventional and DNA (fingerprint) based methods. Aerobiologia 23: 249–258. 
    [127] Rosato ME, Reyna Almandos J, Ratto G, et al. (2001) Mesure de SOà La Plata, Argentine. Pollut Atmosphérique 169: 85–98. 
    [128] Ratto G, Videla F, Almandos JR, et al. (2006) Study of meteorological aspects and urban concentration of SO2 in atmospheric environment of La Plata, Argentina. Environ Monit Assess 121: 327–342. 
    [129] Ratto G, Videla F, Maronna R (2009) Analyzing SOconcentrations and wind directions during a short monitoring campaign at a site far from the industrial pole of La Plata, Argentina. Environ Monit Assess 149: 229–240. 
    [130] Wichmann FA, Müller A, Busi LE, et al. (2009) Increased asthma and respiratory symptoms in children exposed to petrochemical pollution. J Allergy Clin Immun 123: 632–638. 
    [131] Massolo L, Rehwagen M, Porta A, et al. (2010) Indoor-outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Environ Toxicol 25: 339–349. 
    [132] Orte MA (2011) Estudio y análisis de la contaminación atmosférica mediante técnicas físicas y químicas en los alrededores del Polo Petroquímico de La Plata, Tesina de Grado, Licenciatura en Tecnología Ambiental, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil. 
    [133] Ratto G, Videla F, Maronna R, et al. (2012) Calm analysis using a robust method. Argentina y Ambiente 2012, Primer Congreso Internacional de Ciencia y Tecnología Ambiental. Mar del Plata, 28 Mayo-1 Junio de 2012, Argentina. 
    [134] Ratto G, Nico A (2012) Preliminary wind analysis regarding different speed ranges in the city of La Plata, Argentina. Rev Bras Meteorol 27: 281–290. 
    [135] Colman Lerner JE, Kohajda T, Aguilar ME, et al. (2014) Improvement of health risk factors after reduction of VOC concentrations in industrial and urban areas. Environ Sci Pollut Res 21: 9676–9688. 
    [136] Gutiérrez M de los A (2015) Alteraciones oculares relacionadas con la contaminación del aire. Estudio comparativo en poblaciones de La Plata y Ensenada, Tesis de Doctorado, Centro de Investigaciones del Medio Ambiente y Universidad Nacional de La Plata, Argentina. Available from: http://sedici.unlp.edu.ar/. 
    [137] Orte MA, Coman Lerner J, Gutiérrez M, et al. (2015) Estudio de hidrocarburos aromáticos policíclicos asociados al material particulado y en fase gaseosa en la ciudad de La Plata y alrededores, Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional. Available from: http://www.utn.edu.ar/secretarias/pp(Memorias). 
    [138] Cavallotto JL (1995) Evolución geomorfológica de la llanura costera ubicada en la margen sur del Río de la Plata, Tesis de Doctorado, Facultad de Ciencias Naturales y Museo-Universidad Nacional de La Plata, Argentina. 
    [139] Michellod OE (2000) La identidad del paisaje urbano a través de la memoria: Berisso, Argentina. Tesis de Magister, (Magíster en Paisaje, Medio Ambiente y Ciudad), Universidad Central de Chile, Santiago. 
    [140] Berri GJ, Sraibman L, Tanco R. et al. (2010) Low-level wind field climatology over the La Plata River region obtained with a mesoscale atmospheric boundary layer model forced with local weather observations. J Clim Appl Meteorol 49: 1293–1305. 
    [141] Ratto G, Maronna R, Repossi P, et al. (2012) Analysis of winds affecting air pollutant transport at La Plata, Argentina. Atmos Clim Sci 2: 60–75. 
    [142] Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 1: 55–94. 
    [143] Arhens CD (2009) Meteorology Today. Brooks/cole Pub 1–621. 
    [144] Gianibelli JC, Köln J, Kruse EE (2001) The precipitation series in La Plata, Argentina and its possible relationship with geomagnetic activity. Geofís Int 40: 309–314. 
    [145] Ratto G, Maronna R, Berri G (2010) Analysis of wind roses using hierarchical cluster and multidimensional scaling analysis at La Plata, Argentina. Boundary Layer Meteorol 137: 477–492. 
    [146] WMO (2008) Guide to Meteorological Instruments and Methods of Observation. WMO-Nº 8, World Meteorological Organization, Switzerland. 
    [147] EPA (2008) Quality Assurance Handbook for Air Pollution Measurement Systems-Volume IV: Meteorological Measurements Version 2.0, EPA-454/B-08-002, United States Environmental Protection Agency, Washington. 
    [148] Rousseeuw PJ, Leroy AM (1987) Robust Regression and Outlier Detection. New York: John Wiley & Sons, 1–329. 
    [149] EPA (2009) Scout 2008 Version 1.0 User Guide, Second Edition, EPA/600/R-08/038, United States Environmental Protection Agency, Washington. 
    [150] Fauconnier C, Haesbroeck G (2009) Outliers Detection with the Minimum Covariance Determinant Estimator in Practice. Stat Methodol 6: 363–379. 
    [151] Seinfeld JH, Pandis SN, (2006) Atmospheric Chemistry and Physics, In: From Air Pollution to Climate Change, 2nd Edition, Hoboken, New York: John Wiley & Sons, 1–1225. 
    [152] Brunekreef B, Holgate S (2002) Air Pollution and Health. Lancet 360: 1233–1242. 
    [153] OMS (2006) Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre, Actualización mundial 2005. WHO/SDE/PHE/OEH/06.02, Ginebra. 
    [154] US ATSDR (1998) Toxicological Profile for Sulphur Dioxide, Chapter 5. Georgia, Agency for Toxics Substances and Disease Registry-Public Health Service: Science International Inc. Editors, 111–130. 
    [155] Cuciureanu R, Dimitriu G (2006) Photochemical reactions in the atmosphere-a source of secondary pollutants. Проблеми програмування (Спеціальний випуск) 2: 682–687. 
    [156] Cheng S, Lamb K (1998) An analysis of winds affecting air pollution concentrations in Hong Kong. Atmos Environ 32: 2559–2567. 
    [157] Goyal P (2002) Effect of winds on SO2 and SPM concentrations in Delhi. Atmos Environ 36: 2925–2930. 
    [158] Ratto G, Videla F, Maronna R, et al. (2010) Air pollutant transport analysis based on hourly winds in the city of La Plata and surroundings, Argentina. Water Air Soil Pollut 208: 243–257. 
    [159] SMN (2011) Estadísticas Climatológicas, Servicio Meteorológico Nacional 2001–2010, SMN, Buenos Aires. 
    [160] McCormik RA, (1968) Air Pollution Climatology, In: Air Pollution (Stern, A.) Vol. 1, Chapter 9 Second Edition, New York: Academic Press, 275–320. 
    [161] Moore DJ (1969) The distributions of surface concentrations of sulphur dioxide emitted from tall chimneys. Trans R Soc Can 265. 
    [162] Deardorff JW, (1984) Upstream diffusion in the convective boundary layer with weak or zero mean wind, In: Fourth joint conference on application of air pollution meteorology, American Meteorological Society, Boston, Massachusetts. 
    [163] EPA (2007) Ambient air monitoring network assessment guidance-Analytical techniques for technical assessments of ambient air monitoring networks, EPA-454/D-07-001, United States Environmental Protection Agency, Washington. 
    [164] Trujillo-Ventura A, Ellis J (1991) Multiobjective air pollution monitoring network design, Atmos Environ 25: 469–479. 
    [165] EPA (2013) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Quality Monitoring Program, EPA-454/B-13-003, Washington. 
    [166] Joly M, Peuch VH (2012) Objective classification of air quality monitoring sites over Europe. Atmos Environ 47: 111–123. 
    [167] Pickett EE, Whiting RG (1981) The design of cost-effective air quality monitoring networks. Environ Monit Assess 1: 59–74. 
    [168] Pérez-Abreu V, Rodríguez JE (1996) Index of effectiveness of a multivariate environmental monitoring network. Environmentrics 7: 489–501. 
    [169] Silva C, Quiroz A (2003) Optimization of the atmospheric pollution monitoring network at Santiago de Chile. Atmos Environ 37: 2337–2345 
    [170] Pires JCM, Pereira MC, Alvim-Ferraz MCM, et al. (2009) Identification of redundant air quality measurements through the use of principal component analysis. Atmos Environ 43: 3837–3842. 
    [171] Borge R, De la Paz D, Lumbreras J, et al. (2014) Analysis of Contributions to NO2 Ambient Air Quality Levels in Madrid City (Spain) through Modeling. Implications for the Development of Policies and Air Quality Monitoring. J Geosci Environ Prot 2: 6–11. 
    [172] Henriquez A, Gallardo L, Diaz Resquin M (2015) Analysis and optimal design of air quality monitoring networks using a variational approach. Tellus B 67: 25385: 1–13. 
    [173] Colombo JC, Pelletier E, Brochu C, et al. (1989) Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de La Plata Estuary, Argentina. Environ Sci Technol 23: 888–894. 
    [174] Colombo J, Bilos C, Remes Lenicov R, et al. (2000) Detritivorous fish contamination in the Río de la Plata estuary: A critical accumulation pathway in the cycle of anthropogenic compounds. Can J Fish Aquat Sci 57: 1139–1150. 
    [175] Bower J (1997) Ambient Air Quality Monitoring-A review paper for the Royal Society of Chemistry, AEA Technology-National Environmental Technology Centre, Oxfordshire (England). 
    [176] Martinez AP, Romieu I (1997) Introducción al Monitoreo Atmosférico, Departamento del Distrito Federal de México, Ciudad de México, OPS/OMS, ECO-GTZ, 1–362. 
    [177] Jedrychowski W, Flak E, Mróz E (1999) The Adverse Effect of Low Levels of Ambient Air Pollutants on Lung Function Growth in Preadolescent Children. Environ Health Persp 107: 669–674. 
    [178] IACA (2014) Informe de Calidad de Aire-Informe Anual, Montevideo. Servicio Evaluación de la Calidad y Control Ambiental, Departamento de Desarrollo Ambiental, Intendencia de Montevideo, Uruguay. 
    [179] PAR (2012) Plan Ambiental de Rosario. Calidad de Aire y Ruido, Municipalidad de Rosario, Santa Fe. Available from: http://www.rosario.gov.ar/sitio/. 
    [180] Gorchakov G, Semoutnikova E, Karpov A, et al. (2011) Air Pollution in Moscow Megacity, In: Anca Maria Moldoveanu, Ed., Advanced Topics in Environmental Health and Air Pollution Case Studies, Croatia, INTECH, 211–236. 
    [181] WHO-WMO (1977) Air monitoring programme desing for urban and industrial areas. Offset publication No. 33, Geneva, World Health Organization, 1–46. 
    [182] WHO (1980) Analysing and Interpreting Air Monitoring Data. Offset publication No. 51, Geneva, World Health Organization, 1–59. 
    [183] EA (2006) Review of background air-quality data and methods to combine these with process contributions, Science report: SC030174/1 SR1, Bristol, Environmental Agency, 1–58. Available from: www.environment-agency.gov.uk. 
    [184] UNEP (2014b) Plan de Acción Regional de Cooperación Intergubernamental en materia de Contaminación Atmosférica para América Latina y el Caribe, Anexo de la XIX Reunión del Foro de Ministros de Medio Ambiente de América Latina y el Caribe, Los Cabos, 11–14 de Marzo de 2014, UNEP/LAC-IGWG.XIX/7 Final, Los Cabos, México. 
    [185] DEFRA (2016) Air Pollution in the UK 2015, Department for Environment, Food and Rural Affairs, Ed. OGL Crown, UK. Available from: https://uk-air.defra.gov.uk/library/annualreport/index. 
    [186] Keith L (2014) The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycyclic Aromat Compd 35: 147–160. 
    [187] Andersson JT, Achten C (2015) Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes. Polycyclic Aromat Compd 35: 330–354. 
    [188] WMO (2006) Initial guidance to obtain representative meteorological observations at urban sites-Instruments and observing methods, Report No. 81, WMO/TD-No. 1250, Switzerland, World Meteorological Organization, 1–47. 
    [189] EPA (2000) Meteorological Monitoring Guidance for Regulatory Modeling Applications, EPA-454/R-99-005, Environmental Protection Agency, Research Triangle Park, NC. 
    [190] Marc M, Tobiszewski M, Zabiegała B, et al. (2015) Current air quality analytics and monitoring: A review. Anal Chim Act 853: 116–126. 
    [191] Manes G, Collodi G, Fusco R, et al. (2011) Real-Time Monitoring of Volatile Organic Compounds in Hazardous Sites (Chapter 14), In: Ekundayo E., Ed., Environmental Monitoring, InTech-Open Access Publisher, 219–244. Available from: http://www.intechopen.com/. 
    [192] Mukerjee S, Smith LA, Norris GA, et al. (2004) Field Method Comparison between Passive Air Samplers and Continuous Monitors for VOCs and NO2 in El Paso, Texas. J Air Waste Manage 54: 307–319. 
    [193] Sigrist M (1994) Air Monitoring by Spectroscopic Techniques. New York: John Wiley and Sons, 1–560. 
    [194] Platt U, Stutz J (2008) Differential Optical Absorption Spectroscopy: Principles and Applications. Heidelberg Springer, 1–597. 
    [195] EPA (2011) Optical Remote Sensing for Measurement and Monitoring of Emissions Flux, United States Environmental Protection Agency, North Carolina. 
    [196] Plane JMC, Saiz-Lopez A, (2006) UV-Visible Differential Optical Absorption Spectroscopy, (DOAS) (Chapter 3), In: Heard DE, Ed., Analytical Techniques for Atmospheric Measurement, New York: Blackwell Publishing Ltd., 148–188. 
    [197] Edner H, Ragnarson P, Spännare S, et al. (1993) Differential Optical Absorption Spectroscopy (DOAS) system for urban atmospheric pollution monitoring. Appl Optics 32: 327–332. 
    [198] Kourtidis K, Ziomas I, Zerefos C, et al. (2000) Benzene and toluene levels measured with a commercial DOAS system in Thessaloniki, Greece. Atmos Environ 34: 1471–1480. 
    [199] Chiu KH, Sree U, Tseng SH, et al. (2005) Differential optical absorption spectrometer measurement of NO2, SO2, O3, HCHO and aromatic volatile organics in ambient air of Kaohsiung Petroleum Refinery in Taiwan. Atmos Environ 39: 941–955. 
    [200] Lee C, Choi IJ, Jung JS, et al. (2005) Measurement of atmospheric monoaromatic hydrocarbons using differential optical absorption spectroscopy: Comparison with on-line gas chromatography measurements in urban air. Atmos Environ 39: 2225–2234. 
    [201] Avino P, Manigrasso M (2008) Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer. Atmos Environ 42: 4138–4148. 
    [202] Johanson M, Galle B, Yu T, et al. (2008) Quantification of total emission of air pollutants from Beijing using mobile mini-DOAS. Atmos Environ 42: 6926–6933. 
    [203] Baidar S, Oetjen H, Coburn S, et al. (2013) The CU Airborne MAX-DOAS instrument: Vertical profiling of aerosol extinction and trace gases. Atmos Meas Tech 6: 719–739. 
    [204] Frins E, Bobrowski N, Osorio M, et al. (2014) Scanning and mobile multi-axis DOAS measurements of SO2 and NO2 emissions from an electric power plant in Montevideo, Uruguay. Atmos Environ 98: 347–356. 
    [205] CFR (2011) Ambient Air Quality Surveillance, 40 Code of Federal Regulations, Part 58, 7-1-11 Edition, US EPA, Washington. 
    [206] Seibert P, Beyrich F, Gryning SE, et al. (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027. 
    [207] Sicard M, Perez C, Rocadenbosch F, et al. (2006) Mixed-layer depth determination in the Barcelona coastal area from regular LIDAR measurements: Methods, results and limitations. Boundary Layer Meteorol 119: 135–157. 
    [208] Emeis S, Schäfer K, Münkel C (2008) Surface-based remote sensing of the mixing-layer height-a review. Meteorologische Z 17: 621–630. 
    [209] Pérez IA, García M de los A, Sanchez ML, et al. (2006) Fit of wind speed and temperature profiles in the low atmosphere from rass sodar data, J Atmos Sol-Terr Phy 68: 1125–1135 
    [210] Chan PW (2008) Measurement of turbulence intensity profile by a mini-sodar. Meteorol Appl 15: 249–258. 
    [211] EPA (2006) Guidance for Data Quality Assessment. Practical-Methods for Data Analysis, EPA QA/G9, US EPA-EPA/240/B-06/003, Environmental Protection Agency, Washington. 
    [212] Lacey M, West J (2006) The Air Spora. A manual for catching and identifying airborne biological particles. Springer, Dordrecht. 
    [213] Laner D, Crest M, Scharff H, et al. (2012) A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag 32: 498–512. 
    [214] Sarkar U, Hobbs S, Longhurst P (2003) Dispersion of odour: A case study with a municipal solid waste landfill site in North London, United Kingdom. J Environ Manage 68: 153–160. 
    [215] Ancona C, Badaloni C, Mataloni F, et al. (2015) Mortality and morbidity in a population exposed to multiple sources of air pollution: A retrospective cohort study using air dispersion models. Environ Res 137: 467–474. 
    [216] Bolze U, De Freitas M (1997) Monitoring gas emissions from landfill sites. Waste Manage Res 15: 463–476. 
    [217] Palmiotto M, Fattore E, Paiano V, et al. (2014) Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ Int 68: 16–24. 
    [218] Liu Y, Lu W, Guo H, et al. (2016) Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution. Atmos Environ 139: 205–213. 
    [219] El Día (2013a) Reclamo por malos olores. Local Daily Newspaper "El Día", January 9, La Plata. Available from: http://www.eldia.com. 
    [220] El Día (2013b) Reclamo por malos olores. Local Daily Newspaper "El Día", July 5, La Plata. Available from: http://www.eldia.com. 
    [221] El Día (2016)Aire irrespirable en Villa del Plata por el olor a basura de la Ceamse. Local Daily Newspaper "El Día", January 27, La Plata. Available from: http://www.eldia.com. 
    [222] Hoy (2013) YPF y una contaminación que ya da asco en Ensenada. Local Daily Newspaper "Hoy", September 23, La Plata. Available from: http://diariohoy.net. 
    [223] Hoy (2014) UNLP confirma contaminación letal de YPF, August 3, La Plata. Available from: http://diariohoy.net. 
    [224] Hoy (2015a) Otra vez la Refinería puso en vilo a los vecinos de la región. Local Daily Newspaper "Hoy", August 26, La Plata. Available from: http://diariohoy.net. 
    [225] Hoy (2015b) YPF puso otra vez en vilo a la región, November 3, Local Daily Newspaper "Hoy", August 26, La Plata. Available from: http://diariohoy.net. 
    [226] Hoy (2016a) Denuncian un fuerte olor en la periferia del CEAMSE. Local Daily Newspaper "Hoy", March 7, La Plata. Available from: http://diariohoy.net. 
    [227] Hoy (2016b) Vecinos denuncian fuertes olores nauseabundos emanados desde la refinería YPF. Local Daily Newspaper "Hoy", October 5, La Plata. Available from: http://diariohoy.net. 
    [228] Hoy (2016c) Nuevas emanaciones de YPF llegaron hasta City Bell. Local Daily Newspaper "Hoy", October 6, La Plata. Available from: http://diariohoy.net. 
    [229] SEPA (2010) Odour Guidance, Scottish Environment Protection Agency. Available from: www.sepa.org.uk/media/154129/odour_guidance.pdf. 
    [230] Vallero D (2008) Fundamentals of Air Pollution, 4th edition, California, Academic Press, 1–942. 
    [231] Majra JP, (2011) Air quality in rural areas (Chapter 23), In: Mazzeo N, Ed., Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality, Rijeka, InTech press, 619–638. 
    [232] Gupta A, Kumar R, Kumari K, et al. (2003) Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmos Environ 37: 4837–4846 
    [233] Hunova I, Santroch J, Ostatnick J (2004) Ambient air quality and deposition trends at rural stations in the Czech Republic during 1993–2001. Atmos Environ 38: 887–898. 
    [234] Oke TR (1987) Boundary Layer Climates, 2nd Edition, London, Routledge, 1–435. 
    [235] Jacobson MZ (2005) Fundamentals of Atmospheric Modeling, Second Edition, Cambridge, Cambridge University Press, 1–813. 
    [236] Emeis S (2012) Wind Energy Meteorology. Atmospheric Physics for Wind Power Generation, Heidelberg, Springer, 1–196. 
    [237] Simpson JE (1994) Sea breeze and local wind, Cambridge, Cambridge University Press, 1–234. 
    [238] Ríos L (2007) Degradación de los espacios públicos del borde costero de Ensenada: Criterios para el diseño de políticas, Informe de Beca, Unidad de Investigación Nº 5, Instituto de Estudios del Hábitat-Universidad Nacional de La Plata. Available from: http://sedici.unlp.edu.ar/handle/10915/27071. 
    [239] Oke TR (1982) The energetic basis of the urban heat island. Q J of the Roy Meteor Soc 108: 1–24. 
    [240] Gartland L (2008) Heat islands understanding and mitigating heat in urban areas. Earthscan Publisher, London. 
    [241] Dousset B, Gourmelon F, Laaidi K, et al. (2010) Satellite monitoring of summer heat waves in the Paris metropolitan area. Int J Climatol 31: 313–323. 
    [242] Sarrat C, Lemonsu A, Masson V, et al. (2006) Impact of urban heat island on regional atmospheric pollution. Atmos Environ 40: 1743–1758. 
    [243] Bassett R, Cai X, Chapman L, et al. (2016) Observations of urban heat island advection from a high-density monitoring network. Q J R Meteorol Soc 142: 2434–2441. 
    [244] Chapman L, Azevedo JA, Prieto-Lopez T (2013) Urban heat & critical infrastructure networks: A viewpoint. Urban Climate 3: 7–12. 
    [245] Muller C, Chapman L, Grimmond C, et al. (2013b) Toward a Standardized Metadata Protocol for Urban Meteorological Networks. Bull Am Meteorol Soc 94: 1161–1185. 
    [246] Chapman L, Muller C, Young D, et al. (2014) The Birmingham Urban Climate Laboratory: An open meteorological testbed and challenges of the smart city. Bull Am Meteorol Soc 96: 1545–1560. 
    [247] Chen D, Wang X, Khoo Y, et al. (2013) Assessment of urban heat island and mitigation by urban green coverage, In: Khare A, Beckman T, Eds., Mitigating Climate Change-The Emerging Face of Modern Cities, Heidelberg, Springer, 247–258. 
    [248] Sawyer RF (2010) Vehicle emissions: Progress and Challenges. J Exposure Sci Environ Epidemiol 20: 487–488. 
    [249] Gallardo L, Escribano J, Dawidowski L, et al. (2012) Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá, Buenos Aires, Santiago, and São Paulo. Atmos Environ 47: 12–19. 
    [250] ARPEL (2001) Enfoque sistémico para el control de las emisiones vehiculares en América Latina y el Caribe, Asociación regional de empresas de petróleo y gas natural en Latinoamérica y el Caribe (ARPEL), Montevideo. Available from: http://www.arpel.org. 
    [251] Baldauf R, Watkins N, Heist D, et al. (2009) Near-road air quality monitoring: Factors affecting network design and interpretation of data. Air Qual Atmos Health 2:1–9. 
    [252] HEI (2010) Traffic-related air pollution: A critical review of the literature on emissions, exposure, and health effects. Environment 131: 1–384. 
    [253] Guderian R (1985) Air pollution by photochemical oxidants, Formation, transport, control, and effects on plants. Heidelberg, Springer-Ver1ag, 1–346. 
    [254] Kado NY, Okamoto R, Kuzmicky P, et al. (2005) Emissions of Toxic Pollutants from Compressed Natural Gas and Low Sulfur Diesel-Fueled Heavy-Duty Transit Buses Tested over Multiple Driving Cycles. Environ Sci Technol 39: 7638–7649. 
    [255] Cooper CD, Alley FC (2010) Air Pollution Control: A Design Approach. Illinois, Waveland Press, 1–839. 
    [256] IARC (2013) Air Pollution and Cancer, Publication N°161, Lyon, International Agency for Research on Cancer, 1–169. 
    [257] NIOSH (2005) NIOSH Pocket Guide to Chemical Hazards, National Institute for Occupational Safety and Health, Cincinnati, Publication N°2005-149: 1–424. 
    [258] Joeng L, Bakand S, Hayes A (2015) Diesel exhaust pollution: Chemical monitoring and cytotoxicity assessment. AIMS Environ Sci 2: 718–736. 
    [259] Soares da Silva A, Cardoso MR, Meliefte K, et al. (2006) Use of passive diffusion sampling method for defining NO2 concentrations gradient in São Paulo, Brazil. Environ Health 5: 19. 
    [260] Greenwood R, Mills G, Vrana B (2007) Passive sampling techniques in environmental monitoring. Compr Anal Chem 48: 1–453. 
    [261] AEA (2008) Diffusion Tubes for Ambient NO2 Monitoring: Practical Guidance for Laboratories and Users. 1: 1–47. 
    [262] Masey N, Gillespie J, Heal MR, et al. (2017) Influence of wind-speed on short-duration NO2 measurements using Palmes and Ogawa passive diffusion samplers. Atmos Environ 160: 70–76. 
    [263] El Día (2014) Se multiplican las quejas de vecinos por ruidos en la refinería de YPF, July 7, La Plata. Available from: http://www.eldia.com. 
    [264] El Día (2015) Vecinos en alerta por fuertes ruidos en la Destilería de YPF0. Local Daily Newspaper "El Día", February 26, La Plata. Available from: http://www.eldia.com. 
    [265] Hoy (2015c) Nueva alerta por contaminación sonora en YPF0. Local Daily Newspaper "Hoy", November 28, La Plata. Available from: http://diariohoy.net. 
    [266] Hoy (2016d) Los ruidos y las llamas de la refinería seguirán toda la semana. Local Daily Newspaper "Hoy", July 12, La Plata. Available from: http://diariohoy.net. 
    [267] Rosenfeld E, Discoli C, Ferreyro C, et al. (2005) Desarrollo de una metodología y aplicación para la elaboración de un atlas energético-ambiental para la región del Gran La Plata. Avances en Energías Renovables y Medio Ambiente, Vol. 9 (Reunión Nacional de ASADES-Asociación Argentina de Energías Renovables y Ambiente). Available from: http://www.cricyt.edu.ar/asades/. 
    [268] Torras OS, Friedrich R (2013) A modelling approach for estimating background pollutant concentrations in urban areas. Atmos Pollut Res 4: 147–156. 
    [269] WHO (2013) Health risks of air pollution in Europe-HRAPIE project new emerging risks to health from air pollution-results from the survey of experts. World Health Organization Regional Office for Europe, Copenhagen. Available from: http://www.euro.who.int/pubrequest. 
    [270] Lalas DP, Veirs VR, Karras G, et al. (1982) An analysis of the SO2 concentration levels in Athens, Greece. Atmos Environ 16: 531–544. 
    [271] Perevochtchikova M (2009) La situación actual del sistema de monitoreo ambiental en la Zona Metropolitana de la Ciudad de México. Estud Demográficos Y Urbanos 24: 513–547. 
    [272] USAC-MAG (2012) Monitoreo del aire en la ciudad de Guatemala. Informe anual 2011. Universidad de San Carlos-Ministerio de Ambiente y Recursos Naturales, Guatemala. 
    [273] CR (2012) Estado de la Calidad del Aire del Área Metropolitana de Costa Rica. Informe Técnico Quinto, Ministerio de Salud de Costa Rica, Ministerio de Ambiente y Energía, Ministerio de Salud, Universidad de Costa Rica y Municipalidad de San José, San José. Available from: http://www.bvs.sa.cr/AMBIENTE/textos/quinto.pdf. 
    [274] LAQN (2015) London Air Quality Network. Summary Report 2013, Environmental Research Group, Kings College of London, London. Available from: http://www.londonair.org.uk. 
    [275] UNEP (2010) Geo Cities Manual-Guidelines for Integrated Environmental Assessment of Urban Areas. EECCA Region, United Nations Environment Programme, UNEP-DEWA/GRID-Europe. 
    [276] Kelly F, Fuller G, Walton H, et al. (2012) Monitoring air pollution: Use of early warning systems for public health. Respirology 17: 7–19.1. NU (2009) HOME (Cine documental dirigido por Yann Arthus-Bertrand y producido por Luc Besson y la participación de Naciones Unidas, Nueva York). 
    [277] 186. Keith L (2014) The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycyclic Aromat Compd 35: 147–160. 
    [278] Kelly F, Fuller G, Walton H, et al. (2012) Monitoring air pollution: Use of early warning systems for public health. Respirology 17: 7–19.
    [279] 1. NU (2009) HOME (Cine documental dirigido por Yann Arthus-Bertrand y producido por Luc Besson y la participación de Naciones Unidas, Nueva York). 
    [280] 186. Keith L (2014) The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycyclic Aromat Compd 35: 147–160. 
    [281] 186. Keith L (2014) The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycyclic Aromat Compd 35: 147–160. 
  • This article has been cited by:

    1. Jeff J. Doyle, Jeremy E. Coate, Polyploidy, the Nucleotype, and Novelty: The Impact of Genome Doubling on the Biology of the Cell, 2019, 180, 1058-5893, 1, 10.1086/700636
    2. Matan Goldshtein, Meir Mellul, Gai Deutch, Masahiko Imashimizu, Koh Takeuchi, Eran Meshorer, Oren Ram, David B. Lukatsky, Transcription Factor Binding in Embryonic Stem Cells Is Constrained by DNA Sequence Repeat Symmetry, 2020, 118, 00063495, 2015, 10.1016/j.bpj.2020.02.009
    3. Daniël P. Melters, Yamini Dalal, Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin, 2021, 433, 00222836, 166720, 10.1016/j.jmb.2020.11.019
    4. A. A. Ukraintsev, M. M. Kutuzov, O. I. Lavrik, Studying the structure and function of nucleosomes by atomic force microscopy, 2024, 89, 0320-9725, 635, 10.31857/S0320972524040078
    5. Xia Zeng, Ruiying Zhang, Ruirui Li, Ruimei Li, Hong Cui, Caibin Zhao, Shengrui Zhang, Lingxia Jin, Adsorption of rare bases on transition metal doped γ-graphyne nanosheets: a DFT study, 2024, 26, 1463-9076, 25208, 10.1039/D4CP03128H
    6. Alexander A. Ukraintsev, Mikhail M. Kutuzov, Olga I. Lavrik, Studying Structure and Functions of Nucleosomes with Atomic Force Microscopy, 2024, 89, 0006-2979, 674, 10.1134/S0006297924040072
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9794) PDF downloads(1186) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog