Research article

Circulation mechanisms responsible for wet or dry summers over Zimbabwe

  • Climate change has resulted in increased rainfall variability over many parts of the world including Southern Africa. As such, droughts and floods have become a frequent phenomenon in Zimbabwe and have potential to intensify socio-economic stressors. This study examined possible forcing factors behind the occurrence of extreme summer events using re-analysis datasets. Composite analysis and correlation methods were used to identify circulation mechanisms and their strength in determining rainfall patterns in Zimbabwe. Predominantly northerly airflow in the lower troposphere was found to favor wet while southerly airflow favors dry seasons. Negative geopotential anomalies (minimum of −20 hPa) to the west of Zimbabwe in the middle levels characterize wet summers which swing to positive anomalies (+24 hPa) during dry summers. Positive SST anomalies (maximum of 0.4) exist to the southwest of Madagascar extending to the western shore on the Angola-Namibian border characterize wet summers which swing to negative anomalies (−0.2 ºC) during dry summer seasons. SST anomalies in the South western Indian and South eastern Atlantic oceans are crucial in the determination of the strength of both the South Indian and Atlantic Ocean high pressure systems which in turn control moisture advection and convergence into Zimbabwe during the summer period. If these SST anomalies at lag times of about 3 months can be used to predict the incoming summer circulation patterns then the accuracy of summer seasonal outlook forecasts can be improved. Studying the mechanisms behind drought and flood occurrence is important to the country which is in the process of downscaling regional prediction products to improve the accuracy of seasonal forecasts. These findings are useful in crafting relevant measures to maximize the benefits and minimize the risks of extreme rainfall events.

    Citation: Moven Manjowe, Terence Darlington Mushore, Juliet Gwenzi, Collen Mutasa, Electdom Matandirotya, Emmanuel Mashonjowa. Circulation mechanisms responsible for wet or dry summers over Zimbabwe[J]. AIMS Environmental Science, 2018, 5(3): 154-172. doi: 10.3934/environsci.2018.3.154

    Related Papers:

    [1] Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259
    [2] Mingtao Li, Xin Pei, Juan Zhang, Li Li . Asymptotic analysis of endemic equilibrium to a brucellosis model. Mathematical Biosciences and Engineering, 2019, 16(5): 5836-5850. doi: 10.3934/mbe.2019291
    [3] Rajanish Kumar Rai, Pankaj Kumar Tiwari, Yun Kang, Arvind Kumar Misra . Modeling the effect of literacy and social media advertisements on the dynamics of infectious diseases. Mathematical Biosciences and Engineering, 2020, 17(5): 5812-5848. doi: 10.3934/mbe.2020311
    [4] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [5] Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525
    [6] Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390
    [7] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [8] Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández . A predator-prey fractional model with disease in the prey species. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164
    [9] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [10] Yuhua Long, Yining Chen . Global stability of a pseudorabies virus model with vertical transmission. Mathematical Biosciences and Engineering, 2020, 17(5): 5234-5249. doi: 10.3934/mbe.2020283
  • Climate change has resulted in increased rainfall variability over many parts of the world including Southern Africa. As such, droughts and floods have become a frequent phenomenon in Zimbabwe and have potential to intensify socio-economic stressors. This study examined possible forcing factors behind the occurrence of extreme summer events using re-analysis datasets. Composite analysis and correlation methods were used to identify circulation mechanisms and their strength in determining rainfall patterns in Zimbabwe. Predominantly northerly airflow in the lower troposphere was found to favor wet while southerly airflow favors dry seasons. Negative geopotential anomalies (minimum of −20 hPa) to the west of Zimbabwe in the middle levels characterize wet summers which swing to positive anomalies (+24 hPa) during dry summers. Positive SST anomalies (maximum of 0.4) exist to the southwest of Madagascar extending to the western shore on the Angola-Namibian border characterize wet summers which swing to negative anomalies (−0.2 ºC) during dry summer seasons. SST anomalies in the South western Indian and South eastern Atlantic oceans are crucial in the determination of the strength of both the South Indian and Atlantic Ocean high pressure systems which in turn control moisture advection and convergence into Zimbabwe during the summer period. If these SST anomalies at lag times of about 3 months can be used to predict the incoming summer circulation patterns then the accuracy of summer seasonal outlook forecasts can be improved. Studying the mechanisms behind drought and flood occurrence is important to the country which is in the process of downscaling regional prediction products to improve the accuracy of seasonal forecasts. These findings are useful in crafting relevant measures to maximize the benefits and minimize the risks of extreme rainfall events.


    We are concerned with Atangana-Baleanu variable order fractional problems:

    {Lu(x)=ABCDα(x)u(x)+a(x)u(x)=f(x,u),x[0,1],B(u)=0, (1.1)

    where 0<α(x)<1, ABCDα(x)(x) denotes the α(x) order Atangana-Baleanu Caputo derivatives, B(u) is the linear boundary condition, which includes initial value condition, periodic condition, final value condition and so on.

    The α(x)(0<α(x)<1) order Atangana-Baleanu Caputo derivatives of a function u(x) is firstly defined by Atangana and Baleanu [1]

    ABCDα(x)u(x)=M(α(x))1α(x)x0Eα(x)(α(x)1α(x)(xt)α(x))u(t)dt, (1.2)

    where Eα(x)(x) is the Mittag-Leffler function.

    Fractional order differential equations (FDEs) have important applications in several fields such as materials, chemistry transmission dynamics, optimal control and engineering [2,3,4,5,6]. In fact, the classical fractional derivatives are defined with weak singular kernels and the solutions of FDEs inherit the weak singularity. The Mittag-Leffler (ML) function was firstly introduced by Magnus Gösta Mittag-Leffler. Recently, it is found that this function has close relation to FDEs arising in real applications.

    Atangana and Baleanu [1] introduced a new fractional derivative by using the ML function, which is nonlocal and nonsingular. The new fractional derivatives is very important and have been applied to several different fields (see e.g. [7,8,9]). Up to now, several numerical algorithms have been developed for solving Atangana-Baleanu FDEs. Akgül et al. [10,11,12] proposed effective difference techniques and kernels based approaches for Atangana-Baleanu FDEs. On the basis of the Sobolev kernel functions, Arqub et al. [13,14,15,16,17] proposed the numerical techniques for Atangana-Baleanu fractional Riccati and Bernoulli equations, Bagley-Torvik and Painlev equations, Volterra and Fredholm integro-differential equations. Yadav et al. [18] introduced the numerical algorithms and application of Atangana-Baleanu FDEs. El-Ajou, Hadid, Al-Smadi et al. [19] developed approximated technique for solutions of population dynamics of Atangana-Baleanu fractional order.

    Reproducing kernel Hilbert space (RKHS) is ideal for function approximation and estimate of fractional derivatives. In recent years, reproducing kernel functions (RKF) theory have been employed to solve linear and nonlinear fractional order problems, singularly perturbed problems, singular integral equations, fuzzy differential equations, and so on (see, e.g. [10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]). However, there exists little discussion on numerical schemes for solving variable order Atangana-Baleanu FDEs.

    In this paper, by using polynomials RKF, we will present a new collocation method for solving variable order Atangana-Baleanu FDEs.

    This work is organized as follows. We summarize fractional derivatives and RKHS theory in Section 2. In Section 3, we develop RKF based collocation technique for Atangana-Baleanu variable order FDEs. Numerical experiments are provided in Section 4. Concluding remarks are included in the last section.

    Definition 2.1. Let H be a Hilbert function space defined on E. The function K:E×ER is known as an RKF of space H if

    (1)K(,t)HforalltE,(2)w(t)=(w(),K(,t)),foralltEandallwH.

    If there exists a RKF in a Hilbert space, then the space is a RKHS.

    Definition 2.2. Symmetric function K:E×ER is known as a positive definite kernel (PDK) if ni,j=1cicjK(xi,xj)0 for any nN, x1,x2,,xnE,c1,c2,,cnR.

    Theorem 2.1. [36] The RKF of an RKHS is positive definite. Besides, every PDK can define a unique RKHS, of which it is the RKF.

    Definition 2.3. Let q>0. The one parameter Mittag-Leffler function of order q is defined by

    Eq(z)=j=0zjΓ(jq+1). (2.1)

    Definition 2.4. Let q1,q2>0. The two-parameter Mittag-Leffler function is defined by

    Eq1,q2(z)=j=0zjΓ(jq1+q2). (2.2)

    For the domains of convergence of the Mittag-Leffler functions, please refer to the following theorem.

    Theorem 2.2. [37] For q1,q2>0, the two-parameter Mittag-Leffler function Eq1,q2(z) is convergent for all zC.

    Definition 2.5. The Sobolev space H1(0,T) is defined as follows

    H1(0,T)={u|uL2(0,T),uL2(0,T)}.

    Definition 2.6. The α(0,1) order Atangana- Baleanu fractional derivative of a function uH1(a,b) is defined

    ABCDαu(x)=M(α)1αx0Eα(α1α(xt)α)u(t)dt, (2.3)

    where M(α) is the normalization term satisfying M(0)=M(1)=1.

    Theorem 2.3. [38] The function k(x,y)=(xy+c)m for c>0,mN is a PDK.

    According to Theorem 2.1, there exists an associated RKHS Qm with k as an RKF.

    To solve (1.1), we will construct the RKF which satisfies the homogenous boundary condition.

    Definition 3.1.

    Qm,0={w(t)w(t)Qm,B(w)=0}.

    Theorem 3.1. The space Qm,0 is an RKHS and its RKF is expressed by

    K(x,y)=k(x,y)Bxk(x,y)Byk(x,y)BxByk(x,y).

    Proof. If Byk(x,y)=0 or Bxk(x,y)=0, then

    K(x,y)=k(x,y).

    If Byk(x,y)0, then

    BxK(x,y)=Bxk(x,y)Bxk(x,y)BxByk(x,y)BxByk(x,y),=0,

    and naturally K(x,y)Qm,0.

    For all u(y)Qm,0, we have u(y)Qm and Byu(y)=0.

    We have

    (u(y),K(x,y))=(u(y),k(x,y))(u(y),Bxk(x,y)Byk(x,y)BxByk(x,y)=u(x)Byk(x,y)BxByk(x,y)(u(y),Bxk(x,y))=u(x)Byk(x,y)BxByk(x,y)Bx(u(y),k(x,y))=u(x)Byk(x,y)BxByk(x,y)Bxu(x)=u(x)0=0.

    Thus, K(x,y) is the RKF of space Qm,0 and the proof is complete.

    Suppose that L:Qm,0H1 is a bounded linear operator. It is easy to proved that its inverse operator L1 is also bounded since both Qm,0 and H1 are Banach spaces.

    Choose N distinct scattered points in [0,1], such as {x1,x2,,xN}. Put ψi(x)=K(x,xi),i=1,2,,N. By using RKF basis, the RKF collocation solution uN(x) for (1.1) can be written as follows

    uN(x)=Ni=1ciψi(x), (3.1)

    where {ci}Ni=1 are undetermined constants.

    Collocating (1.1) at N nodes x1,x2,,xN provides N equations:

    LuN(xk)=Ni=1ciLψi(xk)=f(xk,uN(xk)),k=1,2,,N. (3.2)

    System (3.3) of equations is simplified to the matrix form:

    Ac=f, (3.3)

    where Aik=Lxψk(x)|x=xi,i,k=1,2,,N, f=(f(x1,uN(x1)),f(x2,uN(x2)),,f(xN,uN(xN)).

    Theorem 3.2. If γ>0, then

    ABCDα(x)xγ=M(α(x))1α(x)Γ(γ+1)xγEα(x),γ+1(α(x)1α(x)xα(x)),

    and therefore matrix A can be computed exactly.

    Proof. It is noticed that

    ABCDα(x)xγ=M(α(x))1α(x)x0Eα(x)(α(x)1α(x)(xt)α(x))γtγ1dt=M(α(x))1α(x)x0j=0(α(x)1α(x)(xt)α(x))jΓ(jα(x)+1)γtγ1dt=M(α(x))1α(x)γj=0(α(x)1α(x))jΓ(jα(x)+1)x0(xt)α(x)tγ1dt=M(α(x))1α(x)γj=0(α(x)1α(x))jΓ(jα(x)+1)Γ(jα(x)+1)Γ(γ)Γ(jα(x)+γ+1)xjα(x)+γ=M(α(x))1α(x)Γ(γ+1)xγj=0(α(x)1α(x)xα(x))jΓ(jα(x)+γ+1)=M(α(x))1α(x)Γ(γ+1)xγEα(x),γ+1(α(x)1α(x)xα(x)).

    Since RKF K(x,y) is a polynomials, matrix A in (3.3) can be calculated exactly. The proof is complete.

    If f(x,u) is linear, then (3.3) is a system of linear equations and it is convenient to determine the value of the unknowns {ci}Ni=1. If f(x,u) is nonlinear, then (3.3) is a system of nonlinear equations, we solve it by using the tool "FindRoot" in soft Mathematica 11.0.

    The residual function is defined as

    RN(x)=LuN(x)f(x,uN(x)).

    Theorem 3.3. If a(x) and f(x,u)C4[0,1], then

    RN(x)maxx[x1,xN]RN(x)∣≤ch4,

    where c>0 is a real number, h=max1iNxi+1xi.

    Proof. For the proof, please refer to [22].

    Three experiments are illustrated in this section to show the applicability and effectiveness of the mentioned approach. We take M(α)=1 in the following experiments.

    Problem 4.1

    Solve fractional linear initial value problems (IVPs) as follows:

    {ABCDαu(x)+exu(x)=f(x),x(0,1],u(0)=1,

    where α(x)=0.5x+0.1, f(x)=ex(x2+x3+1)+M(α(x))1α(x)2x2Eα(x),3(α(x)1α(x)xα(x))++M(α(x))1α(x)6x3Eα(x),4(α(x)1α(x)xα(x)). The true solution of this equation is u(x)=x2+x3+1.

    Selecting m=8,N=8, xi=iN,i=1,2,,N, we apply our new method to Problem 4.1. The obtained numerical results are shown in Tables 1. The Mathematica codes for Problem 4.1 is provided as follows:

    tru[x_]=x2+x3+1;p[x_]=Ex;α[x_]=0.5x+0.1;B[x_]=1;a[x_]=1Gamma[2α[x]];K[x_,y_]=(xy+1)8;R[x_,y_]=K[x,y]K[x,0]K[0,y]/K[0,0];w[x_,y_]=p[x]R[x,y];v[x_,d_]=B[α[x]]Gamma[d+1]xdMittagLefflerE[2,d+1,α[x]xα[x]/(1α[x])];fu[x_,y_]=8yv[x,1]+28y2v[x,2]+56y3v[x,3]+70y4v[x,4]+56y5v[x,5]+28y6v[x,6]+8y7v[x,7]+y8v[x,8];m=8;xx=Table[0,{i,1,m}];A=Table[0,{i,1,m},{j,1,m}];For[i=1,im,i++,xx[[i]]=i/m];For[i=1,im,i++,For[j=1,jm,j++,A[[i,j]]=w[xx[[i]],xx[[j]]]+fu[xx[[i]]+xx[[j]]]]];v[x_]=tru[0];f0[x]=p[x]tru[x]+v[x,2]+v[x,3];f[x]=f0[x]p[x]v[x];b=Table[f[xx[[k]]],{i,1,m}];c=LinearSolve[A,b];u[x_]=mi=1c[[i]]R[x,xx[[i]]];u[x_]=u[x]+v[x];
    Table 1.  Errors of numerical results for Problem 4.1.
    Nodes x Exact solution Absolute error Relative error
    0.10 1.011 1.88×1013 1.86×1013
    0.20 1.048 2.57×1013 2.45×1013
    0.30 1.117 9.50×1014 8.50×1014
    0.40 1.224 6.35×1013 5.19×1013
    0.50 1.375 0 0
    0.60 1.576 2.17×1014 1.38×1014
    0.70 1.833 7.65×1013 4.17×1013
    0.80 2.152 8.65×1013 4.02×1013
    0.90 2.539 2.40×1013 9.46×1014
    1.00 3.000 9.09×1013 3.03×1013

     | Show Table
    DownLoad: CSV

    Problem 4.2

    Solve the variable order fractional linear terminal value problems

    {ABCDαu(x)+2u(x)=f(x),x[0,1),u(1)=3,

    where α(x)=sinx, f(x)=2(x4+2)+M(α(x))1α(x)24x4Eα(x),5(α(x)1α(x)xα(x)). The exact solution is u(x)=x4+2.

    Selecting m=8,N=8, xi=i1N,i=1,2,,N, the obtained absolute and relative errors of numerical results using our method are listed in Tables 2.

    Table 2.  Errors of numerical results for Problem 4.2.
    Nodes x Exact solution Absolute error Relative error
    0.00 2.0000 2.75×1010 1.37×1010
    0.10 2.0001 1.02×1010 5.14×1011
    0.20 2.0016 9.96×1011 4.97×1011
    0.30 2.0081 1.08×1010 5.39×1011
    0.40 2.0256 1.12×1010 5.56×1011
    0.50 2.0625 1.10×1010 5.37×1011
    0.60 2.1296 1.05×1010 4.96×1011
    0.70 2.2401 1.08×1010 4.83×1011
    0.80 2.4096 9.36×1011 3.88×1011
    0.90 2.6561 4.38×1011 1.64×1011

     | Show Table
    DownLoad: CSV

    Problem 4.3

    We apply our method to the nonlinear variable order fractional IVPs as follows

    {ABCDαu(x)+sinhxu(x)+sin(u)=f(x),x(0,1],u(0)=1,

    where α(x)=0.5x+0.1, f(x)=sinhx(x+x3+1)+M(α(x))1α(x)xEα(x),2(α(x)1α(x)xα(x))+M(α(x))1α(x)6x3Eα(x),4(α(x)1α(x)xα(x)). Its true solution is u(x)=x+x3+1.

    Choosing m=8,N=8, xi=iN,i=1,2,,N, we plot the absolute and relative errors in Figure 1.

    Figure 1.  Absolute errors (left) and relative errors (right) for Problem 4.3.

    In this work, a new RKF based collocation technique is developed for Atangana-Baleanu variable order fractional problems. The proposed scheme is meshless and therefore it does not require any background meshes. From the numerical results, it is found that the accuracy of obtained approximate solutions is high and can reach to O(1010). Also, for nonlinear fractional problems, our method can yield highly accurate numerical solutions. Hence, our new method is very effective and easy to implement for the considered problems.

    The work was supported by the National Natural Science Foundation of China (No.11801044, No.11326237).

    All authors declare no conflicts of interest in this paper.

    [1] ADDIN Mendeley Bibliography CSL_BIBLIOGRAPHY Moyo EN, Nangombe SS (2015) Southern Africa's 2012–13 violent storms: role of climate change. Procedia IUTAM 17: 69–78. doi: 10.1016/j.piutam.2015.06.011
    [2] Wahid H, Ahmad S, Nor MSM, et al. (2017) Prestasi kecekapan pengurusan kewangan dan agihan zakat: perbandingan antara majlis agama islam negeri di Malaysia. J Ekon Malaysia 51: 39–54.
    [3] Mutasa M (2010) Zimbabwe' s Drought Conundrum : vulnerability and coping in Buhera and Chikomba districts. MS thesis, 163.
    [4] Ndlovu S (2010) Coping With Drought. Mainstreaming Livelihood Centred Approaches to Disaster Management.
    [5] Levey KM, Jury MR (1996) Composite intraseasonal oscillations of convection over Southern Africa. J Clim 9: 1910–1920. doi: 10.1175/1520-0442(1996)009<1910:CIOOCO>2.0.CO;2
    [6] Makarau A (1995) Intra-seasonal oscillatory modes of the southern Africa summer circulation, Univ. Cape T. (PhD thesis).
    [7] Zhakata W (1996) Impacts of climate variability and forecasting on agriculture (Zimbabwe experience), in Proc. Workshop on Reducing Climate-Related Vulnerability in Southern Africa, 131–139.
    [8] Jury MR (1993) The structure and possible forcing mechanisms of the 1991–1992 drought in Southern Africa, Suid-Afrikaanse Tydskr. vir Natuurwetenskap en Tegnol 12, 8–16.
    [9] Colberg F (2004) South Atlantic response to El Niño–Southern Oscillation induced climate variability in an ocean general circulation model. J Geophys Res 109: C12015. doi: 10.1029/2004JC002301
    [10] Chikozho C (2010) Applied social research and action priorities for adaptation to climate change and rainfall variability in the rainfed agricultural sector of Zimbabwe. Phys Chem Earth 35: 780–790. doi: 10.1016/j.pce.2010.07.006
    [11] Gwimbi P (2009) Cotton farmers' vulnerability to climate change in Gokwe District (Zimbabwe): impact and influencing factors. JÀMBÁ J Disaster Risk Stud 2: 81–92.
    [12] Alvarez TC, Delgado RC, González PA (2014) Aplicabilidad de los sistemas de triaje prehospitalarios en los incidentes con múltiples víctimas: De la teoría a la práctica. Emergencias 26: 147–154.
    [13] Tome S (2017) Weekly Bulletin on Outbreaks. Week 46, no. July, 1–7.
    [14] Bohle HG, Downing TE, Watts M J (1994) Climate Change and Social Vulnerability. Toward a Sociology and Geography of Food Insecurity. Glob Environ Chang 4: 37–48.
    [15] Mavhura E, Bernard S, Collins AE, et al. (2013) Author' s personal copy International Journal of Disaster Risk Reduction Indigenous knowledge, coping strategies and resilience to floods in Muzarabani, Zimbabwe. Int J Disaster Risk Reduct 5: 38–48. doi: 10.1016/j.ijdrr.2013.07.001
    [16] Mavhura E, Manatsa D, Mushore T (2015) Adaptation to drought in arid and semi-arid environments: Case of the Zambezi Valley, Zimbabwe. Jàmbá J Disaster Risk Stud 7: 1–7.
    [17] Mushore TD (2013) Uptake Of Seasonal Rainfall Forecasts In Zimbabwe. IOSR J Environ Sci Toxicol Food Technol 5: 31–37. doi: 10.9790/2402-0513137
    [18] Cook KH (2000) The South Indian convergence zone and interannual rainfall variability over Southern Africa. J Clim 13: 3789–3804. doi: 10.1175/1520-0442(2000)013<3789:TSICZA>2.0.CO;2
    [19] Mason S, Lindesay J, Tyson J (1994) Simulating drought in Southern Africa using sae surface temperature variations. Water SA 20: 15–22.
    [20] Beilfuss R (2012) A Risky Climate for Southern African Hydro. Int Rivers Berkely, 1–46.
    [21] Mamombe V, Kim WM, Choi YS (2017) Rainfall variability over Zimbabwe and its relation to large-scale atmosphere–ocean processes. Int J Climatol 37: 963–971. doi: 10.1002/joc.4752
    [22] Mwafulirwa ND (1999) Climate variability and predictability in tropical southern africa with a focus on dry spells over Malawi.
    [23] Manatsa D, Chingombe W, Matsikwa H, et al. (2008) The superior influence of Darwin Sea level pressure anomalies over ENSO as a simple drought predictor for Southern Africa. Theor Appl Climatol 92: 1–14. doi: 10.1007/s00704-007-0315-3
    [24] Manatsa D, Mukwada G (2012) Rainfall Mechanisms for the Dominant Rainfall Mode over Zimbabwe Relative to ENSO and/or IODZM. Sci World J 2012: 1–15.
    [25] Gaughan AE, Staub CG, Hoell A, et al. (2016) Inter- and Intra-annual precipitation variability and associated relationships to ENSO and the IOD in southern Africa. Int J Climatol 36: 1643–1656. doi: 10.1002/joc.4448
    [26] Ogwang BA, Guirong T, Haishan C (2012) Diagnosis of September - November Drought and the Associated Circulation Anomalies Over Uganda. Pakistan J Meteorol 9: 11–24.
    [27] Kabanda TA, Jury MR (1999) Inter-annual variability of short rains over northern Tanzania. Clim Res 13: 231–241. doi: 10.3354/cr013231
    [28] Nangombe S, Madyiwa S, Wang J (2018) Precursor conditions related to Zimbabwe's summer droughts. Theor Appl Climatol 131: 413–431. doi: 10.1007/s00704-016-1986-4
    [29] Manatsa D, Reason CJC, Mukwada G (2012) On the decoupling of the IODZM from southern Africa Summer rainfall variability. Int J Climatol 32: 727–746. doi: 10.1002/joc.2306
    [30] Simmonds I, Hope P (1997) Persistence Characteristics of Australian Rainfall Anomalies. Int J Climatol 17: 597–613. doi: 10.1002/(SICI)1097-0088(199705)17:6<597::AID-JOC173>3.0.CO;2-V
    [31] Manatsa D, Mushore T, Lenouo A (2017) Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO. Theor Appl Climatol 127: 259–274. doi: 10.1007/s00704-015-1632-6
    [32] Department of Meterological Services (1981) Climate Handbook of Zimbabwe, Zimbabwe Meteorol. Serv. Harare, 48.
    [33] Mavhura E, Collins A, Bongo PP (2017) Flood vulnerability and relocation readiness in Zimbabwe. Disaster Prev Manag An Int J 26: 41–54. doi: 10.1108/DPM-05-2016-0101
    [34] Muzenda-Mudavanhu C, Manyena B, Collins AE (2015) Disaster risk reduction knowledge among children in Muzarabani District, Zimbabwe. Nat Hazards 84: 911–931.
    [35] Bohle HG, Downing TE, Watts MJ (1994) Köppen Climate Classification for Bucharest.
    [36] Janus Corporate Solutions (2016) Weather and Climate in Singapore. Longman.
    [37] Matarira CH (1990) Theoretical and Ap. plied Climatology Frequency and Tracks of Anticyclones and Their Effect on Rainfall Pat- terns over Zimbabwe. Theor Appl Climatol 66: 53–66.
    [38] Makarau A, Jury MR (1997) Seasonal Cycle of Convective Spells Over Southern. Int J Climatol 17: 1317–1332. doi: 10.1002/(SICI)1097-0088(199710)17:12<1317::AID-JOC197>3.0.CO;2-A
    [39] Manatsa D, Morioka Y, Behera SK, et al. (2013) Link between Antarctic ozone depletion and summer warming over southern Africa. Nat Geosci 6: 934–939. doi: 10.1038/ngeo1968
    [40] Levitus S, Boyer T (1998) NOAA/OAR/ESRL PSD, Boulder, Colorado, USA.
    [41] Dee DP, Uppala SM, Simmons AJ, et al. (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137: 553–597. doi: 10.1002/qj.828
    [42] Kalnay E, Kanamitsu M, Kistler R, et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77: 437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [43] Smith TM, Reynolds RW, Peterson TC, et al. (2008) Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21: 2283–2296. doi: 10.1175/2007JCLI2100.1
    [44] Folland CK (1983) Regional-Scale International Variability Of Climate-A Northwest European-Perspective. Meteorol Mag 112: 163–183.
    [45] Mpeta EJ (1997) Intra-seasonal convection dynamics over southwest and northeast Tanzania: an observational study, University of Cape Town.
    [46] Naeraa M, Jury MR (1998) Meteorology and Atmospheric Physics Tropical Cyclone Composite Structure and Impacts over Eastern Madagascar During January-March 1994. Meteorol Atmos Phys 53: 43–53.
    [47] Jury MR, Levey KM (1997) Vertical structure of the atmosphere during wet spells over Southern Africa. Water SA 23: 51–55.
    [48] Hargraves R, Jury M (1997) Composite meteorological structure of flood events over the eastern mountains of South Africa. Water SA 23: 357–363.
    [49] Boschat G, Simmonds L, Purich A, et al. (2016) On the use of composite analyses to form physical hypotheses: An example from heat wave-SST associations. Sci Rep 6: 29599. doi: 10.1038/srep29599
    [50] Rocha A, Simmonds I (1997) Interannual Variability of South-Eastern African Summer Rainfall. Part Ii. Modelling the Impact of Sea-Surface Temperatures on Rainfall and Circulation. Int J Climatol 17: 267–290.
    [51] Simmonds I, Bi D, Hope P (1999) Atmospheric water vapor flux and its association with rainfall over China in summer. J Clim 12: 1353–1367. doi: 10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2
    [52] Preston-Whyte RA, Tyson PD (1988) The atmosphere and weather of Southern Africa. Oxford University Press.
    [53] Rocha A, Simmonds I (1997) Interannual Variability of South-Eastern African Summer Rainfall. Part 1: Relationships With Air–Sea Interaction Processes. Int J Climatol 17: 235–265.
    [54] Nicholson SE, Entekhabi D (1987) Rainfall Variability in Equatorial and Southern Africa: Relationships with Sea Surface Temperatures along the Southwestern Coast of Africa. J Clim Appl Meteorol 26: 561–578. doi: 10.1175/1520-0450(1987)026<0561:RVIEAS>2.0.CO;2
  • This article has been cited by:

    1. Yuexia Zhang, Ziyang Chen, SETQR Propagation Model for Social Networks, 2019, 7, 2169-3536, 127533, 10.1109/ACCESS.2019.2939150
    2. Anarul Islam, Haider Ali Biswas, Modeling the Effect of Global Warming on the Sustainable Groundwater Management: A Case Study in Bangladesh, 2021, 19, 2224-2880, 639, 10.37394/23206.2020.19.71
    3. Rong Hu, Lili Liu, Xinzhi Ren, Xianning Liu, Global stability of an information-related epidemic model with age-dependent latency and relapse, 2018, 36, 1476945X, 30, 10.1016/j.ecocom.2018.06.006
    4. R. Arazi, A. Feigel, Discontinuous transitions of social distancing in the SIR model, 2021, 566, 03784371, 125632, 10.1016/j.physa.2020.125632
    5. Magdalena Ochab, Piero Manfredi, Krzysztof Puszynski, Alberto d’Onofrio, Multiple epidemic waves as the outcome of stochastic SIR epidemics with behavioral responses: a hybrid modeling approach, 2023, 111, 0924-090X, 887, 10.1007/s11071-022-07317-6
    6. Alberto d'Onofrio, Piero Manfredi, Behavioral SIR models with incidence-based social-distancing, 2022, 159, 09600779, 112072, 10.1016/j.chaos.2022.112072
    7. Sileshi Sintayehu Sharbayta, Bruno Buonomo, Alberto d'Onofrio, Tadesse Abdi, ‘Period doubling’ induced by optimal control in a behavioral SIR epidemic model, 2022, 161, 09600779, 112347, 10.1016/j.chaos.2022.112347
    8. Wu Jing, Haiyan Kang, An effective ISDPR rumor propagation model on complex networks, 2022, 37, 0884-8173, 11188, 10.1002/int.23038
    9. D. Ghosh, P. K. Santra, G. S. Mahapatra, Amr Elsonbaty, A. A. Elsadany, A discrete-time epidemic model for the analysis of transmission of COVID19 based upon data of epidemiological parameters, 2022, 231, 1951-6355, 3461, 10.1140/epjs/s11734-022-00537-2
    10. Lili Liu, Jian Zhang, Yazhi Li, Xinzhi Ren, An age-structured tuberculosis model with information and immigration: Stability and simulation study, 2023, 16, 1793-5245, 10.1142/S1793524522500760
    11. Roxana López-Cruz, Global stability of an SAIRD epidemiological model with negative feedback, 2022, 2022, 2731-4235, 10.1186/s13662-022-03712-w
    12. Ruiqing Shi, Yihong Zhang, Cuihong Wang, Dynamic Analysis and Optimal Control of Fractional Order African Swine Fever Models with Media Coverage, 2023, 13, 2076-2615, 2252, 10.3390/ani13142252
    13. Shaday Guerrero‐Flores, Osvaldo Osuna, Cruz Vargas‐De‐León, Periodic solutions of seasonal epidemiological models with information‐dependent vaccination, 2023, 0170-4214, 10.1002/mma.9728
    14. Wanqin Wu, Wenhui Luo, Hui Chen, Yun Zhao, Stochastic Dynamics Analysis of Epidemic Models Considering Negative Feedback of Information, 2023, 15, 2073-8994, 1781, 10.3390/sym15091781
    15. Yau Umar Ahmad, James Andrawus, Abdurrahman Ado, Yahaya Adamu Maigoro, Abdullahi Yusuf, Saad Althobaiti, Umar Tasiu Mustapha, Mathematical modeling and analysis of human-to-human monkeypox virus transmission with post-exposure vaccination, 2024, 2363-6203, 10.1007/s40808-023-01920-1
    16. Ruiqing Shi, Yihong Zhang, Stability analysis and Hopf bifurcation of a fractional order HIV model with saturated incidence rate and time delay, 2024, 108, 11100168, 70, 10.1016/j.aej.2024.07.059
    17. James Andrawus, Yau Umar Ahmad, Agada Apeh Andrew, Abdullahi Yusuf, Sania Qureshi, Ballah Akawu Denue, Habu Abdul, Soheil Salahshour, Impact of surveillance in human-to-human transmission of monkeypox virus, 2024, 1951-6355, 10.1140/epjs/s11734-024-01346-5
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6035) PDF downloads(1000) Cited by(6)

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog