Citation: María E. García, Lara S. Della Ceca, María I. Micheletti, Rubén D. Piacentini, Mariano Ordano, Nora J. F. Reyes, Sebastián Buedo, Juan A. González. Satellite and ground atmospheric particulate matter detection over Tucumán city, Argentina, space-time distribution, climatic and seasonal variability[J]. AIMS Environmental Science, 2018, 5(3): 173-194. doi: 10.3934/environsci.2018.3.173
[1] | Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140 |
[2] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[3] | Choukri Derbazi, Zidane Baitiche, Mohammed S. Abdo, Thabet Abdeljawad . Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces. AIMS Mathematics, 2021, 6(3): 2486-2509. doi: 10.3934/math.2021151 |
[4] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[5] | Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175 |
[6] | Jiqiang Zhang, Siraj Ul Haq, Akbar Zada, Ioan-Lucian Popa . Stieltjes integral boundary value problem involving a nonlinear multi-term Caputo-type sequential fractional integro-differential equation. AIMS Mathematics, 2023, 8(12): 28413-28434. doi: 10.3934/math.20231454 |
[7] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[8] | Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839 |
[9] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
[10] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
Fractional differential equations have played an important role and have presented valuable tools in the modeling of many phenomena in various fields of science and engineering [6,7,8,9,10,11,12,13,14,15,16]. There has been a significant development in fractional differential equations in recent decades [2,3,4,5,26,23,33,37]. On the other hand, many authors studied the stability of functional equations and established some types of Ulam stability [1,17,18,19,20,21,22,24,27,28,29,30,31,32,33,34,35,36,37] and references there in. Moreover, many authors discussed local and global attractivity [8,9,10,11,34].
Benchohra et al. [13] established some types of Ulam-Hyers stability for an implicit fractional-order differential equation.
A. Baliki et al. [11] have given sufficient conditions for existence and attractivity of mild solutions for second order semi-linear functional evolution equation in Banach spaces using Schauder's fixed point theorem.
Benchohra et al. [15] studied the existence of mild solutions for a class of impulsive semilinear fractional differential equations with infinite delay and non-instantaneous impulses in Banach spaces. This results are obtained using the technique of measures of noncompactness.
Motivated by these works, in this paper, we investigate the following initial value problem for an implicit fractional-order differential equation
{CDα[x(t)−h(t,x(t))]=g1(t,x(t),Iβg2(t,x(t)))t∈J,1<α≤2,α≥β,(x(t)−h(t,x(t)))|t=0=0andddt[x(t)−h(t,x(t))]t=0=0 | (1.1) |
where CDα is the Caputo fractional derivative, h:J×R⟶R,g1:J×R×R⟶R and g2:J×R⟶R are given functions satisfy some conditions and J=[0,T].
we give sufficient conditions for the existence of solutions for a class of initial value problem for an neutral differential equation involving Caputo fractional derivatives. Also, we establish some types of Ulam-Hyers stability for this class of implicit fractional-order differential equation and some applications and particular cases are presented.
Finally, existence of at least one mild solution for this class of implicit fractional-order differential equation on an infinite interval J=[0,+∞), by applying Schauder fixed point theorem and proving the attractivity of these mild solutions.
By a solution of the Eq (1.1) we mean that a function x∈C2(J,R) such that
(i) the function t→[x(t)−h(t,x(t))]∈C2(J,R) and
(ii) x satisfies the equation in (1.1).
Definition 1. [23] The Riemann-Liouville fractional integral of the function f∈L1([a,b]) of order α∈R+ is defined by
Iαaf(t)=∫ta(t−s)α−1Γ(α)f(s)ds. |
and when a=0, we have Iαf(t)=Iα0f(t).
Definition 2. [23] For a function f:[a,b]→R the Caputo fractional-order derivative of f, is defined by
CDαh(t)=1Γ(n−α)∫tah(n)(s)(t−s)n−α−1ds, |
where where n=[α]+1 and [α] denotes the integer part of the real number α.
Lemma 1. [23]. Let α≥0 and n=[α]+1. Then
Iα(CDαf(t))=f(t)−n−1∑k=0fk(0)k!tk |
Lemma 2. Let f∈L1([a,b]) and α∈(0,1], then
(i) CDαIαf(t)=f(t).
(ii) The operator Iα maps L1([a,b]) into itself continuously.
(iii) For γ,β>0, then
IβaIγaf(t)=IγaIβaf(t)=Iγ+βaf(t), |
For further properties of fractional operators (see [23,25,26]).
Consider the initial value problem for the implicit fractional-order differential Eq (1.1) under the following assumptions:
(i) h:J×R⟶R is a continuous function and there exists a positive constant K1 such that:
∣h(t,x)−h(t,y)∣⩽K1∣x−y∣ for each t∈J and x,y∈R. |
(ii) g1:J×R×R⟶R is a continuous function and there exist two positive constants K,H such that:
∣g1(t,x,y)−∣g1(t,˜x,˜y)∣⩽K∣x−˜x∣+H∣y−˜y∣ for each t∈J and x,˜x,y,˜y∈R |
(iii) g2:J×R⟶R is a continuous function and there exists a positive constant K2 such that:
∣g2(t,x)−g2(t,y)∣⩽K2∣x−y∣ for each t∈J andx,y∈R. |
Lemma 3. Let assumptions (i)-(iii) be satisfied. If a function x∈C2(J,R) is a solution of initial value problem for implicit fractional-order differential equation (1.1), then it is a solution of the following nonlinear fractional integral equation
x(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds | (3.1) |
Proof. Assume first that x is a solution of the initial value problem (1.1). From definition of Caputo derivative, we have
I2−αD2(x(t)−h(t,x(t)))=g1(t,x(t),Iβg2(t,x(t))). |
Operating by Iα−1 on both sides and using Lemma 2, we get
I1D2(x(t)−h(t,x(t)))=Iα−1g1(t,x(t),Iβg2(t,x(t))). |
Then
ddt(x(t)−h(t,x(t)))−ddt(x(t)−h(t,x(t)))|t=0=Iα−1g1(t,x(t),Iβg2(t,x(t))). |
Using initial conditions, we have
ddt(x(t)−h(t,x(t)))=Iα−1g1(t,x(t),Iβg2(t,x(t))). |
Integrating both sides of (1.1), we obtain
(x(t)−h(t,x(t)))−(x(t)−h(t,x(t)))|t=0=Iαg1(t,x(t),Iβg2(t,x(t))). |
Then
x(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds |
Conversely, assume that x satisfies the nonlinear integral Eq (3.1). Then operating by CDα on both sides of Eq (3.1) and using Lemma 2, we obtain
CDα(x(t)−h(t,x(t)))=CDαIαg1(t,x(t),Iβg2(t,x(t)))=g1(t,x(t),Iβg2(t,x(t))). |
Putting t=0 in (3.1) and since g1 is a continuous function, then we obtain
(x(t)−h(t,x(t)))|t=0=Iαg1(t,x(t),Iβg2(t,x(t)))|t=0=0. |
Also,
ddt(x(t)−h(t,x(t)))=Iα−1g1(t,x(t),Iβg2(t,x(t))). |
Then we have
ddt(x(t)−h(t,x(t)))|t=0=Iα−1g1(t,x(t),Iβg2(t,x(t)))|t=0=0. |
Hence the equivalence between the initial value problem (1.1) and the integral Eq (3.1) is proved. Then the proof is completed.
Definition 3. The Eq (1.1) is Ulam-Hyers stable if there exists a real number cf>0 such that for each ϵ>0 and for each solution z∈C2(J,R) of the inequality
∣CDα[z(t)−h(t,z(t))]−g1(t,z(t),Iβg2(t,z(t)))∣⩽ϵ,t∈J, |
there exists a solution y∈C2(J,R) of Eq (1.1) with
∣z(t)−y(t)|⩽cfϵ,t∈J. |
Definition 4. The Eq (1.1) is generalized Ulam-Hyers stable if there exists ψf∈C(R+,R+),ψf(0)=0, such that for each solution z∈C2(J,R) of the inequality
∣CDα[z(t)−h(t,z(t))]−g1(t,z(t),Iβg2(t,z(t)))∣⩽ϵ,t∈J, |
there exists a solution y∈C2(J,R)of Eq (1.1) with
∣z(t)−y(t)|⩽ψf(ϵ),t∈J. |
Definition 5. The Eq (1.1) is Ulam-Hyers-Rassias stable with respect to φ∈C(J,R+) if there exists a real number cf>0 such that for each ϵ>0 and for each solution z∈C2(J,R) of the inequality
∣CDα[z(t)−h(t,z(t))]−g1(t,z(t),Iβg2(t,z(t)))∣⩽ϵφ(t),t∈J, |
there exists a solution y∈C2(J,R) of Eq (1.1) with
∣z(t)−y(t)|⩽cfϵφ(t),t∈J. |
Definition 6. The Eq (1.1) is generalized Ulam-Hyers-Rassias stable with respect to φ∈C(J,R+) if there exists a real number cf,φ>0 such that for each solution z∈C2(J,R) of the inequality
∣CDα[z(t)−h(t,z(t))]−g1(t,z(t),Iβg2(t,z(t)))∣⩽φ(t),t∈J, |
there exists a solution y∈C2(J,R) of Eq (1.1) with
∣z(t)−y(t)|⩽cf,φφ(t),t∈J. |
Now, our aim is to investigate the existence of unique solution for (1.1). This existence result will be based on the contraction mapping principle.
Theorem 1. Let assumptions (i)-(iii) be satisfied. If K1+KTαΓ(α+1)+K2HTα+βΓ(β+1)Γ(α+1)<1, then there exists a unique solution for the nonlinear neutral differential equation of fractional order.
Proof. Define the operator N by:
Nx(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds,t∈J. |
In view of assumptions (i)-(iii), then N:C2(J,R)→C2(J,R) is continuous operator.
Now, let x and ,˜x∈C2(J,R), be two solutions of (1.1)then
∣Nx(t)−N˜x(t)∣=|h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds−h(t,˜x(t))−1Γ(α)∫t0(t−s)α−1g1(s,˜x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,˜x(θ))dθ)ds|⩽K1|x(t)−˜x(t)|+1Γ(α)∫t0(t−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)−g1(s,˜x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,˜x(θ))dθ)|ds⩽K1|x(t)−˜x(t)|+1Γ(α)∫t0(t−s)α−1K∣x(s)−˜x(s)|ds+H1Γ(α)∫t0(t−s)α−11Γ(β)∫s0(s−θ)β−1∣g2(θ,x(θ))−g2(θ,˜x(θ))|dθds⩽K1|x(t)−˜x(t)|+KΓ(α)∫t0(t−s)α−1∣x(s)−˜x(s)|ds+HΓ(α)∫t0(t−s)α−1K2Γ(β)∫s0(s−θ)β−1∣x(θ)−˜x(θ)|dθds. |
Then
||Nx(t)−N˜x(t)||⩽K1||x−˜x||+K||x−˜x||Γ(α)∫t0(t−s)α−1ds+||x−˜x||HΓ(α)∫t0(t−s)α−1K2Γ(β)∫s0(s−θ)β−1dθds⩽K1||x−˜x||+K||x−˜x||TαΓ(α+1)+||x−˜x||K2TβΓ(β+1)HΓ(α)∫t0(t−s)α−1ds⩽K1||x−˜x||+K||x−˜x||TαΓ(α+1)+||x−˜x||K2TβΓ(β+1)HTαΓ(α+1)≤[K1+KTαΓ(α+1)+K2HTα+βΓ(β+1)Γ(α+1)]||x−˜x|| |
Since K1+KTαΓ(α+1)+K2HTα+βΓ(β+1)Γ(α+1)<1. It follows that N has a unique fixed point which is a solution of the initial value problem (1.1) in C2(J,R).
Theorem 2. Let assumptions of Theorem 1 be satisfied. Then the fractional order differential Eq (1.1) is Ulam-Hyers stable.
Proof. Let y∈C2(J,R) be a solution of the inequality
∣CDα[y(t)−h(t,y(t))]−g1(t,y(t),Iβg2(t,y(t)))∣⩽ϵ,ϵ>0,t∈J. | (4.1) |
Let x∈C2(J,R) be the unique solution of the initial value problem for implicit fractional-order differential Eq (1.1). By using Lemma 3, The Cauchy problem (1.1) is equivalent to
x(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds. |
Operating by Iα−1 on both sides of (4.1) and then integrating, we get
|y(t)−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|⩽1Γ(α)∫t0(t−s)α−1ϵds,≤ϵTαΓ(α+1). |
Also, we have
|y(t)−x(t)|=|y(t)−h(t,x(t))−1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|=|y(t)−h(t,x(t))−1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds+h(t,y(t))+1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|≤|y(t)−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|+|h(t,y(t))−h(t,x(t))|+1Γ(α)∫t0(t−s)α−1|g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)−g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds≤ϵTαΓ(α+1)+K1|y(t)−x(t)|+1Γ(α)∫t0(t−s)α−1[K|y(t)−x(t)|+HΓ(β)∫s0(s−θ)β−1|g2(θ,y(θ))−g2(θ,x(θ))|dθ]ds |
||y−x||≤ϵTαΓ(α+1)+K1||y−x||+1Γ(α)∫t0(t−s)α−1[K||y−x||+HK2||x−y||TβΓ(β+1)]ds≤ϵTαΓ(α+1)+K1||y−x||+KTα||y−x||Γ(α+1)+HK2Tβ+α||x−y||Γ(β+1)Γ(α+1). |
Then
||y−x||≤ϵTαΓ(α+1)[1−(K1+KTαΓ(α+1)+HK2Tβ+αΓ(β+1)Γ(α+1))]−1=cϵ, |
thus the intial value problem (1.1) is Ulam-Heyers stable, and hence the proof is completed. By putting ψ(ε)=cε,ψ(0)=0 yields that the Eq (1.1) is generalized Ulam-Heyers stable.
Theorem 3. Let assumptions of Theorem 1 be satisfied, there exists an increasing function φ∈C(J,R) and there exists λφ>0 such that for any t∈J, we have
Iαφ(t)⩽λφφ(t), |
then the Eq (1.1) is Ulam-Heyers-Rassias stable.
Proof. Let y∈C2(J,R) be a solution of the inequality
∣CDα[y(t)−h(t,y(t))]−g1(t,y(t),Iβg2(t,y(t)))∣⩽ϵφ(t),ϵ>0,t∈J. | (4.2) |
Let x∈C2(J,R) be the unique solution of the initial value problem for implicit fractional-order differential Eq (1.1). By using Lemma 3, The Cauchy problem (1.1) is equivalent to
x(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds. |
Operating by Iα−1 on both sides of (4.2) and then integrating, we get
|y(t)−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|⩽ϵΓ(α)∫t0(t−s)α−1φ(s)ds,≤ϵIαφ(t)≤ϵλφφ(t). |
Also, we have
|y(t)−x(t)|=|y(t)−h(t,x(t))−1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|=|y(t)−h(t,x(t))−1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds+h(t,y(t))+1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|≤|y(t)−h(t,y(t))−1Γ(α)∫t0(t−s)α−1g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)ds|+|h(t,y(t))−h(t,x(t))|+1Γ(α)∫t0(t−s)α−1|g1(s,y(s),1Γ(β)∫s0(s−θ)β−1g2(θ,y(θ))dθ)−g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds≤ϵλφφ(t)+K1|y(t)−x(t)|+1Γ(α)∫t0(t−s)α−1[K|y(t)−x(t)|+HΓ(β)∫s0(s−θ)β−1|g2(θ,y(θ))−g2(θ,x(θ))|dθ]ds |
||y−x||≤ϵλφφ(t)+K1||y−x||+1Γ(α)∫t0(t−s)α−1[K||y(t)−x(t)||+HK2||x−y||TβΓ(β+1)]ds≤ϵλφφ(t)+K1||y−x||+KTα||y−x||Γ(α+1)+HK2Tβ+α||x−y||Γ(β+1)Γ(α+1). |
Then
||y−x||≤ϵλφφ(t)[1−(K1+KTαΓ(α+1)+HK2Tβ+αΓ(β+1)Γ(α+1))]−1=cϵφ(t), |
then the initial problem (1.1) is Ulam-Heyers-Rassias stable, and hence the proof is completed.
In this section, we prove some results on the existence of mild solutions and attractivity for the neutral fractional differential equation (1.1) by applying Schauder fixed point theorem. Denote BC=BC(J),J=[0,+∞) and consider the following assumptions:
(I) h:J×R⟶R is a continuous function and there exists a continuous function Kh(t) such that:
∣h(t,x)−h(t,y)∣⩽Kh(t)∣x−y∣ for each t∈J and x,y∈R, |
where K∗h=supt≥0Kh(t)<1,limt→∞Kh(t)=0, and limt→∞h(t,0)=0.
(II) g1:J×R×R⟶R satisfies Carathéodory condition and there exist an integrable function a1:R+⟶R+ and a positive constant b such that:
∣g1(t,x,y)∣≤a1(t)1+|x|+b|y| for eacht∈J and x,y∈R. |
(III) g2:J×R⟶R satisfies Carathéodory condition and there exists an integrable function
a2:R+⟶R+ such that:
∣g2(t,x)∣≤a2(t)1+|x| for eacht∈J and x∈R. |
(IV) Let
limt→∞∫t0(t−s)α−1Γ(α)a1(s)ds=0a∗1=supt∈J∫t0(t−s)α−1Γ(α)a1(s)dslimt→∞∫t0(t−s)α+β−1Γ(α+β)a2(s)ds=0a∗2=supt∈J∫t0(t−s)α+β−1Γ(α+β)a2(s)ds |
By a mild solution of the Eq (1.1) we mean that a function x∈C(J,R) such that x satisfies the equation in (3.1).
Theorem 4. Let assumptions (I)-(IV) be satisfied. Then there exists at least one mild solution for the nonlinear implicit neutral differential equation of fractional order (1.1). Moreover, mild solutions of IVP (1.1) are locally attractive.
Proof. For any x∈BC, define the operator A by
Ax(t)=h(t,x(t))+1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds. |
The operator A is well defined and maps BC into BC. Obviously, the map A(x) is continuous on J for any x∈BC and for each t∈J, we have
|Ax(t)|≤|h(t,x(t))|+1Γ(α)∫t0(t−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds≤|h(t,x(t))−h(t,0)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1[a1(s)1+|x(s)|+b1Γ(β)∫s0(s−θ)β−1|g2(θ,x(θ))|dθ]ds≤Kh(t)|x(t)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1[a1(s)+b1Γ(β)∫s0(s−θ)β−1a2(θ)1+|x(θ)|dθ]ds≤K∗h|x(t)|+|h(t,0)|+a∗1+b1Γ(α+β)∫t0(t−s)α+β−1a2(θ)1+|x(θ)|dθ≤K∗hM+|h(t,0)|+a∗1+b1Γ(α+β)∫t0(t−s)α+β−1a2(θ)dθ≤K∗hM+|h(t,0)|+a∗1+ba∗2≤M. |
Then
||Ax(t)||BC≤M,M=(|h(t,0)|+a∗1+ba∗2)(1−K∗h)−1. | (5.1) |
Thus A(x)∈BC. This clarifies that operator A maps BC into itself.
Finding the solutions of IVP (1.1) is reduced to find solutions of the operator equation A(x)=x. Eq (5.1) implies that A maps the ball BM:=B(0,M)={x∈BC:||x(t)||BC≤M} into itself. Now, our proof will be established in the following steps:
Step 1: A is continuous.
Let {xn}n∈N be a sequence such that xn→x in BM. Then, for each t∈J, we have
∣Axn(t)−Ax(t)∣=|h(t,xn(t))+1Γ(α)∫t0(t−s)α−1g1(s,xn(s),1Γ(β)∫s0(s−θ)β−1g2(θ,xn(θ))dθ)ds−h(t,x(t))−1Γ(α)∫t0(t−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|⩽Kh(t)|xn(t)−x(t)|+1Γ(α)∫t0(t−s)α−1|g1(s,xn(s),1Γ(β)∫s0(s−θ)β−1g2(θ,xn(θ))dθ)−g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds⩽K∗h|xn(t)−x(t)|+1Γ(α)∫t0(t−s)α−1|g1(s,xn(s),1Γ(β)∫s0(s−θ)β−1g2(θ,xn(θ))dθ)−g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds |
Assumptions (II) and (III) implies that:
g1(t,xn,Iβg2(t,xn))→g1(t,x,Iβg2(t,x))\; as \; n→∞. |
Using Lebesgue dominated convergence theorem, we have
||Axn(t)−Ax(t)||BC→0 asn→∞. |
Step 2: A(BM) is uniformly bounded.
It is obvious since A(BM)⊂BM and BM is bounded.
Step 3: A(BM) is equicontinuous on every compact subset [0,T] of J,T>0 and t1,t2∈[0,T],t2>t1 (without loss of generality), we get
∣Ax(t2)−Ax(t1)∣≤|h(t2,x(t2))+1Γ(α)∫t20(t2−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds−h(t1,x(t1))+1Γ(α)∫t10(t1−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|≤∣h(t2,x(t2))−h(t1,x(t1))| |
+1Γ(α)|∫t20(t2−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds−∫t10(t1−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|≤∣h(t2,x(t2))−h(t1,x(t1))+h(t2,x(t1))−h(t2,x(t1))|+1Γ(α)|∫t10(t2−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds+1Γ(α)∫t2t1(t2−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds−∫t10(t1−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|≤Kh(t)∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)|∫t10(t1−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds+1Γ(α)∫t2t1(t2−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds−∫t10(t1−s)α−1g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)ds|≤Kh(t)∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)∫t2t1(t2−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds≤Kh(t)∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)∫t2t1(t2−s)α−1[a1(s)1+|x(s)|+b1Γ(β)∫s0(s−θ)β−1|g2(θ,x(θ))|dθ]ds≤K∗h∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)∫t2t1(t2−s)α−1[a1(s)+b1Γ(β)∫s0(s−θ)β−1a2(θ)1+|x(θ)|dθ]ds≤K∗h∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)∫t2t1(t2−s)α−1[a1(s)+b1Γ(β)∫s0(s−θ)β−1a2(θ)dθ]ds. |
Thus, for ai=supt∈[0,T]ai,i=1,2 and from the continuity of the functions ai we obtain
∣Ax(t2)−Ax(t1)∣≤K∗h∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+1Γ(α)∫t2t1(t2−s)α−1[a1(s)+ba2Γ(β+1)sβ]ds.≤K∗h∣x(t2)−x(t1)∣+|h(t2,x(t1))−h(t1,x(t1))|+a1Γ(α+1)(t2−t1)α+ba2Γ(α+β+1)(t2−t1)α+β. |
Continuity of h implies that
|(Ax)(t2)−(Ax)(t1)|→0ast2→t1. |
Step 4: A(BM) is equiconvergent.
Let t∈J and x∈BM then we have
|Ax(t)|≤|h(t,x(t))−h(t,0)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|ds≤Kh(t)|x(t)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1[a1(s)1+|x(s)|+b1Γ(β)∫s0(s−θ)β−1|g2(θ,x(θ))|dθ]ds≤Kh(t)|x(t)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1[a1(s)+b1Γ(β)∫s0(s−θ)β−1a2(θ)1+|x(θ)|dθ]ds≤Kh(t)|x(t)|+|h(t,0)|+1Γ(α)∫t0(t−s)α−1a1(s)ds+b1Γ(α+β)∫t0(t−s)α+β−1a2(s)ds. |
In view of assumptions (I) and (IV), we obtain
|Ax(t)|→0 as t→∞. |
Then A has a fixed point x which is a solution of IVP (1.1) on J.
Step 5: Local attactivity of mild solutions. Let x∗ be a mild solution of IVP (1.1). Taking x∈B(x∗,2M), we have
|Ax(t)−x∗(t)|=|Ax(t)−Ax∗(t)|≤∣h(t,x(t))−h(t,x∗(t))∣+1Γ(α)∫t0(t−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)−g1(s,x∗(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x∗(θ))dθ)|ds≤Kh(t)∣x(t)−x∗(t)∣+1Γ(α)∫t0(t−s)α−1[|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|+|g1(s,x∗(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x∗(θ))dθ)|]ds≤K∗h∣x(t)−x∗(t)∣+2Γ(α)∫t0(t−s)α−1|a1(s)+bΓ(β)∫s0(s−θ)β−1a2(θ)dθ|ds≤K∗h∣x(t)−x∗(t)∣+2a∗1+2b1Γ(β+α)∫s0(s−θ)α+β−1a2(θ)dθ≤2(K∗h∣x(t)∣+|h(t,0)|+a∗1+ba∗2)≤2(K∗hM+|h(t,0)|+a∗1+ba∗2)≤2M. |
We have
||Ax(t)−x∗(t)||BC≤2M. |
Hence A is a continuous function such that A(B(x∗,2M))⊂B(x∗,2M).
Moreover, if x is a mild solution of IVP (1.1), then
|x(t)−x∗(t)|=|Ax(t)−Ax∗(t)|≤∣h(t,x(t))−h(t,x∗(t))∣+1Γ(α)∫t0(t−s)α−1|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)−g1(s,x∗(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x∗(θ))dθ)|ds≤Kh(t)∣x(t)−x∗(t)∣+1Γ(α)∫t0(t−s)α−1[|g1(s,x(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x(θ))dθ)|+|g1(s,x∗(s),1Γ(β)∫s0(s−θ)β−1g2(θ,x∗(θ))dθ)|]ds≤K∗h∣x(t)−x∗(t)∣+2Γ(α)∫t0(t−s)α−1a1(s)ds+2bΓ(α+β)∫t0(t−θ)α+β−1a2(θ)dθ. |
Then
|x(t)−x∗(t)|≤(1−K∗h)−1[2Γ(α)∫t0(t−s)α−1a1(s)ds+2bΓ(α+β)∫t0(t−θ)α+β−1a2(θ)dθ]. | (5.2) |
In view of assumption of (IV) and estimation (5.2), we get
limt→∞|x(t)−x∗(t)|=0. |
Then, all mild solutions of IVP (1.1) are locally attractive.
As particular cases of the IVP (1.1), we have
● Taking g1(t,x,y)=g1(t,x), we obtain the initial value problem
{CDα[x(t)−h(t,x(t))]=g1(t,x(t))t∈J,1<α≤2,(x(t)−h(t,x(t)))|t=0=0andddt[x(t)−h(t,x(t))]t=0=0 |
● Letting α→2,β→1, as a particular case of Theorem 1 we can deduce an existence result for the initial value problem for implicit second-order differe-integral equation
{d2dt2(x(t)−h(t,x(t)))=g1(t,x(t),∫t0g2(s,x(s))ds)t∈J,(x(t)−h(t,x(t)))|t=0=0andddt[x(t)−h(t,x(t))]t=0=0 |
As particular cases we can deduce existence results for some initial value problem of second order differential equations (when h=0) and α→2, we get:
● Taking g1(t,x,y)=−λ2x(t),λ∈R+, then we obtain a second order differential equation of simple harmonic oscillator
{d2x(t)dt2=−λ2x(t)t∈J,x(0)=0andx′(0)=0 |
● Taking g1(t,x,y)=(t2−kt2)x+q(x),k∈R where q(x) is continuous function, then we obtain Riccati differential equation of second order
{t2d2x(t)dt2−(t2−k)x(t)=t2q(x(t))t∈J,x(0)=0andx′(0)=0 |
● Taking g1(t,x,y)=−(t2−2lt−k)x+q(x),k∈R where q(x) is continuous function and l is fixed, then we obtain Coulomb wave differential equation of second order
{d2x(t)dt2+(t2−2lt−k)x=q(x(t))t∈J,x(0)=0andx′(0)=0 |
● Taking g1(t,x,y)=(−8π2mℏ2)(Ex−kt22x)+q(x),k∈R where q(x) is continuous function and ℏ is the Planket's constant and E,k are positive real numbers, then we obtain of Schrödinger wave differential equation for simple harmonic oscillator
{d2x(t)dt2=(−8π2mℏ2)(Ex(t)−kt22x(t))+q(x(t))t∈J,x(0)=0andx′(0)=0. |
Sufficient conditions for the existence of solutions for a class of neutral integro-differential equations of fractional order (1.1) are discussed which involved many key functional differential equations that appear in applications of nonlinear analysis. Also, some types of Ulam stability for this class of implicit fractional differential equation are established. Some applications and particular cases are presented. Finally, the existence of at least one mild solution for this class of equations on an infinite interval by applying Schauder fixed point theorem and the local attractivity of solutions are proved.
The authors express their thanks to the anonymous referees for their valuable comments and remarks.
The authors declare that they have no competing interests.
[1] |
Davies SJ, Unam L (1999) Smoke-haze from the 1997 Indonesian forest fires: effects on pollution levels, local climate, atmospheric CO2 concentrations, and tree photosynthesis. Forest Ecol Manag 124: 137–144. doi: 10.1016/S0378-1127(99)00060-2
![]() |
[2] | Rai PK, Panda LLS (2014) Leaf dust deposition and its impact on biochemical aspect of some roadside plants of Aizawl, Mizoram, North East India. Int Res J Environ Sci 3: 14–19. |
[3] |
Pope CA III, Burnett RT, Michael D, et al. (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Amer Med Assoc 287: 1132–1141. doi: 10.1001/jama.287.9.1132
![]() |
[4] | Shah ASV, Lee KK, McAllister DA, et al. (2015) Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ 350: h1295. |
[5] |
Sun X, Luo X, Zhao C, et al. (2015) The association between fine particulate matter exposure during pregnancy and preterm birth: a meta-analysis. BMC Pregnancy Childbirth 15: 300. doi: 10.1186/s12884-015-0738-2
![]() |
[6] |
Ye X, She B, Benya S (2018) Exploring Regionalization in the Network Urban Space. J Geovisual Spatial Analysis 2: 4. doi: 10.1007/s41651-018-0013-y
![]() |
[7] |
Atkinson RW, Mills IC, Walton HA, et al. (2015) Fine particle components and health-a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J Expo Sci Env Epid 25: 208–214. doi: 10.1038/jes.2014.63
![]() |
[8] |
Csavina J, Field J, Félix O, et al. (2014) Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci Total Environ 487: 82–90. doi: 10.1016/j.scitotenv.2014.03.138
![]() |
[9] |
Grobéty B, Gieré R, Dieze V, et al. (2010) Airborne particles in the urban environment. Elements 6: 229–234. doi: 10.2113/gselements.6.4.229
![]() |
[10] |
Kumar P, Hopke PK, Raja S, et al. (2012) Characterization and heterogeneity of coarse particles across an urban area. Atmos Environ 46: 449–459. doi: 10.1016/j.atmosenv.2011.09.018
![]() |
[11] |
Achad M, López ML, Ceppi S, et al. (2014) Assessment of fine and sub-micrometer aerosols at an urban environment of Argentina. Atmos Environ 92: 522–532. doi: 10.1016/j.atmosenv.2014.05.001
![]() |
[12] |
Arkouli M, Ulke AG, Endlicher W, et al. (2010) Distribution and temporal behavior of particulate matter over the urban area ofBuenos Aires. Atmos Pollut Res 1: 1–8. doi: 10.5094/APR.2010.001
![]() |
[13] | Escribano J, Gallardo L, Rondanelli R, et al. (2014) Satellite retrievals of aerosol optical depth over a subtropical urban area: the role of stratification and surface reflectance. Aerosol Air Qual Res 14: 596–607. |
[14] |
Garcia-Chevesich PA, Alvarado S, Neary DG, et al. (2014) Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments. Environ Pollut 187: 202–205. doi: 10.1016/j.envpol.2013.12.028
![]() |
[15] |
Ipiña A, Salum GM, Crino E, et al. (2012) Satellite and ground detection of very dense smoke clouds produced on the islands of the Paraná river delta that affected a large region inCentral Argentina. Adv Space Res 49: 966–977. doi: 10.1016/j.asr.2011.12.009
![]() |
[16] |
Piacentini RD, García B, Micheletti MI, et al. (2016) Selection of astrophysical/astronomical/solar sites at the Argentina East Andes range taking into account atmospheric components. Adv Space Res 57: 2559–2574. doi: 10.1016/j.asr.2016.03.027
![]() |
[17] |
Micheletti MI, Louedec K, Freire M, et al. (2017) Aerosol concentration measurements and correlations with particle trajectories at the Pierre Auger Observatory. Eur Phys J Plus 132: 245. doi: 10.1140/epjp/i2017-11503-0
![]() |
[18] |
Strawbridge KB, Snyder BJ (2004) Planetary boundary layer height determination during Pacific 2001 using the advantage of a scanning lidar instrument. Atmos Environ 38: 5861–5871. doi: 10.1016/j.atmosenv.2003.10.065
![]() |
[19] |
Zhang Q, Quan J, Tie X, et al. (2011) Impact aerosol particles on cloud formation: Aircraft measurements inBeijingChina. Atmos Environ 45: 665–672. doi: 10.1016/j.atmosenv.2010.10.025
![]() |
[20] | Finlayson-Pitts BJ, Pitts Jr JN, Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Elsevier, 1999. |
[21] |
Zhang Q, Ma X, Tie X, et al. (2009) Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measurements inBeijing,China. Atmos Environ 43: 5526–5535. doi: 10.1016/j.atmosenv.2009.05.037
![]() |
[22] |
González JA, Prado FE, Piacentini RD (2014) Atmospheric dust accumulation on native and non-native species: Effects on gas exchange parameters. J Environ Qual 43: 801–808. doi: 10.2134/jeq2013.08.0308
![]() |
[23] | Benedetti PE (2014) Seguimiento de fuegos en Tucumán. Informe Nº 1. Instituto Nacional de Tecnología Agropecuaria, Centro Regional Tucumán-Santiago del Estero, Estación Experimental Agropecuaria Famaillá, Tucumán, Argentina. Available from: http://inta.gob.ar/documentos/seguimiento-de-fuegos-en-tucuman [In Spanish]. |
[24] | Sayago J, Collantes M, Toledo M (1998) Geomorfología, In: Gianfrancisco J. et al., editors, Geología del Tucumán. Publicación Especial Colegio de Graduados en Ciencias Geológicas de Tucumán: 241–258. |
[25] | Sesma P, Guido E, Puchulu M (1998) Clima de la provincia de Tucumán. In: J. Gianfrancisco et al., editors, Geología del Tucumán. Publicación Especial Colegio de Graduados en Ciencias Geológicas de Tucumán, 41–46. |
[26] | Minetti JL (2005) Climatología de los vientos, In: Minetti, J.L. editor, El clima del noroeste argentino. Laboratorio Climatológico Sudamericano. Fundación Carl C. zon Caldenius, Tucumán, Argentina, 117–127. |
[27] |
Hirst J (1952) An automatic volumetric spore trap. Ann Appl Biol 39: 257–265. doi: 10.1111/j.1744-7348.1952.tb00904.x
![]() |
[28] | Aira MJ, Jato V, Iglesias I (2005) Calidad del aire. Polen y esporas en la Comunidad Gallega. España: Eds. Xunta de Galicia, Consellería de Medio Ambiente. |
[29] | Rasband W (1997) ImageJ. National Institutes ofHealth,USA. Available from: http://rsb.info.nih.gov/ij/. |
[30] |
Shumway RH, Stoffer DS (1982) An approach to time series smoothing and forecasting using the EM algorithm. J Time Ser Anal 3: 253–264. doi: 10.1111/j.1467-9892.1982.tb00349.x
![]() |
[31] |
Ordano M, Engelhard I, Rempoulakis P, et al. (2015) Olive fruit fly (Bactrocera oleae) population dynamics in theEastern Mediterranean: influence of exogenous uncertainty on a monophagous frugivorous insect. PloS one 10: e0127798. doi: 10.1371/journal.pone.0127798
![]() |
[32] |
Remer LA, Kaufman YJ, Tanré D, et al. (2005) The MODIS Aerosol algorithm, products, and validation. J Atmos Sci 62: 947–973. doi: 10.1175/JAS3385.1
![]() |
[33] | GMAO-Global Modeling and Assimilation Office (2015) MERRA-2 tavgM_2d_aer_Nx: 2d, Monthly mean, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). |
[34] | Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. Nederlandse Akademie Wetenchappen Series A 53: 386–392. |
[35] |
Sen PK (1968) Estimates of the regression coefficient based onKendall's tau. J Am Stat Assoc 63: 1379–1389. doi: 10.1080/01621459.1968.10480934
![]() |
[36] | Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: forecasting and control. Fourth edition,Hoboken,NJ: John Wiley & Sons, Inc. |
[37] | Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. New York: Springer-Verlag, Inc. |
[38] | Venables WN, Ripley BD (2002) Modern applied statistics with S. New York: Springer. |
[39] | Zuur AF, Ieno EN, Walker NJ, et al. (2009) Mixed effects models and extensions in ecology with R. New York: Springer Science+Business Media, LLC. |
[40] | Gałecki AT, Burzykowski T (2013) Linear mixed-effects models using R. A step-by-step approach. New York: Springer Science & Business Media. |
[41] | Fox J, Weisberg S (2011) An R companion to applied regression. Second edition,Thousand Oaks: Sage. |
[42] | Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Boca Raton,FL: Chapman & Hall/CRC. |
[43] | R Development Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,Vienna,Austria. Available from: http://www.R-project.org/ |
[44] | Agostinelli C, Lund U, R package 'circular': Circular Statistics (version 0.4-7)[Computer software], (2013). Available from: https://r-forge.r-project.org/projects/circular/ |
[45] | Højsgaard S, Halekoh U, Robison-Cox J, et al. (2013) doBy: doBy - Groupwise summary statistics, LSmeans, general linear contrasts, various utilities. R package version 4.5–10. Available from: http://CRAN.R-project.org/package=doBy |
[46] | Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. J Stat Softw 26: 1–22. |
[47] | Wickham H (2010) ggplot2: Elegant graphics for data analysis. J Stat Softw 35: 65–88. |
[48] | Sarkar D, Andrews F, latticeExtra: Extra graphical utilities based on Lattice. R package version 0.6-26, 2013. Available from: http://CRAN.R-project.org/package=latticeExtra |
[49] |
Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 99: 673–686. doi: 10.1198/016214504000000980
![]() |
[50] | Pinheiro J, Bates D, DebRoy S, et al. (2015) nlme: Linear and nonlinear mixed effects models. R package version 3.1–122, Available from: http://CRAN.R-project.org/package=nlme. |
[51] | Carslaw DC, Ropkins K (2012) openair-an R package for air quality data analysis. Environ Modell Softw 27–28: 52–61. |
[52] | Breheny P, Burchett W (2015) visreg: Visualization of regression models. R package version 2.2-0. Available from: http://CRAN.R-project.org/package=visreg |
[53] | Christopher SA, Wang M, Berendes TA, et al. (1998) The 1985 Biomass Burning Season inSouth America: Satellite Remote Sensing of Fires, Smoke, and Regional Radiative Energy Budgets. J Appl Meteor 37: 661–678. |
[54] |
Castro Videla F, Barnaba F, Angelini F, et al. (2013) The relative role of Amazonian and non-Amazonian fires in building up the aerosol optical depth in South America: A five year study (2005–2009). Atmospheric Research 122: 298– 309. doi: 10.1016/j.atmosres.2012.10.026
![]() |
[55] | Filonchyk M, Yan H, Yang S, et al. (2017) Detection of aerosol pollution sources during sandstorms in Northwestern China using remote sensed and model simulated data. Adv Space Res 61: 1035–1046. |
[56] | Filonchyk M, Yan H, Shareef TME, et al. (2018) Aerosol contamination survey during dust storm process inNorthwestern Chinausing ground, satellite observations and atmospheric modeling data. Theor Appl Climatol, 1–15. |
[57] | Liu Y, Franklin M, Kahn R, et al. (2007) Using aerosol optical thickness to predict ground-level PM2.5 concentrations in theSt. Louisarea: A comparison between MISR and MODIS. Remote Sens Environ 107: 33–44. |
[58] | Kahn RA, Gaitley BJ, Martonchik JV, et al. (2005) Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J Geophys Res 110(D10). |
[59] | Hu Z (2009) Spatial analysis of MODIS aerosol optical depth, PM 2.5, and chronic coronary heart disease. Int J Health Geogr 8: 27. |
[60] | Li Y, Chen Q, Zhao H, et al. (2015) Variations in PM 10, PM 2.5 and PM 1.0 inan urban area of theSichuanBasinand their relation to meteorological factors. Atmosphere 6: 150–163. |
[61] | van Donkelaar A, Martin RV, Park RJ. (2006) Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J Geophys Res Atmos 111(D21). |
[62] | Tonatto MJ, Fernández de Ullivarri J, Alonso JM, et al. (2008) Sugarcane burning teledetection through MODIS system in Tucumán (Argentina). Revista Industrial y Agrícola de Tucumán 85: 31–35. |
[63] |
Carreras HA, Wannaz ED, Pignata ML (2009) Assessment of human health risk related to metals by the use of biomonitors in the province of Córdoba, Argentina. Environ Pollut 157: 117–122 doi: 10.1016/j.envpol.2008.07.018
![]() |
[64] | García ME (2010) Aeropalinología de la ciudad de Yerba Buena, provincia de Tucumán (Argentina). Acta Botánica Malacitana 35: 115–131. |
[65] | WHO (World Health Organization), Ambient air pollution: A global assessment of exposure and burden of disease. Published by WHO Document Production Services,Geneva,Switzerland. 2016. Available from: http://apps.who.int/iris/bitstream/10665/250141/1/9789241511353-eng.pdf. |
1. | Xuming Chen, Jianfa Zhu, Liangxiao Li, Chengwen Long, Uniqueness of system integration scheme of artificial intelligence technology in fractional differential mathematical equation, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0104 | |
2. | Abha Singh, Abdul Hamid Ganie, Mashael M. Albaidani, Antonio Scarfone, Some New Inequalities Using Nonintegral Notion of Variables, 2021, 2021, 1687-9139, 1, 10.1155/2021/8045406 | |
3. | Liang Song, Shaodong Chen, Guoxin Wang, Oscillation Analysis Algorithm for Nonlinear Second-Order Neutral Differential Equations, 2023, 11, 2227-7390, 3478, 10.3390/math11163478 |