Citation: Milos Z. Markovic, Anne E. Perring, Ru-Shan Gao, Jin Liao, Andre Welti, Nick L. Wagner, Ilana B. Pollack, Ann M. Middlebrook, Thomas B. Ryerson, Michael K. Trainer, Carsten Warneke, Joost A. de Gouw, David W. Fahey, Philip Stier, Joshua P. Schwarz. Limited impact of sulfate-driven chemistry on black carbon aerosol aging in power plant plumes[J]. AIMS Environmental Science, 2018, 5(3): 195-215. doi: 10.3934/environsci.2018.3.195
[1] | Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784 |
[2] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[3] | Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175 |
[4] | Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055 |
[5] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[6] | Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394 |
[7] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[8] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
[9] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092 |
[10] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
In last years, it was noted that several real-world phenomena cannot be modeled by partial or ordinary differential equations or classical difference equations defined using the standard integrals and derivatives. These problems required the concept of fractional calculus (fractional integrals and derivatives), where the classical calculus was insufficient. Differential equations of fractional order are considered to be interesting tools in the modeling of several problems in different fields of engineering and science, as electrochemistry, control, electromagnetic, porous media, viscoelasticity. See for example [1,2,3,4,5,6,7]. On the other hand, in the recent years impulsive differential equations have become essential as mathematical models of problems in social and physical sciences. There was a great development in impulsive theory in particular in the field of impulsive differential equations with fixed moments. For instance, see the works of Samoilenko and Perestyuk [8], Benchohra et al. [9], Lakshmikantham et al. [10], etc. Further works for differential equations at variable moments of impulse have been appeared. For example, we cite the papers of Frigon and O'Regan [11,12], Graef and Ouahab [13], Bajo and Liz [14], etc.
It is also observed that fixed point theory is an important mathematical tool to ensure the existence and uniqueness of many problems intervening nonlinear relations. As a consequence, existence and uniqueness problems of fractional differential equations have been resolved using fixed point techniques. This theory has been developed in many directions and has several applications. Moreover, we could apply it in different types of spaces, like metric spaces, abstract spaces, and Sobolev spaces. This use of fixed point theory makes very easier the resolution of many problems modeled by fractional ordinary, partial differential and difference equations. For instance, see [15,16,17,18,19,20].
The theory for impulsive fractional differential equations in Banach spaces have been sufficiently developed by Feckan et al. [21] by using fixed point techniques. In the real world, many phenomena are subject to transient external effects as they develop. In comparison to the entire duration of the phenomenon being observed, the durations of these external effects are incredibly brief. The logical conclusion is that these external forces are real impulses. Impulsive differential equations are now a major component of the modeling of physical real-world issues in order to study these abrupt shifts. Biological systems including heartbeat, blood flow, and impulse rate have been discussed in relation to many applications of this kind of impulsive differential equations. For more details, see, [22,23,24,25,26,27].
On the other hand, in last years the study of Hyers-Ulam (HU) stability analysis for nonlinear fractional differential equations has attracted the attention of several researchers. Note that HU stability is considered as an exact solution near the approximate solution for these equations with minimal error. The following works [28,29,30,31,32] deal with such a stability analysis. For Hyers-Ulam (HU) stabilities, there are generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities.
Much of the work on the topic of fractional differential equations deals with the governing equations involving Riemann-Liouville and Caputo-type fractional derivatives. Another kind of fractional derivative is the Hadamard type [33], which was introduced in 1892. This derivative differs significantly from both the Riemann-Liouville type and the Caputo type in the sense that the kernel of the integral in the definition of the Hadamard derivative contains a logarithmic function of arbitrary exponent. It seems that the abstract fractional differential equations involving Hadamard fractional derivatives and Hilfer-Hadamard fractional derivatives have not been fully explored so far. Several applications of where the Hadamard derivative and the Hadamard integral arise can be found in the papers by Butzer, Kilbas and Trujillo [34,35,36]. Other important results dealing with Hadamard fractional calculus and Hadamard differential equations can be found in [37,38]. The presence of the δ-differential operator (δ=xddx) in the definition of Hadamard fractional derivatives could make their study uninteresting and less applicable than Riemann-Liouville and Caputo fractional derivatives. Moreover, this operator appears outside the integral in the definition of the Hadamard derivatives just like the usual derivative D=ddx is located outside the integral in the case of Riemann-Liouville, which makes the fractional derivative of a constant of these two types not equal to zero in general. Hadamard [33] proposed a fractional power of the form (xddx)α. This fractional derivative is invariant with respect to dilation on the whole axis.
The existence and HU stability of the following implicit FDEs involving Hadamard derivatives were investigated in [39] as follows:
{HDϖz(υ)=ϕ(υ,z(υ),HDϖz(υ)), ϖ∈(0,1), z(1)=z1, z1∈R, |
where υ∈[1,G], G>1, HDϖ refers to the Hadamard fractional (HF) derivative of order ϖ.
The following coupled system containing the Caputo derivative was examined in [40] for its existence, uniqueness, and several types of Hyers-Ulam stability:
{CDϖz(υ)=ϕ(υ,s(υ),CDϖz(υ)), υ∈U,CDθs(υ)=ψ(υ,z(υ),CDθs(υ)), υ∈U,z′(G)=z′′(0)=0, z(1)=ϱz(η) ϱ,η∈(0,1),s′(G)=s′′(0)=0, s(1)=ϱs(η) ϱ,η∈(0,1), |
where υ∈U=[0,1], ϖ,θ∈(2,3] and ϕ,ψ:U×R2→R are continuous functions.
For the following coupled system containing the Riemann-Liouville derivative, the authors of [41] demonstrated the existence, uniqueness, and several types of Hyers-Ulam stability:
{Dϖz(υ)=ϕ(υ,s(υ),Dϖz(υ)), υ∈U, Dθs(υ)=ψ(υ,z(υ),Dθs(υ)), υ∈U, Dϖ−2z(0+)=π1Dϖ−2z(G−), Dϖ−2z(0+)=ℓ1Dϖ−1z(G−),Dϖ−2s(0+)=π2Dϖ−2s(G−), Dϖ−2s(0+)=ℓ2Dϖ−1s(G−), |
where υ∈U=[0,G], G>0, ϖ,θ∈(1,2] and π1,π2,ℓ1,ℓ2≠1, Dϖ,Dθ are Riemann-Liouville derivatives of fractional orders ϖ, θ respectively and ϕ,ψ:U×R2→R are continuous functions.
Inspired by the previous work, we investigate the coupled impulsive implicit FDEs (CII-FDEs) incorporating Hadamard derivatives as follows:
{HDϖz(υ)=ϕ(υ,HDϖz(υ),HDθs(υ)), υ∈U, υ≠υi, i=1,2,...k,HDθs(υ)=ψ(υ,HDθs(υ),HDϖz(υ)), υ∈U, υ≠υj, j=1,2,...m,Δz(υi)=Iiz(υi), Δz′(υi)=˜Iiz(υi), i=1,2,...k, Δs(υj)=Ijs(υj), Δs′(υj)=˜Ijs(υj), j=1,2,...m, z(G)=1Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη, z′(G)=B∗(z), s(G)=1Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη, s′(G)=B∗(s), | (1.1) |
where ϖ,θ∈(1,2], ϕ,ψ:U×R2→R, B:U×C(U,R)→R and B∗:U→R are continuous functions and
Δz(υi)=z(υ+i)−z(υ−i), Δz′(υi)=z′(υ+i)−z′(υ−i),Δs(υi)=s(υ+i)−s(υ−i), Δs′(υi)=s′(υ+i)−s′(υ−i). |
The derivatives HDϖ,HDθ are the Hadamard derivative operators of order ϖ and θ, respectively; z(υ+i),s(υ+i) are right limits and z(υ−i),s(υ−i) are left limits; Ii,Ij,˜Ii,˜Ij:R→R are continuous functions. The system (1.1) is used to describe certain features of applied mathematics and physics such as blood flow problems, chemical engineering, thermoelasticity, underground water flow, and population dynamics. For more details, we refer the readers to see the monograph [42].
Using the Banach contraction and Kransnoselskii FP theorems, we establish necessary and sufficient criteria for the existence and uniqueness of a positive solution for the problem (1.1). Additionally, we analyze other Hyers-Ulam (HU) stabilities such as generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities.
In this part, we present certain key terms and lemmas that are utilized throughout the rest of this paper, for more information, see [42,43].
Assume that PC(U,R+) equipped with the norms ‖z‖=max{|z(υ)|:υ∈U}, ‖s‖=max{|s(υ)|:υ∈U} is a Banach space (shortly, BS), then the products of these norms are also a BS under the norm ‖(z+s)‖=‖z‖+‖s‖. Assume that ℑ1 and ℑ2 represent the piecewise continuous function spaces described as
ℑ1=PC2−ϖ,ln(U,R+)={z:U→R+ so that z(υ+i),z′(υ+i) and z(υ−i),z′(υ−i) exist ,i=1,2,...k},ℑ2=PC2−θ,ln(U,R+)={s:U→R+ so that s(υ+j),s′(υ+j) and s(υ−j),s′(υ−j) exist ,j=1,2,...m}, |
with norms
‖z‖ℑ1=sup{|z(υ)ln(υ)2−ϖ|, υ∈U} and ‖s‖ℑ2=sup{|s(υ)ln(υ)2−θ|, υ∈U}, |
respectively. Clearly, the product ℑ=ℑ1×ℑ2 is a BS endowed with ‖(z+s)‖ℑ=‖z‖ℑ1+‖s‖ℑ2.
The following definitions are recalled from [44].
Definition 2.1. For the function z(υ), the Hadamard fractional (HF) integral of order ϖ is described as
HIϖz(υ)=1Γ(ϖ)∫υ1ln(υη)ϖ−1z(η)dηη, υ∈(1,G] |
where Γ(.) is the Gamma function.
Definition 2.2. For the function z(υ), the HF derivative of order ϖ∈[a−1,a), a∈Z+ is described as
HDϖz(υ)=1Γ(a−ϖ)(υddυ)a∫υxln(υη)a−ϖ+1z(η)dηη, υ∈(x,G]. |
Lemma 2.3. [45] Assume that ϖ>0 and z is any function, then the derivative equation HDϖz(υ)=0 has solutions below:
z(υ)=r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+r3(lnυ)ϖ−3+...+ra(lnυ)ϖ−a, |
and the formula
HIϖHDϖz(υ)=z(υ)+r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+r3(lnυ)ϖ−3+...+ra(lnυ)ϖ−a, |
is satisfied, where ri∈R, i=1,2,...,a and ϖ∈(a−1,a).
Theorem 2.4. [46] Assume that Ξ is a non-empty, convex and closed subset of a BS ℑ. Let E and ˜E be operators so that
(1) for z,s∈Ξ, E(z,s)+˜E(z,s)∈Ξ;
(2) the operator ˜E is completely continuous;
(3) the operator Ξ is contractive.
Then there is a solution (z,s)∈Ξ for the operator equation E(z,s)+˜E(z,s)=(z,s).
The definitions and observations below are taken from [47,48].
Definition 3.1. The coupled problem (1.1) is called HU stable if there are Λϖ,θ=max{Λϖ,Λθ}>0 so that, for φ=max{φϖ,φθ} and for each solution (z,s)∈ℑ to inequalities
{|HDϖz(υ)−ϕ(υ,HDϖz(υ),HDθs(υ))|≤φϖ, υ∈U, |Δz(υi)−Iiz(υi)|≤φϖ, |Δz′(υi)−˜Iiz(υi)|≤φϖ, i=1,2,...k,|HDθs(υ)−ϕ(υ,HDθs(υ),HDϖz(υ))|≤φθ, υ∈U, |Δs(υj)−Ijs(υj)|≤φθ, |Δs′(υj)−˜Ijs(υj)|≤φθ, j=1,2,...m, | (3.1) |
there is a unique solution (˜z,˜s)∈ℑ with
‖(z,s)−(˜z,˜s)‖ℑ≤Λϖ,θφ, υ∈U. |
Definition 3.2. The coupled problem (1.1) is called GHU stable if there is Φ∈C(R+,R+) with ξ(0)=0, so that, for any solution (z,s)∈ℑ of (3.1), there is a unique solution (˜z,˜s)∈ℑ of with of (1.1) fulfilling
‖(z,s)−(˜z,˜s)‖ℑ≤Φ(φ), υ∈U. |
Set ℧ϖ,θ=max{℧ϖ,℧θ}∈C(U,R) and Λ℧ϖ,℧θ=max{Λ℧ϖ,Λ℧θ}>0.
Definition 3.3. The coupled problem (1.1) is called HUR stable with respect to ℧ϖ,θ if there is a constant Λ℧ϖ,℧θ so that, for any solution (z,s)∈ℑ for the inequalities below
{|HDϖz(υ)−ϕ(υ,HDϖz(υ),HDθs(υ))|≤℧ϖ(υ)φϖ, υ∈U,|HDθs(υ)−ϕ(υ,HDθs(υ),HDϖz(υ))|≤℧θ(υ)φθ, υ∈U, | (3.2) |
there is a unique solution (˜z,˜s)∈ℑ with
‖(z,s)−(˜z,˜s)‖ℑ≤Λ℧ϖ,℧θ℧ϖ,θφ, υ∈U. | (3.3) |
Definition 3.4. The coupled problem (1.1) is called GHUR stable with respect to ℧ϖ,θ if there is a constant Λ℧ϖ,℧θ so that, for any a proximate solution (z,s)∈ℑ of (3.2), there is a unique solution (˜z,˜s)∈ℑ of with of (1.1) fulfilling
‖(z,s)−(˜z,˜s)‖ℑ≤Λ℧ϖ,℧θ℧ϖ,θ(υ), υ∈U. |
Remark 3.5. If there are functions ℜϕ,ℜψ∈C(U,R) depending upon z, s, respectively, so that
(R1) |ℜϕ(υ)|≤φϖ, |ℜψ(υ)|≤φθ, υ∈U;
(R2)
{HDϖz(υ)=ϕ(υ,HDϖz(υ),HDθs(υ))+ℜϕ(υ), Δz(υi)=Ii(z(υi))+ℜϕi, Δz′(υi)=˜Ii(z(υi))+ℜϕi,HDθs(υ)=ϕ(υ,HDθs(υ),HDϖz(υ))+ℜψ(υ), Δs(υj)=Ij(s(υj))+ℜψj, Δs′(υj)=˜Ij(s(υj))+ℜψj. |
Then, (z,s)∈ℑ is a solution of the system of inequalities (3.1).
In the following part, we establish requirements for the existence and uniqueness of solutions to the suggested system (1.1)
Theorem 4.1. For the function w, the solutions of the following subsequent linear impulsive BVP
{HDϖz(υ)=w(υ), υ∈U, υ≠υi, i=1,2,...k,Δz(υi)=Ii(z(υi)), Δz′(υi)=˜Ii(z(υi)), υ≠υi, i=1,2,...k,z(G)=1Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη, z′(G)=B∗(z), |
takes the form
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Iiz(υi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Iiz(υi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2w(η)dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1w(η)dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1w(η)dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1w(η)dηη, | (4.1) |
where u=1,2,...,k and
D0(ϖ)=ln(υG)ln(G)2−ϖ,D1i(ϖ)=(ϖ−1)(lnυ−ϖ+2)(lnυi)3−ϖ−(ϖ−2)(lnυ2−ϖ+1)(lnυi)2−ϖlnυi,D2i(ϖ)=lnυυi(3−ϖ)(lnυi)2−ϖ,D3(ϖ)=(ϖ−1−logGυϖ−2)(lnυ)2−ϖ,D4(ϖ)=logGυGϖ−1(lnG)2−ϖ,D5i(ϖ)=(lnυϖ−1Gϖ−2+logυi(Gυiυ2)ϖ−2)(lnυi)2−ϖ. |
Proof. Assume that
HDϖz(υ)=w(υ), ϖ∈(1,2], υ∈U. | (4.2) |
Using Lemma 2.3, for υ∈(1,υ1], we have
z(υ)=r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+1Γ(ϖ)∫υ1ln(υη)ϖ−1w(η)dηη,z′(υ)=r1(ϖ−1)υ(lnυ)ϖ−2+r2(ϖ−2)υ(lnυ)ϖ−3+1Γ(ϖ−1)∫υ11υln(υη)ϖ−2w(η)dηη. | (4.3) |
Again, applying Lemma 2.3, for υ∈(υ1,υ2], we get
z(υ)=l1(lnυ)ϖ−1+l2(lnυ)ϖ−2+1Γ(ϖ)∫υυ1ln(υη)ϖ−1w(η)dηη,z′(υ)=l1(ϖ−1)υ(lnυ)ϖ−2+l2(ϖ−2)υ(lnυ)ϖ−3+1Γ(ϖ−1)∫υυ11υln(υη)ϖ−2w(η)dηη. | (4.4) |
Using initial impulses
l1=r1−(ϖ−2)(lnυ1)1−ϖI1(z(υ1))+υ1(lnυ1)2−ϖ˜I1(z(υ1))+(lnυ1)2−ϖΓ(ϖ−1)∫υ11ln(υ1η)ϖ−2w(η)dηη−(ϖ−2)(lnυ1)1−ϖΓ(ϖ)∫υ11ln(υ1η)ϖ−1w(η)dηη,l2=r2+(ϖ−1)(lnυ1)2−ϖI1(z(υ1))−υ1(lnυ1)3−ϖ˜I1(z(υ1))−(lnυ1)3−ϖΓ(ϖ−1)∫υ11ln(υ1η)ϖ−2w(η)dηη+(ϖ−1)(lnυ1)2−ϖΓ(ϖ)∫υ11ln(υ1η)ϖ−1w(η)dηη. |
From l1 and l2 on (4.4), one has
z(υ)=r1(lnυ)ϖ−1−r2(lnυ)ϖ−2+((ϖ−1)−(ϖ−2)(logυ1υ))(logυ1υ)ϖ−2I1(z(υ1))+υ1(lnυ−lnυ1)(logυ1υ)ϖ−2˜I1(z(υ1))+(lnυ−lnυ1)(logυ1υ)ϖ−2Γ(ϖ−1)∫υ11ln(υ1η)ϖ−2w(η)dηη+((ϖ−1)−(ϖ−2)(logυ1υ))(logυ1υ)ϖ−2Γ(ϖ)∫υ11ln(υ1η)ϖ−2w(η)dηη+1Γ(ϖ)∫υυ1ln(υη)ϖ−1w(η)dηη. |
Analogously for υ∈(υu,G), we have
z(υ)=r1(lnυ)ϖ−1+r2(lnυ)ϖ−2+u∑i=1((ϖ−1)−(ϖ−2)(logυiυ))(logυiυ)ϖ−2Ii(z(υi))+u∑i=1υi(lnυ−lnυi)(logυiυ)ϖ−2˜Ii(z(υi))+u∑i=1(lnυ−lnυi)(logυiυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+u∑i=1((ϖ−1)−(ϖ−2)(logυiυ))(logυiυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1w(η)dηη, | (4.5) |
and
z′(υ)=(ϖ−1)r1υ(lnυ)ϖ−2+(ϖ−1)r2υ(lnυ)ϖ−3+u∑i=1(ϖ−1)(ϖ−2)υ(logυe−logeυi)(logυiυ)ϖ−2Ii(z(υi))+u∑i=1υiυ[(ϖ−1)−(ϖ−2)logυυi](logυiυ)ϖ−2˜Ii(z(υi))+1υΓ(ϖ−1)∫υυuln(υη)ϖ−2w(η)dηη,+u∑i=1((ϖ−1)−(ϖ−2)logυυi)(logυiυ)ϖ−2υΓ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2w(η)dηη+u∑i=1(ϖ−1)(ϖ−2)(logυe−logeυi)(logυiυ)ϖ−2υΓ(ϖ)∫υiυi−1ln(υiη)ϖ−2w(η)dηη. | (4.6) |
Applying the boundary stipulations z(G)=1Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη and z′(G)=B∗(z), we obtain that
r1=GB∗(z)ln(G)2−ϖ−(lnG)1−ϖ(ϖ−2)Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+(lnG)1−ϖΓ(ϖ)∫Gυuln(Gη)ϖ−1w(η)dηη+u∑i=1(lnυϖ−1i−ϖ−2lnυi)(lnυi)2−ϖIi(z(υi))−(ϖ−2)u∑i=1υi(lnυi)ϖ−1˜Ii(z(υi))−(ϖ−2)Γ(ϖ−1)u∑i=1(lnυi)2−ϖ∫υiυi−1ln(υiη)ϖ−2w(η)dηη−(lnG)2−ϖΓ(ϖ−1)∫Gυuln(Gη)ϖ−2w(η)dηη+1Γ(ϖ)u∑i=1(lnυϖ−1i−ϖ−2lnυi)(lnυi)2−ϖ∫υiυi−1ln(υiη)ϖ−1w(η)dηη, |
and
r2=(lnG)2−ϖΓ(ϖ−1)∫G1ln(Gη)ϖ−1B(η,z(η))dηη−GB∗(z)ln(G)3−ϖ+u∑i=1υi(lnυi)3−ϖ˜Ii(z(υi))+(ϖ−1)u∑i=1(lnG(ϖ−2)(logυie−logeυi)−1)(lnυi)2−ϖIi(z(υi))+(lnG)3−ϖΓ(ϖ−1)∫υυuln(Gη)ϖ−2w(η)dηη+1Γ(ϖ−1)u∑i=1(lnG(ϖ−2)(logυie−logeυi)−1)(lnυi)2−ϖ∫υiυi−1ln(υiη)ϖ−1w(η)dηη+1Γ(ϖ−1)u∑i=1(lnυi)3−ϖ∫υiυi−1ln(υiη)ϖ−2w(η)dηη−(lnG)2−ϖΓ(ϖ−1)∫Gυiln(Gη)ϖ−1w(η)dηη, |
for u=1,2,...,k. Substituting r1 and r2 in (4.5), we have (4.1).
Corollary 4.2. Theorem 2.4 provides the following solution for our coupled problem (1.1):
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη, | (4.7) |
where u=1,2,...,k and
s(υ)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+u∑j=1lnυ3−θ(logυjυ)θ−2D5j(θ)(lnυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη,+1Γ(θ)∫υυuln(υη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη, | (4.8) |
where u=1,2,...,m.
For convenience, we use the notations below:
p(υ)=ϕ(υ,a1(υ),a2(υ))≤ϕ(υ,z(υ),a(υ)) and a(υ)=ψ(υ,p1(υ),p2(υ))≤ψ(υ,s(υ),p(υ)). |
Hence, for υ∈U, Eqs (4.7) and (4.8) can be written as
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2p(η)dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1p(η)dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1p(η)dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2p(η)dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1p(η)dηη, |
for u=1,2,...,k and
s(υ)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2a(η)dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1a(η)dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1a(η)dηη+u∑j=1lnυ3−θ(logυjυ)θ−2D5j(θ)(lnυ)θ−2Γ(θ−1) intυjυj−1ln(υiη)θ−2a(η)dηη+1Γ(θ)∫υυuln(υη)θ−1a(η)dηη, |
for u=1,2,...,m.
If z and s are solutions to the CII-FDEs (1.1), then for υ∈U, we can write
z(υ)=GD0(ϖ)B∗(z)(lnυ)ϖ−2+u∑i=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+u∑i=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη+D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,a1(η),a2(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,a1(η),a2(η))dηη+u∑i=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,a1(η),a2(η))dηη+u∑i=1lnυ3−ϖ(logυiυ)ϖ−2D5i(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,a1(η),a2(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,a1(η),a2(η))dηη, |
for u=1,2,...,k and
s(υ)=GD0(θ)B∗(s)(lnυ)θ−2+u∑j=1D1j(θ)(lnυ)θ−2Ij(sj)+u∑j=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη+D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,p1(η),p2(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,p1(η),p2(η))dηη+u∑j=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,p1(η),p2(η))dηη+u∑j=1lnυ3−θ(logυjυ)θ−2D5j(θ)(lnυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,p1(η),p2(η))dηη+1Γ(θ)∫υυuln(υη)θ−1ψ(η,p1(η),p2(η))dηη, |
for u=1,2,...,m.
Our next step is to convert the considered system (1.1) into a FP problem. Give the definition of the operators E,˜E:ℑ→ℑ as
E(z,s)(υ)=(E1z(υ),E2z(υ)) and ˜E(z,s)(υ)=(E1(z,s)(υ),E2(s,z)(υ)), |
where
{E1(z(υ))=GD0(ϖ)B∗(z)(lnυ)ϖ−2+∑ui=1D1i(ϖ)(lnυ)ϖ−2Ii(zi)+∑ui=1D2i(ϖ)(lnυ)ϖ−2˜Ii(zi)+D3(ϖ)(lnυ)ϖ−2Γ(ϖ)∫G1ln(Gη)ϖ−1B(η,z(η))dηη, u=1,2,...,k,E2(s(υ))=GD0(θ)B∗(s)(lnυ)θ−2+∑uj=1D1j(θ)(lnυ)θ−2Ij(sj)+∑uj=1D2j(θ)(lnυ)θ−2˜Ij(sj)+D3(θ)(lnυ)θ−2Γ(θ)∫G1ln(Gη)θ−1B(η,s(η))dηη, u=1,2,...,m, | (4.9) |
and
{E1(z,s)(υ)=D0(ϖ)(lnυ)ϖ−2Γ(ϖ−1)∫Gυuln(Gη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+D4(ϖ)(lnυ)ϖ−2Γ(ϖ)∫Gυuln(Gη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+∑ui=1D5i(ϖ)(lnυ)ϖ−2Γ(ϖ)∫υiυi−1ln(υiη)ϖ−1ϕ(η,HDϖz(η),HDθs(η))dηη+∑ui=1lnυ3−ϖ(logυiυ)ϖ−2Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2ϕ(η,HDϖz(η),HDθs(η))dηη+1Γ(ϖ)∫υυuln(υη)ϖ−1ϕ(η,a1(η),a2(η))dηη, u=1,2,...,k,E2(s,z)(υ)=D0(θ)(lnυ)θ−2Γ(θ−1)∫Gυuln(Gη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη+D4(θ)(lnυ)θ−2Γ(θ)∫Gυuln(Gη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+∑uj=1D5i(θ)(lnυ)θ−2Γ(θ)∫υjυj−1ln(υjη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη+∑uj=1lnυ3−θ(logυjυ)θ−2Γ(θ−1)∫υjυj−1ln(υiη)θ−2ψ(η,HDθs(η),HDϖz(η))dηη+1Γ(θ)∫υυuln(υη)θ−1ψ(η,HDθs(η),HDϖz(η))dηη, u=1,2,...,m. | (4.10) |
The preceding assertions must be true in order to conduct further analysis:
(A1) For υ∈U and a1,a2,p1,p2∈R, there exist ℓ0,ℓ1,ℓ2,ρ0,ρ1,ρ2∈C(U,R+), so that
|ϕ(υ,a1(υ),a2(υ))|≤ℓ0(υ)+ℓ1(υ)|a1(υ)|+ℓ2(υ)|a2(υ)|,|ψ(υ,p1(υ),p2(υ))|≤ρ0(υ)+ρ1(υ)|p1(υ)|+ρ2(υ)|p2(υ)|, |
with ˜ℓ0=supυ∈Uℓ0(υ), ˜ℓ1=supυ∈Uℓ1(υ), ˜ℓ2=supυ∈Uℓ2(υ), ˜ρ0=supυ∈Uρ0(υ), ˜ρ1=supυ∈Uρ1(υ), and ˜ρ2=supυ∈Uρ2(υ)<1.
(A2) For the continuous functions B∗,Iu,˜Iu:R→R there are positive constants
OB,OI,O˜I,O′′I,O′′˜I,˜OB,˜OI,˜O˜I,˜O′′I,˜O′′˜I so that for any (z,s)∈ℑ
|B∗(z)|≤OB∗, |Iu(z(υ))|≤OI|z|+O′′I, |˜Iu(z(υ))|≤O˜I|z|+O′′˜I,|B∗(s)|≤˜OB∗, |Iu(s(υ))|≤˜OI|s|+˜O′′I, |˜Iu(s(υ))|≤˜O˜I|s|+˜O′′˜I, |
where u={0,1,2,...,k}.
(A3) For all υ∈U and s,z∈R, there are ϱ1,δ1,ϱ2,δ2∈C(U,R+), so that
|B(υ,z(υ))|≤ϱ1(υ)+δ1|z(υ)| and |B(υ,s(υ))|≤ϱ2(υ)+δ1|s(υ)|, |
with ϱ∗1=supυ∈Uϱ1(υ), δ∗1=supυ∈Uδ1(υ), ϱ∗2=supυ∈Uϱ2(υ), δ∗2=supυ∈Uδ2(υ)<1.
(A4) For each a1,a2,˜a1,˜a2,p1,p2,˜p1,˜p2∈R, and for all υ∈U, there are constants Lϕ,Lψ>0, and ˜Lϕ,˜Lψ∈(0,1) so that
|ϕ(υ,a1(υ),a2(υ))−ϕ(υ,˜a1(υ),˜a2(υ))|≤Lϕ|a1−˜a1|+˜Lϕ|a2−˜a2|,|ψ(υ,p1(υ),p2(υ))−ψ(υ,˜p1(υ),˜p2(υ))|≤Lψ|p1−˜p1|+˜Lψ|p2−˜p2|. |
(A5) For the continuous functions Iu,˜Iu:R→R, there are positive constants LI,L˜I,˜LI,˜L˜I so for any (z,s),(˜z,˜s)∈ℑ
|Iu(z(υ))−Iu(˜z(υ))|≤LI|z−˜z|, |Iu(s(υ))−Iu(˜s(υ))|≤˜LI|s−˜s|, |˜Iu(z(υ))−˜Iu(˜z(υ))|≤L˜I|z−˜z||˜Iu(s(υ))−˜Iu(˜s(υ))|≤˜L˜I|s−˜s|. |
(A6) For each s,z,˜s,˜z∈R and for all υ∈U, there are LB,LB∗,˜LB,˜LB∗>0, so that
|B(υ,z(υ))−B(υ,˜z(υ))|≤LB|z−˜z|, |B∗(z)−B∗(˜z)|≤LB∗|z−˜z|,|B(υ,s(υ))−B(υ,˜s(υ))|≤˜LB|s−˜s|, |B∗(s)−B∗(˜s)|≤˜LB∗|z−˜z|. |
Here, we demonstrate that the operator E+˜E has at least one FP using Kransnoselskii's FP theorem. For this, we choose a closed ball
ℑx={(z,s)∈ℑ:‖(z,s)‖≤y, ‖z‖≤y2 and ‖s‖≤y2}⊂ℑ, |
where
x≥M∗1+M∗∗1+(˜ℓ0+˜ℓ2˜ρ0)M∗3+(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−11−M∗2−M∗∗2−Y∗1M∗2+Y∗2M∗∗2˜ℓ2˜ρ2−1. |
Theorem 4.3. There exists at least one solution to the CII-FDEs (1.1) provided that the assertions (A1) and (A2) are true.
Proof. For any (z,s)∈ℑy, we get
‖E(z,s)(υ)+˜E(z,s)‖ℑ≤‖E1(z)‖ℑ1+‖E2(s)‖ℑ2+‖˜E1(z,s)‖ℑ1+‖˜E1(z,s)‖ℑ2. | (4.11) |
From (4.9), we have
|E1z(υ)(lnυ)2−ϖ|≤G|D0(ϖ)||B∗(z)|+u∑i=1|D1i(ϖ)||Ii(z(υi))|+u∑i=1|D2i(ϖ)||˜Ii(z(υi))|+|D3(ϖ)|Γ(ϖ)∫G1|ln(Gη)ϖ−1||B(η,z(η))|dηη, |
for u=1,2,...,k. This leads to
‖E1(z)‖ℑ1≤GOB∗|D0(ϖ)|+u|D1(ϖ)|(OI‖z‖+O′′I)+u|D2(ϖ)|(O˜I‖z‖+O′′˜I)−|D3(ϖ)|(ϱ∗1(υ)+δ∗1‖z‖))ϖΓ(ϖ)|ln(G)ϖ|=GOB∗|D0(ϖ)|+uO′′I|D1(ϖ)|+uO′′˜I|D2(ϖ)|+uOI|D1(ϖ)|‖z‖+uO˜I|D2(ϖ)|‖z‖−|D3(ϖ)|(ϱ∗1(υ)+δ∗1‖z‖))Γ(ϖ+1)|ln(G)ϖ|≤M∗1+M∗2‖z‖. | (4.12) |
Analogously, one can write
‖E2(z)‖ℑ2≤M∗∗1+M∗∗2‖s‖, | (4.13) |
where
M∗1=GOB∗|D0(ϖ)|+uO′′I|D1(ϖ)|+uO′′˜I|D2(ϖ)|−|D3(ϖ)|ϱ∗1(υ)Γ(ϖ+1)|ln(G)ϖ|, u=1,2,...,k,M∗2=uOI|D1(ϖ)|+uO˜I|D2(ϖ)|−δ∗1|D3(ϖ)|Γ(ϖ+1)|ln(G)ϖ|, u=1,2,...,k,M∗∗1=G˜OB∗|D0(θ)|+u˜O′′I|D1(θ)|+u˜O′′˜I|D2(θ)|−|D3(θ)|ϱ∗2(υ)Γ(θ+1)|ln(G)θ|, u=1,2,...,m,M∗∗2=u˜OI|D1(θ)|+u˜O˜I|D2(θ)|−δ∗2|D3(θ)|Γ(θ+1)|ln(G)θ|, u=1,2,...,m. |
Further, we obtain for u=1,2,...,k, that
|˜E1(z,s)(υ)(lnυ)2−ϖ|≤|D0(ϖ)|Γ(ϖ−1)∫Gυu|ln(Gη)ϖ−2||p(η)|dηη+|D4(ϖ)|Γ(ϖ)∫Gυu|ln(Gη)ϖ−1||p(η)|dηη+u∑i=1|D5i(ϖ)|Γ(ϖ)∫υiυi−1|ln(υiη)ϖ−1||p(η)|dηη+|(lnυ)2−ϖ|Γ(ϖ)∫υυu|ln(υη)ϖ−1||p(η)|dηη+u∑i=1|lnυ3−ϖ(lnυi)2−ϖ|Γ(ϖ−1)∫υiυi−1ln(υiη)ϖ−2|p(η)|dηη. | (4.14) |
From assertion (A1), we can write
|p(υ)|=|ϕ(υ,a1(υ),a2(υ))|≤ϕ(υ,z(υ),a(υ))≤ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)|a(υ)|=ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)|ψ(υ,p1(υ),p2(υ))|≤ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)|ψ(υ,s(υ),p(υ))|≤ℓ0(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)[ρ0(υ)+ρ1(υ)|s(υ)|+ρ2(υ)|p(υ)|]≤ℓ0(υ)+ℓ2(υ)ρ0(υ)1−ℓ2(υ)ρ2(υ)+ℓ1(υ)|z(υ)|+ℓ2(υ)ρ1(υ)|s(υ)|1−ℓ2(υ)ρ2(υ), |
which implies that
‖p‖≤˜ℓ0+˜ℓ2˜ρ01−˜ℓ2˜ρ2+˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖1−˜ℓ2˜ρ2. | (4.15) |
Taking supυ∈U on (4.14) and using (4.15), one has
‖˜E1(z,s)‖ℑ1≤(˜ℓ0+˜ℓ2˜ρ0˜ℓ2˜ρ2−1+˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖˜ℓ2˜ρ2−1)×(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυiυi−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυi)2−ϖ||(lnυiυi−1)ϖ−1|Γ(ϖ))≤(˜ℓ0+˜ℓ2˜ρ0)M∗3˜ℓ2˜ρ2−1+(˜ℓ1‖z‖+˜ℓ2˜ρ1‖s‖)M∗3˜ℓ2˜ρ2−1≤(˜ℓ0+˜ℓ2˜ρ0)M∗3˜ℓ2˜ρ2−1+Y∗1M∗3˜ℓ2˜ρ2−1‖(z,s)‖. | (4.16) |
In the same scenario, we get
‖˜E2(z,s)‖ℑ2≤(˜ρ0+˜ρ2˜ℓ0)M∗∗3˜ℓ2˜ρ2−1+Y∗2M∗∗3˜ℓ2˜ρ2−1‖(z,s)‖, | (4.17) |
where
M∗3=(|D0(ϖ)||ln(Gυu)ϖ−1|Γ(ϖ)+|D4(ϖ)||ln(Gυu)ϖ|Γ(ϖ+1)+u|D5(ϖ)||(lnυiυi−1)ϖ|Γ(ϖ+1)+|(lnυ)2−ϖ||(lnυυu)ϖ|Γ(ϖ+1)+u|lnυ3−ϖ(lnυi)2−ϖ||(lnυiυi−1)ϖ−1|Γ(ϖ)), u=1,2,...,k,M∗∗3=(|D0(θ)||ln(Gυu)θ−1|Γ(θ)+|D4(θ)||ln(Gυu)θ|Γ(θ+1)+u|D5(θ)||(lnυiυi−1)θ|Γ(θ+1)+|(lnυ)2−θ||(lnυυu)θ|Γ(θ+1)+u|lnυ3−θ(lnυi)2−θ||(lnυiυi−1)θ−1|Γ(θ)), u=1,2,...,m,Y∗1=max{˜ℓ1,˜ℓ2˜ρ1}, Y∗2=max{˜ρ2˜ℓ1,˜ρ1}. |
Applying (4.12), (4.13), (4.16) and (4.17) in (4.11), we have
\begin{eqnarray*} \left\Vert E(z,s)+\widetilde{E}(z,s)\right\Vert _{\Im } &\leq &M_{1}^{\ast }+M_{1}^{\ast \ast }+\frac{\left( \widetilde{\ell }_{0}+\widetilde{\ell }_{2} \widetilde{\rho }_{0}\right) M_{3}^{\ast }+\left( \widetilde{\rho }_{0}+ \widetilde{\rho }_{2}\widetilde{\ell }_{0}\right) M_{3}^{\ast \ast }}{ \widetilde{\ell }_{2}\widetilde{\rho }_{2}-1} \\ &&+\frac{Y_{1}^{\ast }M_{3}^{\ast }+Y_{2}^{\ast }M_{3}^{\ast \ast }}{ \widetilde{\ell }_{2}\widetilde{\rho }_{2}-1}\left\Vert \left( z,s\right) \right\Vert +M_{2}^{\ast }\left\Vert z\right\Vert +M_{2}^{\ast \ast }\left\Vert s\right\Vert \\ &\leq &M_{1}^{\ast }+M_{1}^{\ast \ast }+\frac{\left( \widetilde{\ell }_{0}+ \widetilde{\ell }_{2}\widetilde{\rho }_{0}\right) M_{3}^{\ast }+\left( \widetilde{\rho }_{0}+\widetilde{\rho }_{2}\widetilde{\ell }_{0}\right) M_{3}^{\ast \ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1} \\ &&+\left( M_{2}^{\ast }+M_{2}^{\ast \ast }+\frac{Y_{1}^{\ast }M_{3}^{\ast }+Y_{2}^{\ast }M_{3}^{\ast \ast }}{\widetilde{\ell }_{2}\widetilde{\rho } _{2}-1}\right) \left\Vert \left( z,s\right) \right\Vert \\ &\leq &x, \end{eqnarray*} |
which implies that E(z, s)\left(\upsilon \right) +\widetilde{E}(z, s)\in \Im _{x}. After that, for any \upsilon \in U and s, z, \widetilde{s}, \widetilde{z}\in \Im, one writes
\begin{eqnarray*} &&\left\Vert E(z,s)-E(\widetilde{z},\widetilde{s})\right\Vert _{\Im } \\ &\leq &\left\Vert E_{1}(z)-E_{1}(\widetilde{z})\right\Vert _{\Im _{1}}+\left\Vert E_{2}(s)-E_{2}(\widetilde{s})\right\Vert _{\Im _{2}} \\ &\leq &G\left\vert D_{0}(\varpi )\right\vert \left\vert B^{\ast }(z)-B^{\ast }(\widetilde{z})\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{1i}(\varpi )\right\vert \\ &&\left\vert I_{i}(z_{i})-I_{i}(\widetilde{z}_{i})\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{2i}(\varpi )\right\vert \left\vert \widetilde{I }_{i}(z_{i})-\widetilde{I}_{i}(\widetilde{z}_{i})\right\vert \\ &&+\frac{\left\vert D_{3}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{1}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \left\vert B(\eta ,z(\eta ))-B(\eta ,\widetilde{z}(\eta ))\right\vert \frac{d\eta }{\eta } \\ &&+G\left\vert D_{0}(\theta )\right\vert \left\vert B^{\ast }(s)-B^{\ast }( \widetilde{s})\right\vert \\ &&+\sum\limits_{j = 1}^{u}D_{1j}(\theta )\left\vert I_{j}(s_{j})-I_{j}(\widetilde{s}_{j})\right\vert +\sum\limits_{j = 1}^{u}D_{2j}(\theta )\left\vert \widetilde{I}_{j}(s_{j})- \widetilde{I}_{j}(\widetilde{s}_{j})\right\vert \\ &&+\frac{\left\vert D_{3}(\theta )\right\vert }{\Gamma \left( \theta \right) }\int_{1}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\theta -1}\right\vert \left\vert B(\eta ,s(\eta ))-B(\eta ,\widetilde{s}(\eta ))\right\vert \frac{d\eta }{\eta }. \end{eqnarray*} |
Applying (A_{5}) and (A_{6}), one has
\begin{eqnarray*} &&\left\Vert E(z,s)-E(\widetilde{z},\widetilde{s})\right\Vert _{\Im } \\ &\leq &\left[ GL_{B^{\ast }}\left\vert D_{0}(\varpi )\right\vert +uL_{I}\left\vert D_{1}(\varpi )\right\vert +uL_{\widetilde{I}}\left\vert D_{2}(\varpi )\right\vert -\frac{L_{B}\left\vert D_{3}(\varpi )\right\vert \left\vert \left( \ln G\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right] \left\Vert z-\widetilde{z}\right\Vert \\ &&+\left[ G\widetilde{L}_{B^{\ast }}\left\vert D_{0}(\theta )\right\vert +u \widetilde{L}_{I}\left\vert D_{1}(\theta )\right\vert +u\widetilde{L}_{ \widetilde{I}}\left\vert D_{2}(\theta )\right\vert -\frac{\widetilde{L} _{B}\left\vert D_{3}(\theta )\right\vert \left\vert \left( \ln G\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }\right] \left\Vert s- \widetilde{s}\right\Vert \\ &\leq &L\left( \Delta _{1}+\Delta _{2}\right) \left\Vert \left( z-\widetilde{ z},s-\widetilde{s}\right) \right\Vert , \end{eqnarray*} |
where
L = \max \left\{ L_{B^{\ast }},L_{I},L_{\widetilde{I}},\widetilde{L}_{B^{\ast }},\widetilde{L}_{I},\widetilde{L}_{\widetilde{I}},L_{B},\widetilde{L} _{B}\right\} , |
and
\begin{eqnarray*} \Delta _{1} & = &G\left\vert D_{0}(\varpi )\right\vert +u\left\vert D_{1}(\varpi )\right\vert +u\left\vert D_{2}(\varpi )\right\vert -\frac{ \left\vert D_{3}(\varpi )\right\vert \left\vert \left( \ln G\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) },\text{ }u = 1,2,...,k, \\ \Delta _{2} & = &G\left\vert D_{0}(\theta )\right\vert +u\left\vert D_{1}(\theta )\right\vert +u\left\vert D_{2}(\theta )\right\vert -\frac{ \left\vert D_{3}(\theta )\right\vert \left\vert \left( \ln G\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) },\text{ }u = 1,2,...,m. \end{eqnarray*} |
Hence, E is a contraction mapping. Now, we claim that \widetilde{E} is continuous and compact. For this, we build a sequence G_{n} = (z_{n}, s_{n}) in \Im so that \lim_{n\rightarrow \infty }(z_{n}, s_{n}) = (z, s)\in \Im _{x}. Hence, we obtain
\begin{equation} \left\Vert \widetilde{E}(z,s)-\widetilde{E}(z_{n},s_{n})\right\Vert _{\Im }\leq \left\Vert \widetilde{E}_{1}(z_{n},s_{n})-\widetilde{E} _{1}(z,s)\right\Vert _{\Im _{1}}+\left\Vert \widetilde{E}_{2}(z_{n},s_{n})- \widetilde{E}_{2}(z,s)\right\Vert _{\Im _{2}}. \end{equation} | (4.18) |
Since
\begin{eqnarray} &&\left\Vert \widetilde{E}_{1}(z_{n},s_{n})-\widetilde{E}_{1}(z,s)\right\Vert _{\Im _{1}} \\ &\leq &\left( \frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{ \Gamma \left( \varpi +1\right) }\right. \\ &&\left.+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&\left. +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{u}\right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}} \right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }\right) \\ &&\left( \frac{L_{\phi }\left\Vert z_{n}-z\right\Vert +\widetilde{L}_{\phi }L_{\psi }\left\Vert s_{n}-s\right\Vert }{\widetilde{L}_{\phi }\widetilde{L} _{\psi }-1}\right) \\ &\leq &M_{3}^{\ast }\left( \frac{L_{\phi }\left\Vert z_{n}-z\right\Vert + \widetilde{L}_{\phi }L_{\psi }\left\Vert s_{n}-s\right\Vert }{\widetilde{L} _{\phi }\widetilde{L}_{\psi }-1}\right) , \end{eqnarray} | (4.19) |
and
\begin{eqnarray} &&\left\Vert \widetilde{E}_{2}(z_{n},s_{n})-\widetilde{E}_{2}(z,s)\right\Vert _{\Im _{2}} \\ &\leq &\left( \frac{\left\vert D_{0}(\theta )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }+\frac{\left\vert D_{4}(\theta )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\theta }\right\vert }{ \Gamma \left( \theta +1\right) }+\frac{u\left\vert D_{5}(\theta )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }\right. \\ &&\left. +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\theta }\left( \ln \upsilon _{u}\right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{i-1}} \right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }\right) \\&& \left( \frac{L_{\phi }\widetilde{L}_{\psi }\left\Vert z_{n}-z\right\Vert +L_{\psi }\left\Vert s_{n}-s\right\Vert }{\widetilde{L}_{\phi }\widetilde{L} _{\psi }-1}\right) \\ &\leq &M_{3}^{\ast \ast }\left( \frac{L_{\phi }\widetilde{L}_{\psi }\left\Vert z_{n}-z\right\Vert +L_{\psi }\left\Vert s_{n}-s\right\Vert }{ \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) . \end{eqnarray} | (4.20) |
Applying (4.19) and (4.20) in (4.18), we conclude that
\left\Vert \widetilde{E}(z,s)-\widetilde{E}(z_{n},s_{n})\right\Vert _{\Im }\leq M_{3}^{\ast }\left( \frac{L_{\phi }\left\Vert z_{n}-z\right\Vert + \widetilde{L}_{\phi }L_{\psi }\left\Vert s_{n}-s\right\Vert }{\widetilde{L} _{\phi }\widetilde{L}_{\psi }-1}\right) +M_{3}^{\ast \ast }\left( \frac{ L_{\phi }\widetilde{L}_{\psi }\left\Vert z_{n}-z\right\Vert +L_{\psi }\left\Vert s_{n}-s\right\Vert }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1 }\right) , |
which yields \left\Vert \widetilde{E}(z, s)-\widetilde{E}(z_{n}, s_{n})\right\Vert _{\Im }\rightarrow 0 as n\rightarrow \infty, this proves the continuity of \widetilde{E}. Next, using (4.16) and (4.17), we get
\begin{eqnarray*} \left\Vert \widetilde{E}\left( z,s\right) \left( \upsilon \right) \right\Vert _{\Im } &\leq &\left\Vert \widetilde{E_{1}}\left( z,s\right) \left( \upsilon \right) \right\Vert _{\Im _{1}}+\left\Vert \widetilde{E} _{2}\left( z,s\right) \right\Vert _{\Im _{2}} \\ &\leq &\frac{\left( \widetilde{\ell }_{0}+\widetilde{\ell }_{2}\widetilde{ \rho }_{0}\right) M_{3}^{\ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1 }+\frac{\left( \widetilde{\rho }_{0}+\widetilde{\rho }_{2}\widetilde{\ell } _{0}\right) M_{3}^{\ast \ast }}{\widetilde{\ell }_{2}\widetilde{\rho }_{2}-1} \\ && +\left( \frac{Y_{1}^{\ast }M_{3}^{\ast }}{\widetilde{\ell }_{2}\widetilde{ \rho }_{2}-1}+\frac{Y_{2}^{\ast }M_{3}^{\ast \ast }}{\widetilde{\ell }_{2} \widetilde{\rho }_{2}-1}\right) \left\Vert \left( z,s\right) \right\Vert \\ &\leq &x. \end{eqnarray*} |
Therefore, \widetilde{E} is uniformly bounded on \Im _{x}. Finally, we show that \widetilde{E} is equicontinuous. To get this result, take \upsilon _{1}, \upsilon _{2}\in U with \upsilon _{1} < \upsilon _{2} and for any (z, s)\in \Im _{x}\subset \Im (clearly \Im _{x} is bounded), we obtain
\begin{eqnarray*} &&\left\Vert \widetilde{E}_{1}(z,s)\left( \upsilon _{1}\right) -\widetilde{E} _{1}(z,s)\left( \upsilon _{2}\right) \right\Vert _{\Im _{1}} \\ & = &\max \left\{ \left\vert \left[ \widetilde{E}_{1}(z,s)\left( \upsilon _{1}\right) -\widetilde{E}_{1}(z,s)\left( \upsilon _{2}\right) \right] \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \right\} \\ &\leq &\left[ \left( \frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{ \Gamma \left( \varpi +1\right) }+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right) \right. \\ &&\times \left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \upsilon _{1}\right) ^{\varpi -2}-\left( \ln \upsilon _{2}\right) ^{\varpi -2}\right\vert \\ &&+\left. \frac{u\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert \left\vert \ln \upsilon _{1}^{3-\varpi }\left( \log _{\upsilon _{u}}\upsilon _{1}\right) ^{\varpi -2}-\ln \upsilon _{2}^{3-\varpi }\left( \log _{\upsilon _{u}}\upsilon _{2}\right) ^{\varpi -2}\right\vert }{\Gamma \left( \varpi \right) }\right] \\ &&\times \left( \frac{\widetilde{\ell }_{0}+\widetilde{\ell }_{2}\widetilde{ \rho }_{0}}{1-\widetilde{\ell }_{2}\widetilde{\rho }_{2}}+\frac{\widetilde{ \ell }_{1}\left\Vert z\right\Vert +\widetilde{\ell }_{2}\widetilde{\rho } _{1}\left\Vert s\right\Vert }{1-\widetilde{\ell }_{2}\widetilde{\rho }_{2}} \right) +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert }{\Gamma \left( \varpi \right) }\\ &&\left\vert \int_{\upsilon _{u}}^{\upsilon _{1}}\ln \left( \frac{\upsilon _{1}}{\eta }\right) ^{\varpi -1}\phi \left( \upsilon ,^{H}D^{\varpi }z(\upsilon ),^{H}D^{\theta }s(\upsilon )\right) \frac{d\eta }{\eta }\right. \\ &&-\left. \int_{\upsilon _{u}}^{\upsilon _{2}}\ln \left( \frac{\upsilon _{2} }{\eta }\right) ^{\varpi -1}\phi \left( \upsilon ,^{H}D^{\varpi }z(\upsilon ),^{H}D^{\theta }s(\upsilon )\right) \frac{d\eta }{\eta }\right\vert , \end{eqnarray*} |
which yields that
\left\Vert \widetilde{E}_{1}(z,s)\left( \upsilon _{1}\right) -\widetilde{E} _{1}(z,s)\left( \upsilon _{2}\right) \right\Vert _{\Im _{1}}\rightarrow 0, \text{ as }\upsilon _{1}\rightarrow \upsilon _{2}. |
Similarly, we get
\left\Vert \widetilde{E}_{2}(z,s)\left( \upsilon _{1}\right) -\widetilde{E} _{2}(z,s)\left( \upsilon _{2}\right) \right\Vert _{\Im _{2}}\rightarrow 0, \text{ as }\upsilon _{1}\rightarrow \upsilon _{2}. |
Hence
\left\Vert \widetilde{E}(z,s)\left( \upsilon _{1}\right) -\widetilde{E} (z,s)\left( \upsilon _{2}\right) \right\Vert _{\Im }\rightarrow 0,\text{ as } \upsilon _{1}\rightarrow \upsilon _{2}. |
Therefore \widetilde{E} is a relatively compact on \Im _{x}. Thanks to the theorem of Arzelà-Ascoli, \widetilde{E} is compact. Thus, it is completely continuous. So, the CII-FDEs (1.1) admits at least one solution. This finishes the proof.
Theorem 4.4. Assume that (A_{4}) – (A_{6}) are fulfilled with
\begin{equation} \mho _{1}+\mho _{3}+\frac{\mho _{2}\left( L_{\phi }+\widetilde{L}_{\phi }L_{\psi }\right) +\mho _{4}\left( L_{\phi }\widetilde{L}_{\psi }+L_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} < 1, \end{equation} | (4.21) |
then the CII-FDEs (1.1) possesses a unique solution.
Proof. Let \aleph = (\aleph _{1}, \aleph _{1}):\Im \rightarrow \Im be an operator defined by \aleph (z, s)\left(\upsilon \right) = \left(\aleph _{1}(z, s), \aleph _{2}(z, s)\right) \left(\upsilon \right), where
\begin{eqnarray*} \aleph _{1}(z,s) & = &GD_{0}(\varpi )B^{\ast }(z)\left( \ln \upsilon \right) ^{\varpi -2}+\sum\limits_{i = 1}^{u}D_{1i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}I_{i}(z(\upsilon _{i})) \\ &&+\sum\limits_{i = 1}^{u}D_{2i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2} \widetilde{I}_{i}(z(\upsilon _{i}))\\ &&+\frac{D_{3}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{1}^{G}\ln \left( \frac{G}{\eta }\right) ^{\varpi -1}B(\eta ,z(\eta ))\frac{d\eta }{\eta } \\ &&+\frac{D_{0}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\varpi -2}\\ &&\phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) \frac{d\eta }{\eta } \\ &&+\frac{D_{4}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\varpi -1}\\ &&\phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{D_{5i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -1}\\ &&\phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\ln \upsilon ^{3-\varpi }(\log _{\upsilon _{i}}\upsilon )^{\varpi -2}}{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -2}\\ &&\phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) \frac{d\eta }{\eta } \\ &&+\frac{1}{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) \frac{d\eta }{\eta }, \end{eqnarray*} |
for u = 1, 2, ..., k and
\begin{eqnarray*} \aleph _{2}(z,s) & = &GD_{0}(\theta )B^{\ast }(s)\left( \ln \upsilon \right) ^{\theta -2}+\sum\limits_{j = 1}^{u}D_{1j}(\theta )\left( \ln \upsilon \right) ^{\theta -2}I_{j}(s_{j})+\sum\limits_{j = 1}^{u}D_{2j}(\theta )\left( \ln \upsilon \right) ^{\theta -2}\widetilde{I}_{j}(s_{j}) \\ &&+\frac{D_{3}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{1}^{G}\ln \left( \frac{G}{\eta }\right) ^{\theta -1}B(\eta ,s(\eta ))\frac{d\eta }{\eta } \\ &&+\frac{D_{0}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta -1\right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\theta -2}\psi \left( \eta ,p_{1}(\eta ),p_{2}(\eta )\right) \frac{ d\eta }{\eta } \\ &&+\frac{D_{4}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\theta -1}\psi \left( \eta ,p_{1}(\eta ),p_{2}(\eta )\right) \frac{ d\eta }{\eta } \\ &&+\sum\limits_{j = 1}^{u}\frac{D_{5i}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{\upsilon _{j-1}}^{\upsilon _{j}}\ln \left( \frac{\upsilon _{j}}{\eta }\right) ^{\theta -1}\psi \left( \eta ,p_{1}(\eta ),p_{2}(\eta )\right) \frac{d\eta }{\eta } \\ &&+\sum\limits_{j = 1}^{u}\frac{\ln \upsilon ^{3-\theta }(\log _{\upsilon _{j}}\upsilon )^{\theta -2}}{\Gamma \left( \theta -1\right) }\int_{\upsilon _{j-1}}^{\upsilon _{j}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\theta -2}\psi \left( \eta ,p_{1}(\eta ),p_{2}(\eta )\right) \frac{d\eta }{ \eta } \\ &&+\frac{1}{\Gamma \left( \theta \right) }\int_{\upsilon _{u}}^{\upsilon }\ln \left( \frac{\upsilon }{\eta }\right) ^{\theta -1}\psi \left( \eta ,p_{1}(\eta ),p_{2}(\eta )\right) \frac{d\eta }{\eta }, \end{eqnarray*} |
for u = 1, 2, ..., m. In light of Theorem 4.3, one can obtain
\begin{eqnarray*} &&\left\vert \left( \aleph _{1}(z,s)-\aleph _{1}(\widetilde{z},\widetilde{s} )\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}\right) \right\vert \\ &\leq &\left[ GL_{B^{\ast }}\left\vert D_{0}(\varpi )\right\vert +uL_{I}\left\vert D_{1}(\varpi )\right\vert +uL_{\widetilde{I}}\left\vert D_{2}(\varpi )\right\vert \right. \\ &&\left.-\frac{L_{B}\left\vert D_{3}(\varpi )\right\vert \left\vert \left( \ln G\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&+\left( \frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&\left.+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&+\left. \left. \frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{u}\right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}} \right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }\right) \\ \left( \frac{L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \right] \left\vert z-\widetilde{z}\right\vert \\ &&+\left( \frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&\left.+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }\right. \\ &&\left. +\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{u}\right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}} \right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }\right) \\ && \left( \frac{\widetilde{L}_{\phi }L_{\psi }\left\vert s-\widetilde{s} \right\vert }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) , \end{eqnarray*} |
for u = 1, 2, ..., k. Passing \sup_{\upsilon \in U}, we have
\left\Vert \aleph _{1}(z,s)-\aleph _{1}(\widetilde{z},\widetilde{s} )\right\Vert _{\Im _{1}}\leq \left( \mho _{1}+\frac{\mho _{2}\left( L_{\phi }+\widetilde{L}_{\phi }L_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L} _{\psi }-1}\right) \left\Vert (z,s)-(\widetilde{z},\widetilde{s})\right\Vert ,\text{ }u = 1,2,...,k, |
where
\begin{eqnarray*} \mho _{1} & = &GL_{B^{\ast }}\left\vert D_{0}(\varpi )\right\vert +uL_{I}\left\vert D_{1}(\varpi )\right\vert +uL_{\widetilde{I}}\left\vert D_{2}(\varpi )\right\vert -\frac{L_{B}\left\vert D_{3}(\varpi )\right\vert \left\vert \left( \ln G\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }, \\ \mho _{2} & = &\frac{\left\vert D_{0}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }+\frac{\left\vert D_{4}(\varpi )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\varpi }\right\vert }{ \Gamma \left( \varpi +1\right) }+\frac{u\left\vert D_{5}(\varpi )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\varpi }\right\vert }{\Gamma \left( \varpi +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\varpi }\left( \ln \upsilon _{u}\right) ^{2-\varpi }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\varpi -1}\right\vert }{\Gamma \left( \varpi \right) }. \end{eqnarray*} |
Analogously,
\left\Vert \aleph _{2}(z,s)-\aleph _{2}(\widetilde{z},\widetilde{s} )\right\Vert _{\Im _{2}}\leq \left( \mho _{3}+\frac{\mho _{4}\left( L_{\psi }+L_{\phi }\widetilde{L}_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L} _{\psi }-1}\right) \left\Vert (z,s)-(\widetilde{z},\widetilde{s})\right\Vert ,\text{ }u = 1,2,...,m, |
where
\begin{eqnarray*} \mho _{3} & = &G\widetilde{L}_{B^{\ast }}\left\vert D_{0}(\theta )\right\vert +u\widetilde{L}_{I}\left\vert D_{1}(\theta )\right\vert +u\widetilde{L}_{ \widetilde{I}}\left\vert D_{2}(\theta )\right\vert -\frac{\widetilde{L} _{B}\left\vert D_{3}(\theta )\right\vert \left\vert \left( \ln G\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }, \\ \mho _{4} & = &\frac{\left\vert D_{0}(\theta )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }+\frac{\left\vert D_{4}(\theta )\right\vert \left\vert \ln \left( \frac{G}{\upsilon _{u}}\right) ^{\theta }\right\vert }{ \Gamma \left( \theta +1\right) }+\frac{u\left\vert D_{5}(\theta )\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon }{\upsilon _{u}}\right) ^{\theta }\right\vert }{\Gamma \left( \theta +1\right) }+\frac{u\left\vert \ln \upsilon ^{3-\theta }\left( \ln \upsilon _{u}\right) ^{2-\theta }\right\vert \left\vert \left( \ln \frac{\upsilon _{u}}{\upsilon _{u-1}}\right) ^{\theta -1}\right\vert }{\Gamma \left( \theta \right) }. \end{eqnarray*} |
Hence
\left\Vert \aleph (z,s)-\aleph (\widetilde{z},\widetilde{s})\right\Vert _{\Im }\leq \left( \mho _{1}+\mho _{3}+\frac{\mho _{2}\left( L_{\phi }+ \widetilde{L}_{\phi }L_{\psi }\right) +\mho _{4}\left( L_{\psi }+L_{\phi } \widetilde{L}_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left\Vert (z,s)-(\widetilde{z},\widetilde{s})\right\Vert . |
This suggests that \aleph is a contraction. Consequently, the CII-FDEs (1.1) has a unique solution.
In this section, we examine various stability types for the suggested system, including the HU, GHU, HUR, and GHUR stability.
Theorem 5.1. If the assertions (A_{1}) – (A_{3}) and the condition (4.21) are true and
\begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0, \end{equation*} |
then the unique solution of CII-FDEs (1.1) is HU stable and as a result, GHU stable.
Proof. Take into account that (z, s)\in \Im is an approximate solution of (3.1) and consider (\widehat{z}, \widehat{s})\in \Im is a solution of the coupled problem shown below
\begin{equation} \left\{ \begin{array}{c} ^{H}D^{\varpi }\widehat{z}(\upsilon ) = \phi \left( \upsilon ,^{H}D^{\varpi } \widehat{z}(\upsilon ),^{H}D^{\theta }\widehat{s}(\upsilon )\right) ,\text{ } \upsilon \in U,\text{ }\upsilon \neq \upsilon _{i},\text{ }i = 1,2,...k, \\ ^{H}D^{\theta }\widehat{s}(\upsilon ) = \psi \left( \upsilon ,^{H}D^{\theta } \widehat{s}(\upsilon ),^{H}D^{\varpi }\widehat{z}(\upsilon )\right) ,\text{ } \upsilon \in U,\text{ }\upsilon \neq \upsilon _{j},\text{ }j = 1,2,...m, \\ \Delta z(\widehat{\upsilon }_{i}) = I_{i}\widehat{z}(\upsilon _{i}),{ \ \ }\Delta \widehat{z}^{\prime }(\upsilon _{i}) = \widetilde{I}_{i}\widehat{z} (\upsilon _{i}), \ \ \ i = 1,2,...k,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \Delta \widehat{s}(\upsilon _{j}) = I_{j}\widehat{s}(\upsilon _{j}),{ \ \ }\Delta \widehat{s}^{\prime }(\upsilon _{j}) = \widetilde{I}_{j}\widehat{s} (\upsilon _{j}), \ \ \ j = 1,2,...m,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \widehat{z}(G) = \frac{1}{\Gamma (\varpi )}\int_{1}^{G}\ln \left( \frac{G}{ \eta }\right) ^{\varpi -1}B(\eta ,\widehat{z}(\eta ))\frac{d\eta }{\eta }, \text{ }\widehat{z}^{\prime }(G) = B^{\ast }(\widehat{z}),{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \widehat{s}(G) = \frac{1}{\Gamma (\theta )}\int_{1}^{G}\ln \left( \frac{G}{ \eta }\right) ^{\theta -1}B(\eta ,\widehat{s}(\eta ))\frac{d\eta }{\eta }, \text{ }\widehat{s}^{\prime }(G) = B^{\ast }(\widehat{s}).{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \end{array} \right. \end{equation} | (5.1) |
From Remark 3.5, we get
\begin{equation} \left\{ \begin{array}{c} ^{H}D^{\varpi }z(\upsilon ) = \phi \left( \upsilon ,^{H}D^{\varpi }z(\upsilon ),^{H}D^{\theta }s(\upsilon )\right) +\Re _{\phi }\left( \upsilon \right) , \text{ }\upsilon \in U,\text{ }\upsilon \neq \upsilon _{i},\text{ } i = 1,2,...k, \\ \Delta z(\upsilon _{i}) = I_{i}\left( z(\upsilon _{i})\right) +\Re _{\phi _{i}}, \ \Delta z^{\prime }(\upsilon _{i}) = \widetilde{I}_{i}\left( z(\upsilon _{i})\right) +\Re _{\phi _{i}},\text{ }i = 1,2,...k, \\ ^{H}D^{\theta }s(\upsilon ) = \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) , \text{ }\upsilon \in U,\text{ }\upsilon \neq \upsilon _{j},\text{ } j = 1,2,...m, \\ \Delta s(\upsilon _{j}) = I_{j}\left( s(\upsilon _{j})\right) +\Re _{\psi _{j}}, \ \Delta s^{\prime }(\upsilon _{j}) = \widetilde{I}_{j}\left( s(\upsilon _{j})\right) +\Re _{\psi _{j}},\text{ }j = 1,2,...,m. \end{array} \right. \end{equation} | (5.2) |
It follows from Corollary 4.2 that the solution of system (5.2) is
\begin{eqnarray} z(\upsilon ) & = &GD_{0}(\varpi )B^{\ast }(z)\left( \ln \upsilon \right) ^{\varpi -2}+\sum\limits_{i = 1}^{u}D_{1i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}\left( I_{i}(z_{i})+\Re _{\phi _{i}}\right) \\ &&+\sum\limits_{i = 1}^{u}D_{2i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}\left( \widetilde{I}_{i}(z_{i})+\Re _{\phi _{i}}\right) \\ &&+\frac{D_{0}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\varpi -2}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\frac{D_{4}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\varpi -1}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{D_{5i}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -1}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\ln \upsilon ^{3-\varpi }(\log _{\upsilon _{i}}\upsilon )^{\varpi -2}}{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -2}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{ \eta } \\ &&+\frac{D_{3}(\varpi )\left( \ln \upsilon \right) ^{\varpi -2}}{\Gamma \left( \varpi \right) }\int_{1}^{G}\ln \left( \frac{G}{\eta }\right) ^{\varpi -1}B(\eta ,z(\eta ))\frac{d\eta }{\eta } \\ &&+\frac{1}{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\\ &&\left[ \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) +\Re _{\phi }\left( \upsilon \right) \right] \frac{d\eta }{\eta }, \end{eqnarray} | (5.3) |
for u = 1, 2, ..., k and
\begin{eqnarray} s(\upsilon ) & = &GD_{0}(\theta )B^{\ast }(s)\left( \ln \upsilon \right) ^{\theta -2}+\sum\limits_{j = 1}^{u}D_{1j}(\theta )\left( \ln \upsilon \right) ^{\theta -2}\left( I_{j}(s_{j})+\Re _{\psi _{j}}\right) \\ &&+\sum\limits_{j = 1}^{u}D_{2j}(\theta )\left( \ln \upsilon \right) ^{\theta -2}\left( I_{j}(z_{j})+\Re _{\psi _{j}}\right) \\ &&+\frac{D_{0}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta -1\right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\theta -2}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\frac{D_{4}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{\upsilon _{u}}^{G}\ln \left( \frac{G}{\eta } \right) ^{\theta -1}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{j = 1}^{u}\frac{D_{5i}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{\upsilon _{j-1}}^{\upsilon _{j}}\ln \left( \frac{\upsilon _{j}}{\eta }\right) ^{\theta -1}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\sum\limits_{j = 1}^{u}\frac{\ln \upsilon ^{3-\theta }(\log _{\upsilon _{j}}\upsilon )^{\theta -2}}{\Gamma \left( \theta -1\right) }\int_{\upsilon _{j-1}}^{\upsilon _{j}}\ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\theta -2}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta } \\ &&+\frac{D_{3}(\theta )\left( \ln \upsilon \right) ^{\theta -2}}{\Gamma \left( \theta \right) }\int_{1}^{G}\ln \left( \frac{G}{\eta }\right) ^{\theta -1}B(\eta ,s(\eta ))\frac{d\eta }{\eta } \\ &&+\frac{1}{\Gamma \left( \theta \right) }\int_{\upsilon _{u}}^{\upsilon }\ln \left( \frac{\upsilon }{\eta }\right) ^{\theta -1}\\ &&\left[ \phi \left( \upsilon ,^{H}D^{\theta }s(\upsilon ),^{H}D^{\varpi }z(\upsilon )\right) +\Re _{\psi }\left( \upsilon \right) \right] \frac{d\eta }{\eta }, \end{eqnarray} | (5.4) |
for u = 1, 2, ..., m. Consider
\begin{eqnarray*} &&\left\vert \left( z\left( \upsilon \right) -\widehat{z}\left( \upsilon \right) \right) \left( \ln \upsilon \right) ^{2-\theta }\right\vert \\ &\leq &G\left\vert D_{0}(\varpi )\right\vert \left\vert B^{\ast }(z)-B^{\ast }(\widehat{z})\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{1i}(\varpi )\right\vert \left\vert I_{i}(z_{i})-I_{i}(\widehat{z}_{i})\right\vert \\ &&+\sum\limits_{i = 1}^{u}\left\vert D_{2i}(\varpi )\right\vert \left\vert \widetilde{I} _{i}(z_{i})-\widetilde{I}_{i}(\widehat{z}_{i})\right\vert \\ &&+\frac{\left\vert D_{0}(\varpi )\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta } \right) ^{\varpi -2}\right\vert \\ &&\left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi } \widehat{z}(\eta ),^{H}D^{\theta }\widehat{s}(\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert D_{4}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \\ &&\left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z }(\eta ),^{H}D^{\theta }\widehat{s}(\eta )\right) \right\vert \frac{d\eta }{ \eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert D_{5i}(\varpi \right\vert )}{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{\upsilon _{i}}{\eta }\right) ^{\varpi -1}\right\vert\\ && \left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z}(\eta ),^{H}D^{\theta }\widehat{s} (\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert \ln \upsilon ^{3-\varpi }\right\vert \left\vert (\ln \upsilon _{i})^{\varpi -2}\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{ \upsilon _{i}}{\eta }\right) ^{\varpi -2}\right\vert \\ &&\times \left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z}(\eta ),^{H}D^{\theta }\widehat{s}(\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert }{ \Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\left\vert \ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\right\vert\\ && \left\vert \phi \left( \eta ,^{H}D^{\varpi }z(\eta ),^{H}D^{\theta }s(\eta )\right) -\phi \left( \eta ,^{H}D^{\varpi }\widehat{z}(\eta ),^{H}D^{\theta }\widehat{ s}(\eta )\right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert D_{3}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{1}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \left\vert B(\eta ,z(\eta ))-B(\eta ,\widehat{z}(\eta ))\right\vert \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\left\vert D_{2i}(\varpi )\right\vert \left\vert \Re _{\phi _{i}}\right\vert +\sum\limits_{i = 1}^{u}\left\vert D_{1i}(\varpi )\right\vert \left\vert \Re _{\phi _{i}}\right\vert \\ &&+\frac{\left\vert D_{0}(\varpi )\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -2}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert D_{4}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{G}\left\vert \ln \left( \frac{G}{\eta }\right) ^{\varpi -1}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta }\\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert D_{5i}(\varpi )\right\vert }{\Gamma \left( \varpi \right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{\upsilon _{i}}{\eta } \right) ^{\varpi -1}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta } \\ &&+\sum\limits_{i = 1}^{u}\frac{\left\vert \ln \upsilon ^{3-\varpi }\right\vert \left\vert (\ln \upsilon _{i})^{\varpi -2}\right\vert }{\Gamma \left( \varpi -1\right) }\int_{\upsilon _{i-1}}^{\upsilon _{i}}\left\vert \ln \left( \frac{ \upsilon _{i}}{\eta }\right) ^{\varpi -2}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta } \\ &&+\frac{\left\vert \left( \ln \upsilon \right) ^{2-\theta }\right\vert }{ \Gamma \left( \varpi \right) }\int_{\upsilon _{u}}^{\upsilon }\left\vert \ln \left( \frac{\upsilon }{\eta }\right) ^{\varpi -1}\right\vert \left\vert \Re _{\phi }\left( \upsilon \right) \right\vert \frac{d\eta }{\eta }. \end{eqnarray*} |
As in Theorem 4.4, one has
\begin{eqnarray} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} &\leq &\left( \mho _{1}+ \frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left( \ln \upsilon \right) ^{2-\varpi }\left\Vert z-\widehat{z} \right\Vert _{\Im _{1}}+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{ \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\left( \ln \upsilon \right) ^{2-\varpi }\left\Vert s-\widehat{s}\right\Vert _{\Im _{1}} \\ &&+\left( \mho _{2}+u\left\vert D_{1}(\varpi )\right\vert +u\left\vert D_{2}(\varpi )\right\vert \right) \varphi _{\varpi }, \end{eqnarray} | (5.5) |
for u = 1, 2, ..., k and
\begin{eqnarray} \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} &\leq &\left( \frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }\left\Vert z-\widehat{z} \right\Vert _{\Im _{2}}+\left( \mho _{3}+\frac{\mho _{4}L_{\psi }}{ \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }\left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} \\ &&+\left( \mho _{4}+u\left\vert D_{1}(\theta )\right\vert +u\left\vert D_{2}(\theta )\right\vert \right) \varphi _{\theta }. \end{eqnarray} | (5.6) |
Arranging (5.5) and (5.6), we get
\begin{equation} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}}-\frac{\mho _{2}\widetilde{L} _{\phi }L_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\left\Vert s-\widehat{s}\right\Vert _{\Im _{1}}\leq \frac{\left( \mho _{2}+u\left\vert D_{1}(\varpi )\right\vert +u\left\vert D_{2}(\varpi )\right\vert \right) }{1-\left( \mho _{1}+\frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\varpi }}\varphi _{\varpi }, \end{equation} | (5.7) |
and
\begin{equation} \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}}-\frac{\mho _{4}L_{\phi } \widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\left\Vert z-\widehat{z}\right\Vert _{\Im _{2}}\leq \frac{\left( \mho _{4}+u\left\vert D_{1}(\theta )\right\vert +u\left\vert D_{2}(\theta )\right\vert \right) }{1-\left( \mho _{3}+\frac{\mho _{4}L_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left( \ln \upsilon \right) ^{2-\theta }}\varphi _{\theta }, \end{equation} | (5.8) |
respectively. Assume that \Game _{\varpi } = 1-\left(\mho _{1}+\frac{\mho _{2}L_{\phi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\right) \left(\ln \upsilon \right) ^{2-\varpi } and \Game _{\theta } = 1-\left(\mho _{3}+ \frac{\mho _{4}L_{\psi }}{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1} \right) \left(\ln \upsilon \right) ^{2-\theta }. Then (5.7) and (5.8) can be written as
\begin{equation*} \left[ \begin{array}{cc} 1 & -\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{\left( \widetilde{L} _{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }} \\ -\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi } \widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }} & 1 \end{array} \right] \\\left[ \begin{array}{c} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} \\ \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{1}} \end{array} \right] \leq \left[ \begin{array}{c} \Game _{\varpi }\varphi _{\varpi } \\ \\ \Game _{\theta }\varphi _{\theta } \end{array} \right] . \end{equation*} |
Hence
\begin{equation} \left[ \begin{array}{c} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} \\ \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} \end{array} \right] \leq \\ \left[ \begin{array}{cc} \frac{1}{\beth } & \frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{ \beth } \\ \frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }}{\left( \widetilde{L}_{\phi } \widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth } & \frac{1}{\beth } \end{array} \right] \\ \left[ \begin{array}{c} \Game _{\varpi }\varphi _{\varpi } \\ \\ \Game _{\theta }\varphi _{\theta } \end{array} \right] , \end{equation} | (5.9) |
where
\begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0. \end{equation*} |
From system (5.9), we observe that
\begin{eqnarray*} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}} & = &\frac{\Game _{\varpi }\varphi _{\varpi }}{\beth }+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }\Game _{\theta }\varphi _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L }_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{\beth }, \\ \left\Vert s-\widehat{s}\right\Vert _{\Im _{2}} & = &\frac{\mho _{4}L_{\phi } \widetilde{L}_{\psi }\Game _{\varpi }\varphi _{\varpi }}{\left( \widetilde{L} _{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth }+\frac{ \Game _{\theta }\varphi _{\theta }}{\beth }, \end{eqnarray*} |
which yields that
\begin{array}{l} \left\Vert z-\widehat{z}\right\Vert _{\Im _{1}}+\left\Vert s-\widehat{s} \right\Vert _{\Im _{2}} &\leq &\frac{\Game _{\varpi }\varphi _{\varpi }}{ \beth } +\frac{\Game _{\theta }\varphi _{\theta }}{\beth }\\&&+\frac{\mho _{2} \widetilde{L}_{\phi }L_{\psi }\Game _{\theta }\varphi _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{ \beth } \\ &&+\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }\Game _{\varpi }\varphi _{\varpi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{\beth }. \end{array} |
Let us consider \varphi = \max \{\varphi _{\theta }, \varphi _{\varpi }\} and
\begin{eqnarray*} \Game _{\varpi ,\theta } & = &\frac{\Game _{\varpi }}{\beth }+\frac{\Game _{\theta }}{\beth }+\frac{\mho _{2}\widetilde{L}_{\phi }L_{\psi }\Game _{\theta }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }}\frac{1}{\beth } \\ &&+\frac{\mho _{4}L_{\phi }\widetilde{L}_{\psi }\Game _{\varpi }}{\left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }}\frac{1}{ \beth }. \end{eqnarray*} |
Then, we can write
\begin{equation*} \left\Vert (z,s)-(\widehat{z},\widehat{s})\right\Vert _{\Im }\leq \Game _{\varpi ,\theta }\varphi , \end{equation*} |
which leads to the supposed coupled problem (1.1) is HU stable. Further, if
\begin{equation*} \left\Vert (z,s)-(\widehat{z},\widehat{s})\right\Vert _{\Im }\leq \Game _{\varpi ,\theta }\Phi (\varphi ),\text{ }\Phi (0) = 0. \end{equation*} |
Then the suggested coupled problem (1.1) is GHU stable.
For the final result, we suppose the following assertion:
(A_{7}) There are nondecreasing functions \gimel _{\varpi }, \gimel _{\theta }\in C(U, \mathbb{R} _{+}) so that
\begin{equation*} ^{H}D^{\varpi }\gimel _{\varpi }\left( \upsilon \right) \leq L_{\varpi }\gimel _{\varpi }\left( \upsilon \right) \text{ and }^{H}D^{\theta }\gimel _{\theta }\left( \upsilon \right) \leq L_{\theta }\gimel _{\theta }\left( \upsilon \right) ,\text{ for }L_{\varpi },L_{\theta } > 0. \end{equation*} |
Theorem 5.2. If the assertions (A_{1}) – (A_{3}) and (A_{7}) and the condition (4.21) are fulfilled and
\begin{equation*} \beth = 1-\frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } > 0, \end{equation*} |
then the unique solution of CII-FDEs (1.1) is HUR stable and consequently GHUR stable.
Proof. According to Definitions 3.3 and 3.4, we can get our conclusion by following the same procedures as in Theorem 5.1.
Example 6.1. Consider
\begin{equation} \left\{ \begin{array}{c} ^{H}D^{\frac{6}{5}}z(\upsilon ) = \frac{2+^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )}{70e^{20+\upsilon }\left( 1+^{H}D^{\frac{6 }{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )\right) },\text{ }\upsilon \neq 1.5,{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ ^{H}D^{\frac{5}{4}}s(\upsilon ) = \frac{1}{50}\left( \upsilon \cos z(\upsilon )-s(\upsilon )\sin (\upsilon )\right) +\frac{^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{\frac{5}{4}}s(\upsilon )}{25+^{H}D^{\frac{6}{5}}z(\upsilon )+^{H}D^{ \frac{5}{4}}s(\upsilon )},\text{ }\upsilon \neq 1.5,{ \ \ \ \ \ \ \ } \\ \Delta z(1.5) = I_{1}z(1.5) = \frac{\left\vert z(1.5)\right\vert }{2+\left\vert z(1.5)\right\vert }, \ \ \Delta z^{\prime }(1.5) = \widetilde{I} _{1}z(1.5) = \frac{\left\vert z(1.5)\right\vert }{25+\left\vert z(1.5)\right\vert },{ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \Delta s(1.5) = I_{1}s(1.5) = \frac{\left\vert s(1.5)\right\vert }{2+\left\vert s(1.5)\right\vert }, \ \ \Delta s^{\prime }(1.5) = \widetilde{I} _{1}s(1.5) = \frac{\left\vert s(1.5)\right\vert }{25+\left\vert s(1.5)\right\vert },\text{ }\upsilon _{1} = 1.5, \\ z(e) = \frac{1}{\Gamma (\frac{6}{5})}\int_{1}^{e}\ln \left( \frac{e}{\eta } \right) ^{\frac{1}{5}}\frac{\eta ^{2}+z(\eta )}{60}\frac{d\eta }{\eta }, { \ \ }z^{\prime }(e) = \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }}\left\vert z(\zeta _{u})\right\vert ,{ \ \ \ }1 < \zeta _{u} < 2B_{u}^{\ast }, \\ s(e) = \frac{1}{\Gamma (\frac{6}{5})}\int_{1}^{e}\ln \left( \frac{e}{\eta } \right) ^{\frac{1}{5}}\frac{\eta ^{2}+s(\eta )}{60}\frac{d\eta }{\eta }, { \ \ }s^{\prime }(e) = \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }}\left\vert s(\zeta _{u})\right\vert ,{ \ \ \ }1 < \zeta _{u} < 2B_{u}^{\ast }, \end{array} \right. \end{equation} | (6.1) |
where \sum_{u = 1}^{10}\frac{1}{B_{u}^{\ast }} < 0.5 for \upsilon \in \lbrack 1, e]. In view of problem (6.1), we observe that \varpi = \frac{6}{5 }, \theta = \frac{5}{4}, G = e, k = 1 and \upsilon _{1} = 1.5. Further, it's simple to locate L_{B^{\ast }} = \widetilde{L}_{B^{\ast }} = 0.5, L_{B} = \widetilde{L}_{B} = \frac{1}{60}, L_{I} = L_{\widetilde{I}} = 0.5, \widetilde{L }_{I} = \widetilde{L}_{\widetilde{I}} = 0.04, L_{\phi } = \widetilde{L}_{\phi } = \frac{1}{70e^{20}} and L_{\psi } = \widetilde{L}_{\psi } = 0.04. Based on Theorem 4.4, we find that
\begin{equation*} \mho _{1}+\mho _{3}+\frac{\mho _{2}\left( L_{\phi }+\widetilde{L}_{\phi }L_{\psi }\right) +\mho _{4}\left( L_{\phi }\widetilde{L}_{\psi }+L_{\psi }\right) }{\widetilde{L}_{\phi }\widetilde{L}_{\psi }-1}\simeq 0.537. \end{equation*} |
Therefore problem (6.1) has a unique solution. Further
\begin{array}{l} \beth = 1- \\ \frac{L_{\phi }\widetilde{L}_{\phi }L_{\psi }\widetilde{L}_{\psi }\mho _{2}\mho _{4}}{\left[ \left( \widetilde{L}_{\phi }\widetilde{L}_{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\varpi -2}-\mho _{1}\right) -\mho _{2}L_{\phi }\right] \left[ \left( \widetilde{L}_{\phi }\widetilde{L} _{\psi }-1\right) \left( \left( \ln \upsilon \right) ^{\theta -2}-\mho _{3}\right) -\mho _{4}L_{\psi }\right] } \\ = 0.023 > 0. \end{array} |
Therefore, according to Theorem 5.1, the coupled system (6.1) is HU stable and consequently GHU stable. Similarly, we can confirm that Theorems 4.3 and 5.2 are true.
In this manuscript, we used fixed point results of Banach and Kransnoselskii to give necessary and sufficient conditions for the existence of a unique positive solution for a system of impulsive fractional differential equations intervening a fractional derivative of the Hadamard type. We also studied some Hyers-Ulam (HU) stabilities such as generalized Hyers-Ulam (GHU), Hyers-Ulam-Rassias (HUR), and generalized Hyers-Ulam-Rassias (GHUR) stabilities. At the end, we provided a concrete example making effective the obtained results.
The authors thank the Basque Government for Grant IT1555-22. This work was supported in part by the Basque Government under Grant IT1555-22.
The authors declare that they have no competing interests.
[1] |
Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102: 6831–6864. doi: 10.1029/96JD03436
![]() |
[2] |
Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409: 695–697. doi: 10.1038/35055518
![]() |
[3] |
Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nature Geosci 1: 221–227. doi: 10.1038/ngeo156
![]() |
[4] | IPCC (2013) Climate Change 2013 The Physical Science Basis-Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. |
[5] |
Ramanathan V, Crutzen PJ, Lelieveld J, et al. (2001) Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106: 28371–28398. doi: 10.1029/2001JD900133
![]() |
[6] | Tripathi SN, Dey S, Tare V, et al. (2005) Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys Res Lett 32, L08802. |
[7] |
Bond TC, Doherty SJ, Fahey DW, et al. (2013) Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res-Atmos 118: 5380–5552. doi: 10.1002/jgrd.50171
![]() |
[8] |
Grieshop AP, Reynolds CCO, Kandlikar M, et al. (2009) A black-carbon mitigation wedge. Nature Geosci 2: 533–534. doi: 10.1038/ngeo595
![]() |
[9] |
Ramana MV, Ramanathan V, Feng Y, et al. (2010) Warming influenced by the ratio of black carbon to sulphate and the black-carbon source. Nature Geosci 3: 542–545. doi: 10.1038/ngeo918
![]() |
[10] |
Shindell D, Kuylenstierna JCI, Vignati E, et al. (2012) Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science 335: 183–189. doi: 10.1126/science.1210026
![]() |
[11] |
Nakicenovic N (2000) Greenhouse gas emissions scenarios. Technol Forecast Soc Change 65: 149–166. doi: 10.1016/S0040-1625(00)00094-9
![]() |
[12] |
Weingartner E, Burtscher H, Baltensperger U (1997) Hygroscopic properties of carbon and diesel soot particles. Atmos Environ 31: 2311–2327. doi: 10.1016/S1352-2310(97)00023-X
![]() |
[13] |
Schwarz JP, Perring AE, Markovic MZ, et al. (2015) Technique and theoretical approach for quantifying the hygroscopicity of black-carbon-containing aerosol using a single particle soot photometer. J Aerosol Sci 81: 110–126. doi: 10.1016/j.jaerosci.2014.11.009
![]() |
[14] | Stier P, Seinfeld JH, Kinne S, et al. (2006) Impact of nonabsorbing anthropogenic aerosols on clear-sky atmospheric absorption. J Geophys Res-Atmos 111, 2006JD007147. |
[15] |
Subramanian R, Kok GL, Baumgardner D, et al. (2010) Black carbon over Mexico: the effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios. Atmos Chem Phys 10: 219–237. doi: 10.5194/acp-10-219-2010
![]() |
[16] | Chung SH, Seinfeld JH (2005) Climate response of direct radiative forcing of anthropogenic black carbon. J Geophys Res-Atmos 110. |
[17] | Jacobson MZ (2002) Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res-Atmos 107, 2001JD01376. |
[18] | Lesins G, Chylek P, Lohmann U (2002) A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J Geophys Res 107, 2001JD000973. |
[19] |
Martins JV, Artaxo P, Liousse C, et al. (1998) Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. J Geophys Res 103: 32041–32050. doi: 10.1029/98JD02593
![]() |
[20] |
Moffet RC, Prather KA (2009) In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. P Natl Acad SCI USA 106: 11872–11877. doi: 10.1073/pnas.0900040106
![]() |
[21] |
Lim S, Lee M, Kim SW, et al. (2018) Sulfate alters aerosol absorption properties in East Asian outflow. Nat Sci Rep 8: 5172. doi: 10.1038/s41598-018-23021-1
![]() |
[22] |
Wu Y, Cheng I, Zheng L, et al. (2016) Black carbon radiative forcing at TOA decreased during aging. Nat Sci Rep 6: 38592. doi: 10.1038/srep38592
![]() |
[23] |
Cooke WF, Liousse C, Cachier H, et al. (1999) Construction of a 1 degrees x 1 degrees fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J Geophys Res 104: 22137–22162. doi: 10.1029/1999JD900187
![]() |
[24] |
Croft B, Lohmann U, von Salzen K (2005) Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model. Atmos Chem Phys 5: 1931–1949. doi: 10.5194/acp-5-1931-2005
![]() |
[25] |
Koch D (2001) Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J Geophys Res 106: 20311–20332. doi: 10.1029/2001JD900038
![]() |
[26] |
Riemer N, Vogel H, Vogel B (2004) Soot aging time scales in polluted regions during day and night. Atmos Chem Phys 4: 1885–1893. doi: 10.5194/acp-4-1885-2004
![]() |
[27] |
Lund M, Berntsen K, Samset BH (2017) Sensitivity of black carbon concentrations and climate impact to aging and scavenging in OsloCTM2–M7. Atmos Chem Phys 17: 6003–6022. doi: 10.5194/acp-17-6003-2017
![]() |
[28] |
Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: An investigative review. Aerosol Sci Tech 40: 27–67. doi: 10.1080/02786820500421521
![]() |
[29] | Bond TC, Habib G, Bergstrom RW (2006) Limitations in the enhancement of visible light absorption due to mixing state. J Geophys Res-Atmos 111, 2006JD007315. |
[30] | Cross ES, Onasch TB, Ahern A, et al. (2010b) Soot Particle Studies-Instrument Inter-Comparison-Project Overview. Aerosol Sci Tech 44: 592–611. |
[31] |
Myhre G (2009) Consistency Between Satellite-Derived and Modeled Estimates of the Direct Aerosol Effect. Science 325: 187–190. doi: 10.1126/science.1174461
![]() |
[32] | Schnaiter M, Linke C, Mohler O, et al. (2005) Absorption amplification of black carbon internally mixed with secondary organic aerosol. J Geophys Res-Atmos 110, 2005JD006046. |
[33] | Schwarz JP, Spackman JR, Fahey DW, et al. (2008) Coatings and their enhancement of black carbon light absorption in the tropical atmosphere. J Geophys Res 113, 2007JD009042. |
[34] |
Lack DA, Langridge JM, Bahreini R, et al. (2012) Brown carbon and internal mixing in biomass burning particles. P Natl Acad Sci USA 109: 14802–14807. doi: 10.1073/pnas.1206575109
![]() |
[35] |
Wang Q, Huang RJ, Cao J, et al. (2014) Mixing state of black carbon aerosol in a heavily polluted urban area of China: Implications for light absorption enhancement. Aerosol Sci Tech 48: 689–697. doi: 10.1080/02786826.2014.917758
![]() |
[36] |
Cappa CD, Onasch TB, Massoli P, et al. (2012) Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science 337: 1078–1081. doi: 10.1126/science.1223447
![]() |
[37] |
Lan ZJ, Huang XF, Yu KY, et al. (2013) Light absorption of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South China. Atmos Environ 69: 118–123. doi: 10.1016/j.atmosenv.2012.12.009
![]() |
[38] | Fierce L, Riemer N, Bond TC (2015) Explaining variance in black carbon's aging timescale. Atmos Chem Phys 15: 3173–3191. |
[39] |
Warneke C, Trainer M, de Gouw, et al. (2016) Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmos Meas Tech 9: 3063–3093. doi: 10.5194/amt-9-3063-2016
![]() |
[40] | Attwood AR, Washenfelder RA, Brock CA, et al. (2014) Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing. Geophys Res Lett 41: 7701–7709. |
[41] |
Brock CA, Wagner NL, Anderson BE, et al. (2015) Aerosol optical properties in the southeastern United States in summer–Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters. Atmos Chem Phys Discuss 15: 31471–31499. doi: 10.5194/acpd-15-31471-2015
![]() |
[42] | Brock CA, Wagner NL, Anderson BE, et al. (2015b) Aerosol optical properties in the southeastern United States in summer–Part 1: Hygroscopic growth. Atmos Chem Phys Discuss 2015: 25695–25738. |
[43] | Hand JL, Copeland SA, Day DE, et al. (2011) Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report V. Colorado State University, Fort Collins CO, 2011. |
[44] |
Hidy GM, Blanchard CL, Baumann K, et al. (2014) Chemical climatology of the southeastern United States, 1999–2013. Atmos Chem Phys 14: 11893–11914. doi: 10.5194/acp-14-11893-2014
![]() |
[45] |
Kim PS, Jacob DJ, Fisher JA, et al. (2015) Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model. Atmos Chem Phys 15: 10411–10433. doi: 10.5194/acp-15-10411-2015
![]() |
[46] |
Wagner NL, Brock CA, Angevine WM, et al. (2015) In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft. Atmos Chem Phys 15: 7085–7102. doi: 10.5194/acp-15-7085-2015
![]() |
[47] |
Washenfelder RA, Attwood AR, Brock CA, et al. (2015) Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophys Res Lett 42: 653–664. doi: 10.1002/2014GL062444
![]() |
[48] | Miller BG (2010) Clean Coal Engineering Technology. Elsevier Inc, Oxford, 375–481. |
[49] | Zhang Y, Vijayaraghavan K, Wen XY, et al. (2009) Probing into regional ozone and particulate matter pollution in the United States: 1. A 1 year CMAQ simulation and evaluation using surface and satellite data. J Geophys Res-Atmos 114: 2009JD0011898. |
[50] | Jacob DJ (1999) Introduction to Atmospheric Chemistry, Princeton University Press, Princeton, NJ. |
[51] | Kulmala M, Kerminen VM (2008) On the formation and growth of atmospheric nanoparticles. Atmos Res 90: 32–150. |
[52] |
Junkermann W, Vogel B, Sutton MA (2011) The climate penalty for clean fossil fuel combustion. Atmos Chem Phys 11: 12917–12924. doi: 10.5194/acp-11-12917-2011
![]() |
[53] | Junkermann W, Hagemann R, Vogel B (2011b) Nucleation in the Karlsruhe plume during the COPS/TRACKS-Lagrange experiment. Q J Roy Meteor Soc 137: 267–274. |
[54] |
Lonsdale CR, Stevens RG, Brock CA, et al. (2012) The effect of coal-fired power-plant SO2 and NOx control technologies on aerosol nucleation in the source plumes. Atmos Chem Phys 12: 11519–11531. doi: 10.5194/acp-12-11519-2012
![]() |
[55] |
Petzold A, Ogren JA, Fiebig M, et al. (2013) Recommendations for reporting "black carbon" measurements. Atmos Chem Phys 13: 8365–8379. doi: 10.5194/acp-13-8365-2013
![]() |
[56] |
Schwarz JP, Spackman JR, Gao RS, et al. (2010) The Detection Efficiency of the Single Particle Soot Photometer. Aerosol Sci Tech 44: 612–628. doi: 10.1080/02786826.2010.481298
![]() |
[57] | Schwarz JP, Gao RS, Spackman JR, et al. (2008) Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophys Res Lett 35, L13810, 2008GL033968. |
[58] | Cross ES, Onasch TB, Ahern A, et al. (2010a) Intercomparison study of black carbon measurements. Abstracts of Papers of the American Chemical Society, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA: AMER CHEMICAL SOC, 240. |
[59] | Schwarz JP, Gao RS, Fahey DW, et al. (2006) Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J Geophys Res 111(D16), D16207, 2006JD007076. |
[60] | Murphy DM, Cziczo DJ, Hudson PK, et al. (2004) Particle generation and resuspension in aircraft inlets when flying in clouds. Aerosol Sci Tech 38: 400–408. |
[61] |
Lance S, Brock CA, Rogers D, et al. (2010) Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos Meas Tech 3: 1683–1706. doi: 10.5194/amt-3-1683-2010
![]() |
[62] |
Baumgardner D, Popovicheva O, Allan J, et al. (2012) Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations. Atmos Meas Tech 5: 1869–1887. doi: 10.5194/amt-5-1869-2012
![]() |
[63] | Moteki N, Kondo Y (2010) Dependence of Laser-Induced Incandescence on Physical Properties of Black Carbon Aerosols: Measurements and Theoretical Interpretation. Aero Sci Technol 44: 663–675. |
[64] |
Gysel M, Laborde M, Olfert JS, et al. (2011) Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration. Atmos Meas Technol 4: 2851–2858. doi: 10.5194/amt-4-2851-2011
![]() |
[65] |
Gao RS, Schwarz JP, Kelly KK, et al. (2007) A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer. Aerosol Sci Tech 41: 125–135. doi: 10.1080/02786820601118398
![]() |
[66] |
Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7: 1961–1971. doi: 10.5194/acp-7-1961-2007
![]() |
[67] | Bahreini R, Ervens B, Middlebrook AM, et al. (2009) Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. J Geophys Res-Atmos 114, D00F16, 2008JD011493. |
[68] |
Liao J, Brock CB, Murphy DM, et al. (2017) Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection. Atmos Meas Tech 10: 3801–3820. doi: 10.5194/amt-10-3801-2017
![]() |
[69] |
Brock CA, Schroder F, Karcher B, et al. (2000) Ultrafine particle size distributions measured in aircraft exhaust plumes. J Geophys Res 105: 26555–26567. doi: 10.1029/2000JD900360
![]() |
[70] |
Brock C A, Cozic J, Bahreini R, et al. (2011) Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmos Chem Phys 11: 2423–2453. doi: 10.5194/acp-11-2423-2011
![]() |
[71] |
Pollack IB, Lerner BM, Ryerson TB (2010) Evaluation of ultraviolet light-emitting diodes for detection of atmospheric NO2 by photolysis-chemiluminescence. J Atmos Chem 65: 111–125. doi: 10.1007/s10874-011-9184-3
![]() |
[72] |
Ryerson TB, Williams EJ, Fehsenfeld FC (2000) An efficient photolysis system for fast-response NO2 measurements. J Geophys Res 105: 26447–26461. doi: 10.1029/2000JD900389
![]() |
[73] |
Ryerson TB, Huey LG, Knapp K, et al. (1999) Design and initial characterization of an inlet for gas-phase NOy measurements from aircraft. J Geophys Res 104: 5483–5492. doi: 10.1029/1998JD100087
![]() |
[74] |
Holloway JS, Jakoubek RO, Parrish DD, et al. (2000) Airborne intercomparison of vacuum ultraviolet fluorescence and tunable diode laser absorption measurements of tropospheric carbon monoxide. J Geophys Res 105: 24251–24261. doi: 10.1029/2000JD900237
![]() |
[75] | Jacobson MZ (2012) Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols. J Geophys Res-Atmos 117, 2011JD017218. |
[76] |
Lack DA, Cappa CD (2010) Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos Chem Phys 10: 4207–4220. doi: 10.5194/acp-10-4207-2010
![]() |
[77] |
Saleh R, Robinson ES, Tkacik DS, et al. (2014) Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nature Geosci 7: 647–650. doi: 10.1038/ngeo2220
![]() |
[78] |
Qiu C, Khalizov AF, Zhang R (2012) Soot aging from OH-initiated oxidation of toluene. Environ Sci Technol 46: 9464–9472. doi: 10.1021/es301883y
![]() |
[79] |
China S, Scarnato B, Owen RC, et al. (2015) Morphology and mixing state of aged soot particles at a remote marine free troposphere site: Implications for optical properties. Geophys Res Lett 42: 1243–1250. doi: 10.1002/2014GL062404
![]() |
[80] | Reimer N, West M, Zaveri RA, et al. (2009) Simulating the evolution of soot mixing state with a particle-resolved aerosol model. J Geophys Res 114(D9), 2008JD011073. |
[81] |
O'Donnel D, Tsigaridis K, Feichter J (2011) Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM. Atmos Chem Phys 11: 8635–8559. doi: 10.5194/acp-11-8635-2011
![]() |
[82] |
Zhang K, O'Donnell D, Kazil J, et al. (2012) The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations. Atmos Chem Phys 12: 8911–8949. doi: 10.5194/acp-12-8911-2012
![]() |
1. | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators, 2023, 8, 2473-6988, 11325, 10.3934/math.2023574 | |
2. | Hasanen A Hammad, Hassen Aydi, Doha A Kattan, Integro-differential equations implicated with Caputo-Hadamard derivatives under nonlocal boundary constraints, 2024, 99, 0031-8949, 025207, 10.1088/1402-4896/ad185b | |
3. | Hasanen A. Hammad, Manuel De la Sen, Existence of a mild solution and approximate controllability for fractional random integro-differential inclusions with non-instantaneous impulses, 2025, 111, 11100168, 306, 10.1016/j.aej.2024.10.017 | |
4. | Feryal Aladsani, Ahmed Gamal Ibrahim, Existence and Stability of Solutions for p-Proportional ω-Weighted κ-Hilfer Fractional Differential Inclusions in the Presence of Non-Instantaneous Impulses in Banach Spaces, 2024, 8, 2504-3110, 475, 10.3390/fractalfract8080475 | |
5. | Kaihong Zhao, Juqing Liu, Xiaojun Lv, A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory, 2024, 8, 2504-3110, 111, 10.3390/fractalfract8020111 | |
6. | Hasanen A. Hammad, Najla M. Aloraini, Mahmoud Abdel-Aty, Existence and stability results for delay fractional deferential equations with applications, 2024, 92, 11100168, 185, 10.1016/j.aej.2024.02.060 | |
7. | Hasanen A. Hammad, Maryam G. Alshehri, Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives, 2024, 182, 09600779, 114775, 10.1016/j.chaos.2024.114775 | |
8. | Doha A. Kattan, Hasanen A. Hammad, Solving fractional integro-differential equations with delay and relaxation impulsive terms by fixed point techniques, 2024, 2024, 1687-2770, 10.1186/s13661-024-01957-w | |
9. | Hasanen A. Hammad, Saleh Fahad Aljurbua, Solving Fractional Random Differential Equations by Using Fixed Point Methodologies under Mild Boundary Conditions, 2024, 8, 2504-3110, 384, 10.3390/fractalfract8070384 | |
10. | Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen, Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions, 2024, 9, 2473-6988, 15505, 10.3934/math.2024750 | |
11. | Hasanen A. Hammad, Hassen Aydi, Mohra Zayed, On the qualitative evaluation of the variable-order coupled boundary value problems with a fractional delay, 2023, 2023, 1029-242X, 10.1186/s13660-023-03018-9 | |
12. | Maryam G. Alshehri, Hassen Aydi, Hasanen A. Hammad, Solving delay integro-differential inclusions with applications, 2024, 9, 2473-6988, 16313, 10.3934/math.2024790 | |
13. | Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen, Involvement of three successive fractional derivatives in a system of pantograph equations and studying the existence solution and MLU stability, 2024, 57, 2391-4661, 10.1515/dema-2024-0035 | |
14. | Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen, Refined stability of the additive, quartic and sextic functional equations with counter-examples, 2023, 8, 2473-6988, 14399, 10.3934/math.2023736 | |
15. | Hasanen A. Hammad, Montasir Qasymeh, Mahmoud Abdel-Aty, Existence and stability results for a Langevin system with Caputo–Hadamard fractional operators, 2024, 21, 0219-8878, 10.1142/S0219887824502189 | |
16. | Muath Awadalla, Manigandan Murugesan, Manikandan Kannan, Jihan Alahmadi, Feryal AlAdsani, Utilizing Schaefer's fixed point theorem in nonlinear Caputo sequential fractional differential equation systems, 2024, 9, 2473-6988, 14130, 10.3934/math.2024687 | |
17. | Hamza Khalil, Akbar Zada, Mohamed Rhaima, Ioan-Lucian Popa, Analysis of Neutral Implicit Stochastic Hilfer Fractional Differential Equation Involving Lévy Noise with Retarded and Advanced Arguments, 2024, 12, 2227-7390, 3406, 10.3390/math12213406 | |
18. | Hasanen A. Hammad, Mohammed E. Dafaalla, Kottakkaran Sooppy Nisar, A Grammian matrix and controllability study of fractional delay integro-differential Langevin systems, 2024, 9, 2473-6988, 15469, 10.3934/math.2024748 | |
19. | Hasanen A. Hammad, Hassen Aydi, Doha A. Kattan, Hybrid interpolative mappings for solving fractional Navier–Stokes and functional differential equations, 2023, 2023, 1687-2770, 10.1186/s13661-023-01807-1 | |
20. | Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri, Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases, 2024, 9, 2473-6988, 14574, 10.3934/math.2024709 | |
21. | Doha A. Kattan, Hasanen A. Hammad, Existence and Stability Results for Piecewise Caputo–Fabrizio Fractional Differential Equations with Mixed Delays, 2023, 7, 2504-3110, 644, 10.3390/fractalfract7090644 | |
22. | Doha A. Kattan, Hasanen A. Hammad, Advanced fixed point techniques for solving fractional p−Laplacian boundary value problems with impulsive effects, 2025, 16, 20904479, 103254, 10.1016/j.asej.2024.103254 | |
23. | Wedad Albalawi, Muhammad Imran Liaqat, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty, Qualitative study of Caputo Erdélyi-Kober stochastic fractional delay differential equations, 2025, 10, 2473-6988, 8277, 10.3934/math.2025381 | |
24. | Gunaseelan Mani, Vasu Lakshmanan, Abdul Razak Kachu Mohideen, Homan Emadifar, Patricia J. Y. Wong, Existence and Uniqueness Results for the Coupled Pantograph System With Caputo Fractional Operator and Hadamard Integral, 2025, 2025, 1687-9643, 10.1155/ijde/1202608 |