Loading [MathJax]/jax/output/SVG/jax.js
Research article

Circulation mechanisms responsible for wet or dry summers over Zimbabwe

  • Received: 11 December 2017 Accepted: 03 June 2018 Published: 13 June 2018
  • Climate change has resulted in increased rainfall variability over many parts of the world including Southern Africa. As such, droughts and floods have become a frequent phenomenon in Zimbabwe and have potential to intensify socio-economic stressors. This study examined possible forcing factors behind the occurrence of extreme summer events using re-analysis datasets. Composite analysis and correlation methods were used to identify circulation mechanisms and their strength in determining rainfall patterns in Zimbabwe. Predominantly northerly airflow in the lower troposphere was found to favor wet while southerly airflow favors dry seasons. Negative geopotential anomalies (minimum of −20 hPa) to the west of Zimbabwe in the middle levels characterize wet summers which swing to positive anomalies (+24 hPa) during dry summers. Positive SST anomalies (maximum of 0.4) exist to the southwest of Madagascar extending to the western shore on the Angola-Namibian border characterize wet summers which swing to negative anomalies (−0.2 ºC) during dry summer seasons. SST anomalies in the South western Indian and South eastern Atlantic oceans are crucial in the determination of the strength of both the South Indian and Atlantic Ocean high pressure systems which in turn control moisture advection and convergence into Zimbabwe during the summer period. If these SST anomalies at lag times of about 3 months can be used to predict the incoming summer circulation patterns then the accuracy of summer seasonal outlook forecasts can be improved. Studying the mechanisms behind drought and flood occurrence is important to the country which is in the process of downscaling regional prediction products to improve the accuracy of seasonal forecasts. These findings are useful in crafting relevant measures to maximize the benefits and minimize the risks of extreme rainfall events.

    Citation: Moven Manjowe, Terence Darlington Mushore, Juliet Gwenzi, Collen Mutasa, Electdom Matandirotya, Emmanuel Mashonjowa. Circulation mechanisms responsible for wet or dry summers over Zimbabwe[J]. AIMS Environmental Science, 2018, 5(3): 154-172. doi: 10.3934/environsci.2018.3.154

    Related Papers:

    [1] Jagdev Singh, Jitendra Kumar, Devendra kumar, Dumitru Baleanu . A reliable numerical algorithm based on an operational matrix method for treatment of a fractional order computer virus model. AIMS Mathematics, 2024, 9(2): 3195-3210. doi: 10.3934/math.2024155
    [2] Khalaf M. Alanazi . The asymptotic spreading speeds of COVID-19 with the effect of delay and quarantine. AIMS Mathematics, 2024, 9(7): 19397-19413. doi: 10.3934/math.2024945
    [3] Hui Miao . Global stability of a diffusive humoral immunity viral infection model with time delays and two modes of transmission. AIMS Mathematics, 2025, 10(6): 14122-14139. doi: 10.3934/math.2025636
    [4] Wajaree Weera, Thongchai Botmart, Teerapong La-inchua, Zulqurnain Sabir, Rafaél Artidoro Sandoval Núñez, Marwan Abukhaled, Juan Luis García Guirao . A stochastic computational scheme for the computer epidemic virus with delay effects. AIMS Mathematics, 2023, 8(1): 148-163. doi: 10.3934/math.2023007
    [5] Xin Jiang . Threshold dynamics of a general delayed HIV model with double transmission modes and latent viral infection. AIMS Mathematics, 2022, 7(2): 2456-2478. doi: 10.3934/math.2022138
    [6] Kalpana Umapathy, Balaganesan Palanivelu, Renuka Jayaraj, Dumitru Baleanu, Prasantha Bharathi Dhandapani . On the decomposition and analysis of novel simultaneous SEIQR epidemic model. AIMS Mathematics, 2023, 8(3): 5918-5933. doi: 10.3934/math.2023298
    [7] Omar Kahouli, Imane Zouak, Ma'mon Abu Hammad, Adel Ouannas . Chaos, control and synchronization in discrete time computer virus system with fractional orders. AIMS Mathematics, 2025, 10(6): 13594-13621. doi: 10.3934/math.2025612
    [8] Liang Hong, Jie Li, Libin Rong, Xia Wang . Global dynamics of a delayed model with cytokine-enhanced viral infection and cell-to-cell transmission. AIMS Mathematics, 2024, 9(6): 16280-16296. doi: 10.3934/math.2024788
    [9] Faiza Arif, Sana Ullah Saqib, Yin-Tzer Shih, Aneela Kausar . SEIR-VQ model for the NB.1.8.1 COVID-19 variant: Mathematical analysis and numerical simulations. AIMS Mathematics, 2025, 10(8): 18024-18054. doi: 10.3934/math.2025803
    [10] Ahmed M. Elaiw, Ghadeer S. Alsaadi, Aatef D. Hobiny . Global co-dynamics of viral infections with saturated incidence. AIMS Mathematics, 2024, 9(6): 13770-13818. doi: 10.3934/math.2024671
  • Climate change has resulted in increased rainfall variability over many parts of the world including Southern Africa. As such, droughts and floods have become a frequent phenomenon in Zimbabwe and have potential to intensify socio-economic stressors. This study examined possible forcing factors behind the occurrence of extreme summer events using re-analysis datasets. Composite analysis and correlation methods were used to identify circulation mechanisms and their strength in determining rainfall patterns in Zimbabwe. Predominantly northerly airflow in the lower troposphere was found to favor wet while southerly airflow favors dry seasons. Negative geopotential anomalies (minimum of −20 hPa) to the west of Zimbabwe in the middle levels characterize wet summers which swing to positive anomalies (+24 hPa) during dry summers. Positive SST anomalies (maximum of 0.4) exist to the southwest of Madagascar extending to the western shore on the Angola-Namibian border characterize wet summers which swing to negative anomalies (−0.2 ºC) during dry summer seasons. SST anomalies in the South western Indian and South eastern Atlantic oceans are crucial in the determination of the strength of both the South Indian and Atlantic Ocean high pressure systems which in turn control moisture advection and convergence into Zimbabwe during the summer period. If these SST anomalies at lag times of about 3 months can be used to predict the incoming summer circulation patterns then the accuracy of summer seasonal outlook forecasts can be improved. Studying the mechanisms behind drought and flood occurrence is important to the country which is in the process of downscaling regional prediction products to improve the accuracy of seasonal forecasts. These findings are useful in crafting relevant measures to maximize the benefits and minimize the risks of extreme rainfall events.


    1. Introduction

    In recent years, virus dynamics attracts more and more attentions of researchers and plays a crucial role in many diseases research, including AIDS, hepatitis and influenza. Many mathematical models have provided insights into virus infection and dynamics, as well as on how an infection can be managed, reduced or even eradicated ([3], [4], [7], [15], [17], [27], [38], [43], [44]). Since the basic three-dimensional viral infection model was proposed by Nowak et al. [21], Perelson et al. [26], Perelson and Nelson [25], Nowak and May [20], many people have established different within-host infection model, which help us to better understand virus infection and various drug therapy strategies by mathematical analysis, numerical simulations and clinical data ([13], [19], [22], [28], [29]). Note that immune responses play a critical part in the process of viral infections. Concretely, cytotoxic T lymphocyte (CTL) cells can attack infected cells, and antibody cells can neutralize viruses. To better understand the role of the immune function during virus infection, Wodarz proposed the following model with both CTL and antibody immune responses [41],

    {˙T(t)=λd1T(t)βT(t)V(t),˙I(t)=βT(t)V(t)d2I(t)pI(t)C(t),˙V(t)=rd2I(t)d3V(t)qA(t)V(t),˙C(t)=k1I(t)C(t)d4C(t),˙A(t)=k2A(t)V(t)d5A(t), (1)

    where a dot denotes the differentiation with respect to time t, T(t),I(t),V(t),C(t) and A(t) are the concentrations of healthy cells, infected cells, free virus, CTL cells and antibody cells at time t, respectively. d1,d2,d3,d4,d5 are the death rates of healthy cell, infected cell, free virus, CTL cells and antibody cells, respectively. λ represents a constant production of the healthy cells. The term βTV represents the rate for the heathy T cells to be infected by virus. Furthermore, infected cells are killed by CTL cells at a rate pIC. Free virus are produced by infected cells at a rate rd2I, and are killed by antibody responses at a rate qAV. CTL immune responses are activated at a rate proportional to the abundance of CTL cells and infected cells, k1IC. Antibody responses are produced at a rate proportional to the abundance of antibodies and free virus, k2AV. Biologically, all parameters are positive.

    After that, some researchers have taken into account the effect of immune responses including CTL responses or antibody responses ([24], [35], [36], [37], [39]). Some other researchers have incorporated the effect of CTL responses and intracellular delays ([11], [16], [18], [32], [45]). Concretely, the global dynamics of (1) with and without intracellular time delay is given in [24] and [42], respectively. Note that model (1) assumes that CTL and antibody responses are produced at bilinear rates. However, De Boer [5] pointed out that the bilinear rates cannot model several immune responses that are together controlling a chronic infection. In [5], De Boer has proposed an immune response function with the saturation. Incorporating the saturation effects of immune responses and the delay, [12] also obtained the global stability of the model, which is totally determined by the corresponding reproductive numbers. These results preclude the complicated behaviors such as the backward bifurcations and Hopf bifurcations which may be induced by saturation factors and time delay.

    Note also that most of models assume CTL responses are activated by infected cells/antigenic stimulation, and antibody responses are activated by virus in these studies. However, as pointed out by Nowak and May [20], CTL responses have another function of self-regulating, i.e., the CTL responses are triggered by encountering foreign antigen and then adopts a constant level which is independent of the concentration of virions or infected cell. Bocharvor et al. have provided evidence the export of precursor CTL cells from the thymus [2]. Pang and Cui et al. have studied the export of specific precursor CTL cells from the thymus in [23], but they didn't considered intracellular time delay and antibody responses. Similarly, Wang and Wang have considered that neutralizing antibodies are produced at a constant rate after the injection [37], but they didn't take into account the effect of CTL responses and intracellular time delay.

    Motivated by the above studies, we will formulate and analyze a virus dynamics model with the recruitment of immune responses, saturation effects of immune responses and an intracellular time delay, which can be described by the following functional differential equations:

    {˙T(t)=λd1T(t)βT(t)V(t),˙I(t)=βT(tτ)V(tτ)esτd2I(t)pI(t)C(t),˙V(t)=rd2I(t)d3V(t)qA(t)V(t),˙C(t)=λ1+k1I(t)C(t)h1+C(t)d4C(t),˙A(t)=λ2+k2A(t)V(t)h2+A(t)d5A(t). (2)

    Here, we use λ1 to describe the export of specific precursor CTL cells from the thymus, λ2 to describe the recruitment rate of antibody responses. The production of infected cells is delayed in such a way that the production of new virus at time t depends on the population of virus and infected cells at a previous time tτ, and only a fraction of esτ can survive after the interval τ, where 1/s is the average lifetime of infected cells without reproduction. h1,h2 are saturation constants. Other parameters are same as that in model (1).

    The main aim of the present paper is to explore the effects of the recruitment of immune responses on virus infection. The organization of this paper is as follows. In the next section, some preliminary analyzes of the model (2) will be given. Stability of all equilibria are given in Section 3. In Section 4, some numerical simulations are given to explain the effects of λ1,λ2, i.e., the term of recruitment of immune responses. Lastly, some brief conclusions are given in Section 5.


    2. Preliminary analyses of the model

    In this section, we will first prove the positivity and boundedness of solutions, and then derive the expression of the basic reproduction number for model (2).


    2.1. Positivity and boundedness of solutions

    Let X:=C([τ,0],R5) be the Banach space of continuous functions from [τ,0] to R5. For ϕ=(ϕ1,ϕ2,ϕ3,ϕ4, ϕ5)X, define ϕ∥=5i=1ϕi, in which ϕi=maxθ[τ,0]|ϕi(θ)|. The initial functions for model (2) are provided with ϕX+=C([τ,0],R5+).

    Proposition 1. Under the above initial conditions, all solutions of model (2) are nonnegative. In particular, the solution (T(t),I(t),V(t),C(t),A(t)) of model (2) is positive for t>0 in its existence interval if T(0)>0,I(0)>0,V(0)>0,C(0)>0,A(0)>0.

    Proof. We first verify that T(t) is positive in the existence interval of the solution. Suppose not. Then there is t1>0 such that T(t1)=0 and T(t)>0,t[0,t1). Indeed, if T(0)=0, we have ˙T(0)=λ>0. Thus, T(t)>0 for small positive t. Evidently, this remains valid if T(0)>0. As a result, the existence of t1 follows if the claim is not true. Note that ˙T(t1)=λ>0. Thus, there is a sufficiently small ε>0, such that T(t)<0 for all t(t1ε,t1). We get a contradiction because T(t)>0,t[0,t1). Hence, T(t) is positive in the existence interval of the solution. In the same way, we obtain C(t) and A(t) are positive in the existence interval of the solution. Then, we verify that I(t) and V(t) are positive. In the same way, we assume that there is a first time t2 such that V(t2)=0, from the third equation of model (2) we have

    ˙V(t2)=rd2I(t2).

    By solving the second equation of model (2), we obtain

    I(t2)=et20(d2+pC(ξ))dξ[I(0)+t20βT(θτ)V(θτ)esτeθ0(d2+pC(ξ))dξdθ]>0.

    It follows that ˙V(t2)>0, hence V(t)>0. Furthermore,

    I(t)=et0(d2+pC(ξ))dξ[I(0)+t0βT(θτ)V(θτ)esτeθ0(d2+pC(ξ))dξdθ].

    From the above expression of I(t) solution, we get I(t)>0.

    It follows easily that I(t)0,V(t)0 in the existence interval of the solution if the initial functions are in X+, and I(t)>0,V(t)>0,C(t)>0,A(t)>0 in the existence interval of the solution if I(0)>0,V(0)>0,C(0)>0,A(0)>0.

    Proposition 2. All solutions of model (2) in X+ are ultimately bounded.

    Proof. Set

    L(t)=T(t)+I(t+τ)+13rV(t+τ)+d23k1C(t+τ)+d34k2rA(t+τ).

    Calculating the derivative of L along the solution of (2), we get

    ˙L(t)=λd1T(t)βT(t)V(t)+βT(t)V(t)d2I(t+τ)pI(t+τ)C(t+τ)+d23I(t+τ)d33rV(t+τ)q3rA(t+τ)V(t+τ)+d23k1λ1+d23I(t+τ)C(t+τ)h1+C(t+τ)d23k1d4C(t+τ)+d34k2rλ2+d34rA(t+τ)V(t+τ)h2+A(t+τ)d34k2rd5A(t+τ). (3)

    Since

    C(t+τ)h1+C(t+τ)1,A(t+τ)h2+A(t+τ)1,

    we obtain

    ˙L(t)λd1T(t)d2I(t+τ)+d23I(t+τ)d33rV(t+τ)+d23k1λ1+d23I(t+τ)d23k1d4C(t+τ)+d34k2rλ2+d34rV(t+τ)d34k2rd5A(t+τ)λ+d23k1λ1+d34k2rλ2d1T(t)d23I(t+τ)d3413rV(t+τ)d4d23k1C(t+τ)d5d34k2rA(t+τ)λ+d23k1λ1+d34k2rλ2mL(t),

    where m=min{d1,d2/3,d3/4,d4,d5}. It follows that the nonnegative solutions of (2) exist on [0,) and are ultimately bounded. Moreover,

    lim suptL(t)λm+d2λ13k1m+d3λ24k2rm.

    From the first equation of model (2), we get

    ˙T(t)λd1T(t).

    It follows that

    lim suptT(t)λd1.

    Set F(t)=T(t)+I(t+τ), then

    ˙F(t)=˙T(t)+˙I(t+τ)λnF(t),n=min{d1,d2},

    thus

    lim suptF(t)λn.

    Then,

    lim supt(T(t)+I(t+τ))λn. (4)

    From the third equation of model (2) and (4), we have

    lim suptV(t)rd2λd3n.

    Further, let

    M=max{λd1,λn,rd2λd3n,λm+d2λ13k1m+d3λ24k2rm}.

    The dynamics of model (2) can be analyzed in the following bounded feasible region

    Γ={(T,I,V,C,A)0TM,0T+IM,0VM,0CM,0AM}.

    2.2. The basic reproductive number

    Based on the concept of the basic reproductive number for an epidemic disease presented in [6, 35], we know the basic reproductive number R0 of virus is the expected number of viruses that one virion gives rise to in an totally uninfected cell population during its lifetime.

    From model (2), it is clear that healthy cells, CTL cells and antibody cells will stabilize to λ/d1,λ1/d4 and λ2/d5 if there is not infection, i.e., I(t)=V(t)=0. In this case, suppose that one virion is introduced, it can produce a maximum amount of P1(φ1)=βλd1esτφ1 infections during its mean lifetime of φ1=1/(d3+qλ2d5). In addition, an infected cell has an average lifetime of φ2=1/(d2+pλ1d4), and hence, it can averagely generate P2(φ2)=rd2φ2 virus. Therefore, the basic reproduction number of virus for model (2) can be defined as

    R0=P1(φ1)P2(φ2)=βλd1rd2(d2+pλ1d4)1(d3+qλ2d5)esτ.

    Based on the above expression, we know that there are inverse proportional relationship between the basic reproduction number of virus (R0) and the recruitment rate of immune responses (λ1 and λ2). Thus, R0 will decreases along with λ1,λ2 increasing, which means that ignoring the effects of recruitment rate of immune responses will overestimate the basic reproduction number of virus.


    3. Stability of the equilibria

    In this section, we first discuss the existence of infection-free equilibrium, and then analyze its stability. Besides, using the uniform persistence theory, we obtain the existence of an endemic equilibrium. After that, the stability of an endemic equilibrium was proved by constructing Lyapunov functional.


    3.1. Infection-free equilibrium

    Apparently, there is always an infection-free equilibrium in system (2): E0=(T0,0,0,C0,A0), where

    T0=λd1,C0=λ1d4,A0=λ2d5.

    Next, we discuss the stability of the infection-free equilibrium E0.

    Theorem 3.1. When R0<1, the infection-free equilibrium E0 is globally asymptotically stable in region Γ.

    Proof. First we define a Lyapunov functional L0 by

    L0=T(t)T0(ST0)SdS+esτI(t)+(1r+pC0rd2)esτV(t)+pesτk1C(t)C0(h1+S)(SC0)SdS+(d2+pC0)rd2qesτk2A(t)A0(h2+S)(SA0)SdS+0τβT(t+θ)V(t+θ)dθ.

    Calculating the time derivative of L0 along the solution of system (2), we obtain

    ˙L0=λd1T(t)βT(t)V(t)T0T(t)(λd1T(t)βT(t)V(t))+βT(tτ)V(tτ)d2I(t)esτpI(t)C(t)esτ+1r(rd2I(t)esτd3V(t)esτqA(t)V(t)esτ)+pC0rd2(rd2I(t)esτd3V(t)esτqA(t)V(t)esτ)+pesτk1(h1+C(t)){λ1d4C(t)+k1I(t)C(t)h1+C(t)C0C(t)(λ1+k1I(t)C(t)h1+C(t)d4C(t))}+(d2+pC0)rd2qesτk2(h2+A(t)){λ2+k2A(t)V(t)h2+A(t)d5A(t)A0A(t)(λ2+k2A(t)V(t)h2+A(t)d5A(t))}+βT(t)V(t)βT(tτ)V(tτ).

    Since λ=d1T0,λ1=d4C0,λ2=d5A0, it follows that

    .L0=2d1T0d1T(t)T0T(t)d1T0+βT0V(t)pI(t)C(t)esτd3rV(t)esτqrA(t)V(t)esτ+pI(t)C0esτpC0rd2d3V(t)esτpC0rd2qA(t)V(t)esτ+pesτk1λ1(h1+C(t))+pI(t)C(t)esτpesτk1d4C(t)(h1+C(t))pesτk1λ1(h1+C(t))C0C(t)pI(t)C0esτ+pesτk1d4C0(h1+C(t))+(d2+pC0)rd2qesτk2λ2(h2+A(t))+(d2+pC0)rd2esτqA(t)V(t)(d2+pC0)rd2qesτk2d5A(t)(h2+A(t))(d2+pC0)rd2qesτk2λ2A0A(t)(h2+A(t))(d2+pC0)esτrd2qA0V(t)+(d2+pC0)rd2qk2esτd5A0(h2+A(t))=d1T0(2T(t)T0T0T(t))+(d2+pC0)(d3+qA0)esτrd2(R01)V(t)pd4esτk1(C(t)C0)2+pk1λ1h1esτ(2C0C(t)C(t)C0)
    (d2+pC0)qesτrd2k2d5(A(t)A0)2+(d2+pC0)qesτrd2k2λ2h2(2A0A(t)A(t)A0).

    Since the geometric mean is less than or equal to the arithmetical mean, it follows from R0<1 that ˙L00. Let

    D0={(T(t),I(t),V(t),C(t),A(t))|˙L0=0}.

    It is easy to show that E0=(T0,0,0,C0,A0) is the largest invariant set in D0. By the Lyapunov-LaSalle invariance principle [8], E0 is globally asymptotically stable.


    3.2. Uniform persistence

    In order to obtain the the existence of an endemic equilibrium, in this subsection, we investigate the uniform persistence of (2). We first introduce a preliminary theory. Let X be a metric space and Φ be a semiflow on X. Suppose that X0 is an open set in X, X0X,X0X0=, and X0X0=X. Define M={xX0:Φt(x)X0,t0}, which may be empty. A continuous p:X[0,) satisfying condition: p(Φt(x))>0 for t>0 if either p(x)=0 and xX0 or if p(x)>0, will be called a generalized distance function for Φ.

    Lemma 3.2. ([31], Theorem 3) Let p be a generalized distance function for semiflow Φ. Assume that

    (H1) Φ has a global attractor ˜A.

    (H2) There exists a finite sequence ˜M={M1,...,Mk} of pairwise disjoint, compact and isolated sets in X0 with the following properties:

    (ⅰ) x˜Mω(x)ki=1Mi,

    (ⅱ) no subset of ˜M forms a cycle in X0,

    (ⅲ) Mi is isolated in X,

    (ⅳ) Ws(Mi)p1(0,)=, i=1,...k.

    Then there exists δ>0 such that for any compact chain transitive set L with LMi for i=1,..k, there holds minxLp(x)>δ.

    By applying Lemma 3.2 to (2), we can obtain the following result for the uniform persistence of (2).

    Theorem 3.3. If R0>1, then system (2) is uniformly persistent, i.e., there exists ε>0 (independent of initial conditions), such that, lim inft+T(t)ε,lim inft+I(t)ε,lim inft+V(t)ε,lim inft+C(t)ε,lim inft+A(t)ε, for all solutions of (2) with initial condition.

    Proof. Let

    X0={˜ϕX+:˜ϕ2(θ)0,˜ϕ3(θ)0  for  θ[τ,0]},X0=X+X0,M={ψX+:Φt(ψ)X0,t0}.

    Basic analysis of (2) implies that X0 is a positive invariant set for (2). The positive invariance of X0 follows from Proposition 1. For any initial value condition ϕ0X+, define Φt(ϕ0) for t0 as Φt(ϕ0):=(Tt(θ),It(θ),Vt(θ),Ct(θ),At(θ)) for θ[τ,0], where (Tt(θ),It(θ),Vt(θ),Ct(θ),At(θ)) is the solution of (2) with initial condition ϕ0. By Proposition 1 and Proposition 1 we have Φt(ϕ0) is dissipative in X+, and hence by Arzelˊa-Ascoli theorem, condition (H1) of Lemma 3.2 is satisfied.

    Let ω(ψ) be the omega limit set of the orbit Φ(t) through ψX+. Note that system (2) has an unique boundary equilibrium E0=(λ/d1,0,0,λ1/d4,λ2/d5). For any ψM, i.e., Φt(ψ)X0, we have It(ψ)0,Vt(ψ)0 for all t0 and

    {˙T(t)=λd1T(t),˙C(t)=λ1d4C(t),˙A(t)=λ2d5A(t). (5)

    It then follows from the result in [14] that (Tt(ψ),Ct(ψ),At(ψ))(T0,C0,A0) as t+. Thus, ψMω(ψ)=E0. Furthermore, by Theorem 3.1, E0 is unstable if R0>1. Then {E0} is isolated and acyclic covering and the conditions (ⅰ), (ⅱ) and (ⅲ) of Lemma 3.2 are satisfied.

    Since

    R0=βλd1rd2d2+pλ1d41d3+qλ2d5esτ>1,

    we have

    (d2+pλ1d4)(d3+qλ2d5)<βλd1rd2esτ. (6)

    Thus, there is sufficiently small σ such that

    (d2+p(λ1d4+σ))(d3+q(λ2d5+σ))<β(λd1σ)rd2esτ.

    Suppose Ws(E0)X0. There exists a positive solution (T(t),I(t),V(t), C(t),A(t)) such that

    (T(t),I(t),V(t),C(t),A(t))(λ/d1,0,0,λ1/d4,λ2/d5) as t+.

    For sufficiently large t1, when tt1, we have

    λd1σ<T(t)<λd1+σ,λ1d4σ<C(t)<λ1d4+σ,λ2d5σ<A(t)<λ2d5+σ,

    if t>t1+τ, it follows that

    {˙I(t)d2I(t)+βV(t)(λd1σ)esτpI(t)(λ1d4+σ),˙V(t)d3V(t)+rd2I(t)q(λ2d5+σ)V(t). (7)

    Since

     Aσ=(d2p(λ1d4+σ)β(λd1σ)esτrd2d3q(λ2d5+σ)), (8)

    the non-diagonal elements of (8) are positive, and from (6), we obtain |Aσ|<0. By Perron-Frobrniuss Theorem, we can obtain the maximum eigenvalue α>0 of Aσ, and it has an eigenvector u=(u1,u2),u1>0,u2>0, then choose sufficiently small l such that I(t0)>lu1,V(t0)>lu2.

    Now consider the following auxiliary system

    {˙I(t)=d2I(t)+βV(t)(λd1σ)pI(t)(λ1d4+σ),˙V(t)=d3V(t)+rd2I(t)q(λ2d5+σ)V(t). (9)

    Note I(t),V(t) are solutions of (9) with initial condition I(t0)=lu1,V(t0)=lu2. Since the model (9) is monotone, and Aσu>0, by [[30] Corollary 5.2.2], we have I(t)+,V(t)+ as t+. Using the comparison theorem, we have I(t)+,V(t)+ for t+, which is a contradiction. Hence, Ws(E0)X0=.

    Define a continuous function p:X+R+ by

    p(¯ϕ)=min{¯ϕ2(0),¯ϕ3(0)},¯ϕX+.

    It is clear that p1(0,)X0 and if p(¯ϕ)>0 then p(Φt(¯ϕ))>0 for all t>0 (see e.g. [1]). Based on the above proof, and by Lemma 3.2, it then follows that there exists δ>0 such that lim inftp(Φt(¯ϕ))δ for all ¯ϕX0, which implies that there is a positive η0 such that lim inft(I(t),V(t))(η0,η0) i.e., lim inftI(t)η0, lim inftV(t)η0.

    Furthermore, from the first equation of (2), Proposition 1 and the above results, we have

    ˙T(t)=λd1T(t)βT(t)V(t)>λd1T(t)βMT(t)=λ(d1+βM)T(t),

    Thus,

    lim inft+T(t)>λd1+βM.

    From the fourth equation of (2),

    ˙C(t)=λ1+k1I(t)C(t)h1+C(t)d4C(t)λ1d4C(t),

    we have

    lim inft+C(t)λ1d4.

    From the fifth equation of (2),

    ˙A(t)=λ2+k2A(t)V(t)h1+A(t)d5A(t)λ2d5A(t),

    Therefore, taking ε=min{η0,λ1/d4,λ2/d5,λ/(d1+βM)}, we can conclude that

    lim inft+T(t)ε,lim inft+I(t)ε,lim inft+V(t)ε,lim inft+C(t)ε,lim inft+A(t)ε

    are valid for any solution of system (2) with initial condition in X0. This completes the proof.

    From the Theorem 3.1, we are easy to get that E0 is unstable if R0>1, and by Proposition 1 and the uniformly persistent of system (2), we can obtain that if R0>1, system (2) exists at least one endemic equilibrium E1=(T1,I1,V1,C1,A1).


    3.3. The endemic equilibrium

    Now, we discuss the stability of the endemic equilibrium E1.

    Theorem 3.4. When R0>1, the endemic equilibrium E1 is globally asymptotically stable in region Γ.

    Proof. Set

    m1=βT1V1rd2I1.

    Define a Lyapunov functional L1 by

    L1=T(t)T1(ST1)SdS+esτI(t)I1(SI1)SdS+m1V(t)V1(SV1)SdS+pesτk1C(t)C1(h1+C(t))(SC1)SdS+m1qk2A(t)A1(h2+A(t))(SA1)SdS+βT1V10τ(T(t+θ)V(t+θ)T1V11lnT(t+θ)V(t+θ)T1V1)dθ.

    Calculating the time derivative of L1 along the solution of system (2), we obtain

    .L1=λd1T(t)βT(t)V(t)T1T(t)(λd1T(t)βT(t)V(t))pI(t)C(t)esτ+βT(tτ)V(tτ)d2I(t)esτI1I(t)(βT(tτ)V(tτ)d2I(t)esτpI(t)C(t)esτ)+m1(rd2I(t)d3V(t)qA(t)V(t))m1V1V(t)(rd2I(t)d3V(t)qA(t)V(t))+pesτk1(h1+C(t)){λ1+k1I(t)C(t)h1+C(t)d4C(t)C1C(t)(λ1+k1I(t)C(t)h1+C(t)d4C(t))}+qm1k2(h2+A(t)){λ2+k2A(t)V(t)h2+A(t)d5A(t)A1A(t)(λ2+k2A(t)V(t)h2+A(t)d5A(t))}+βT(t)V(t)βT(tτ)V(tτ)+βT1V1lnT(tτ)V(tτ)T(t)V(t).

    Since

    λ=d1T1+βT1V1, βT1V1=(d2I1+pI1C1)esτ,  rd2I1=d3V1+qA1V1,λ1+k1I1C1h1+C1=d4C1, λ2+k2A1V1h2+A1=d5A1,

    we have

    ˙L1=d1T1(2T(t)T1T1T(t))+βT1V1βT1V1T1T(t)+βT1V(t)I1I(t)βT(tτ)V(tτ)+d2I1esτ+pI1C(t)esτm1d3V(t)m1qA(t)V(t)βT1V1V1I(t)V(t)I1+m1d3V1+m1qA(t)V1+pesτk1λ1(h1+C(t))pesτk1d4C(t)(h1+C(t))pesτk1C1C(t)λ1(h1+C(t))+pesτk1d4C1(h1+C(t))+m1qk2λ2(h2+A(t))+m1qA(t)V(t)m1qk2d5A(t)(h2+A(t))m1qk2A1A(t)λ2(h2+A(t))m1qA1V(t)+m1qk2d5A1(h2+A(t))+βT1V1lnT(tτ)V(tτ)T(t)V(t)=d1T1(2T(t)T1T1T(t))+βT1V1(1T1T(t)+lnT1T(t))+βT1V1(1
    I1T(tτ)V(tτ)I(t)T1V1+lnI1T(tτ)V(tτ)I(t)T1V1)+βT1V1(1V1I(t)I1V(t)+lnV1I(t)I1V(t))+pk1λ1h1esτ(2C(t)C1C1C(t))pk1d4esτ(C(t)C1)2+m1qk2λ2h2(2A1A(t)A(t)A1)m1qk2d5(A(t)A1)2.

    Since the geometric mean is less than or equal to the arithmetical mean and 1x+lnx0 for any x>0, it follows that ˙L10. Let

    D1={(T(t),I(t),V(t),C(t),A(t))|˙L1=0}.

    It is easy to verify that ˙L1(t)=0 if and only if

    T1T(t)=I1T(tτ)V(tτ)I(t)T1V1=V1I(t)I1V(t)=1.

    Thus, T(t)=T1 and

    ˙T(t)=λd1T1βT1V(t)=0.

    As a result, we have V(t)=V1, and then I(t)=I1. From the second equation and the third equation of model (2), we have

    {˙I(t)=βT1V1esτd2I1pI1C1=0,˙V(t)=rd2I1d3V1qA1V1=0,

    which implies C(t)=C1,A(t)=A1. Therefore, the largest invariant set in D1 is E1. Thus, when R0>1, all positive solutions converge to E1 by the LaSalle invariance principle [8].


    4. Numerical simulations

    In this section, we implement numerical simulations to explore the effects of the recruitment of immune responses (λ1 and λ2) on the infected cells (I1) and virus load (V1) at the endemic equilibrium E1. The parameter values are chosen from literatures ([2], [26], [33], [32], [41], [38], [40], [46]). Especially, according to [9], we choose the range of λ1,λ2 from 0 to 1.

    The all parameter values are shown in Table 1.

    Table 1. Parameter definitions and values used in numerical simulations.
    Par.ValueDescriptionRef.
    λ0-50 cells ml-day1Recruitment rate of healthy cells[33,38]
    d1 0.0070.1day 1Death rate of healthy cells[38]
    β 5×1070.5 ml virion-day1Infection rate of target cells by virus[33,38]
    d2 0.20.8 day1Death rate of infected cells[41,46]
    r 102500 virions/cellBurst size of virus[38]
    d3 2.43 day1Clearance rate of free virus[38]
    p0.051 day1Killing rate of CTL cells[41,40]
    q 0.11 day1Neutralizing rate of antibody[41]
    k1 0.10.12 day1Proliferation rate of CTL response[2,41]
    k2 1.5 day1Production rate of antibody response[41]
    d4 0.052 day1Mortality rate of CTL response[2,40]
    d5 0.1 day1Clearance rate of antibody[41]
    s 0.0011.41/s is the average time[32,47]
    τ 02 daysVirus replication time[38]
    h11200Saturation constantAssumed
    h21500Saturation constantAssumed
    λ1VariedRate of CTL export from thymus[9]
    λ2VariedRecruitment rate of antibody[9]
     | Show Table
    DownLoad: CSV

    Figure 1 illustrates that I1,V1 decrease along with λ1,λ2 increasing in which implies that ignoring the recruitment of immune responses will overestimate the severity of the infection.

    Figure 1. Illustration of the proportion of infected cells (I1) and virus load (V1) at the endemic equilibrium E1. Here parameters are λ=50,β=5×107,d1=0.008,d2=0.8,d3=3,d4=0.05,d5=0.1,p=0.05,r=2500,q=0.2,k1=0.12,h1=1200,k2=1.5,s=0.001,τ=1.5.

    5. Conclusions

    In this paper, the global dynamics of a within-host model with immune responses and intracellular time delay has been studied. By the method of Lyapunov functional and persistence theory, we obtain the global stability of the model (2) are completely determined by the values of the reproductive number. The results imply that the complicated behaviors such as backward bifurcations and Hopf bifurcations do not exist in the model with both immune responses and time delay.

    Considering the basic reproductive number of virus

    R0=R(τ)=λβrd2esτd1(d2+pλ1d4)(d3+qλ2d5)

    as a function of τ, we can find that it is decreasing in τ and it tends to 0 if the time delay tends to . Furthermore, comparing with the previous studies ([11], [12], [16], [23], [24], [39], [42], [45]), we find that the expression of R0 for model (2) is different, i.e., it includes the parameters λ1,λ2 which reflect the recruitment of immune responses. This implies that ignoring the recruitment of immune responses will result in overestimation of the reproductive number. Numerical simulations also show that the part of V1,I1 at steady state will decrease along with λ1,λ2 increasing (see Fig. 1), which mean that the recruitment of immune responses play a significant role in eradication of diseases. To sum up, we can conclude that ignoring the recruitment of immune responses will overestimate the infection degree and the severity of disease. These may provide a new insight for developing antiviral drug therapy strategies, which is to increase the recruitment rate of immune responses.


    Acknowledgments

    The authors are very grateful to the anonymous referees for their valuable comments and suggestions. This research is supported by the National Natural Science Fund of P. R. China (No. 11271369).


    [1] ADDIN Mendeley Bibliography CSL_BIBLIOGRAPHY Moyo EN, Nangombe SS (2015) Southern Africa's 2012–13 violent storms: role of climate change. Procedia IUTAM 17: 69–78. doi: 10.1016/j.piutam.2015.06.011
    [2] Wahid H, Ahmad S, Nor MSM, et al. (2017) Prestasi kecekapan pengurusan kewangan dan agihan zakat: perbandingan antara majlis agama islam negeri di Malaysia. J Ekon Malaysia 51: 39–54.
    [3] Mutasa M (2010) Zimbabwe' s Drought Conundrum : vulnerability and coping in Buhera and Chikomba districts. MS thesis, 163.
    [4] Ndlovu S (2010) Coping With Drought. Mainstreaming Livelihood Centred Approaches to Disaster Management.
    [5] Levey KM, Jury MR (1996) Composite intraseasonal oscillations of convection over Southern Africa. J Clim 9: 1910–1920. doi: 10.1175/1520-0442(1996)009<1910:CIOOCO>2.0.CO;2
    [6] Makarau A (1995) Intra-seasonal oscillatory modes of the southern Africa summer circulation, Univ. Cape T. (PhD thesis).
    [7] Zhakata W (1996) Impacts of climate variability and forecasting on agriculture (Zimbabwe experience), in Proc. Workshop on Reducing Climate-Related Vulnerability in Southern Africa, 131–139.
    [8] Jury MR (1993) The structure and possible forcing mechanisms of the 1991–1992 drought in Southern Africa, Suid-Afrikaanse Tydskr. vir Natuurwetenskap en Tegnol 12, 8–16.
    [9] Colberg F (2004) South Atlantic response to El Niño–Southern Oscillation induced climate variability in an ocean general circulation model. J Geophys Res 109: C12015. doi: 10.1029/2004JC002301
    [10] Chikozho C (2010) Applied social research and action priorities for adaptation to climate change and rainfall variability in the rainfed agricultural sector of Zimbabwe. Phys Chem Earth 35: 780–790. doi: 10.1016/j.pce.2010.07.006
    [11] Gwimbi P (2009) Cotton farmers' vulnerability to climate change in Gokwe District (Zimbabwe): impact and influencing factors. JÀMBÁ J Disaster Risk Stud 2: 81–92.
    [12] Alvarez TC, Delgado RC, González PA (2014) Aplicabilidad de los sistemas de triaje prehospitalarios en los incidentes con múltiples víctimas: De la teoría a la práctica. Emergencias 26: 147–154.
    [13] Tome S (2017) Weekly Bulletin on Outbreaks. Week 46, no. July, 1–7.
    [14] Bohle HG, Downing TE, Watts M J (1994) Climate Change and Social Vulnerability. Toward a Sociology and Geography of Food Insecurity. Glob Environ Chang 4: 37–48.
    [15] Mavhura E, Bernard S, Collins AE, et al. (2013) Author' s personal copy International Journal of Disaster Risk Reduction Indigenous knowledge, coping strategies and resilience to floods in Muzarabani, Zimbabwe. Int J Disaster Risk Reduct 5: 38–48. doi: 10.1016/j.ijdrr.2013.07.001
    [16] Mavhura E, Manatsa D, Mushore T (2015) Adaptation to drought in arid and semi-arid environments: Case of the Zambezi Valley, Zimbabwe. Jàmbá J Disaster Risk Stud 7: 1–7.
    [17] Mushore TD (2013) Uptake Of Seasonal Rainfall Forecasts In Zimbabwe. IOSR J Environ Sci Toxicol Food Technol 5: 31–37. doi: 10.9790/2402-0513137
    [18] Cook KH (2000) The South Indian convergence zone and interannual rainfall variability over Southern Africa. J Clim 13: 3789–3804. doi: 10.1175/1520-0442(2000)013<3789:TSICZA>2.0.CO;2
    [19] Mason S, Lindesay J, Tyson J (1994) Simulating drought in Southern Africa using sae surface temperature variations. Water SA 20: 15–22.
    [20] Beilfuss R (2012) A Risky Climate for Southern African Hydro. Int Rivers Berkely, 1–46.
    [21] Mamombe V, Kim WM, Choi YS (2017) Rainfall variability over Zimbabwe and its relation to large-scale atmosphere–ocean processes. Int J Climatol 37: 963–971. doi: 10.1002/joc.4752
    [22] Mwafulirwa ND (1999) Climate variability and predictability in tropical southern africa with a focus on dry spells over Malawi.
    [23] Manatsa D, Chingombe W, Matsikwa H, et al. (2008) The superior influence of Darwin Sea level pressure anomalies over ENSO as a simple drought predictor for Southern Africa. Theor Appl Climatol 92: 1–14. doi: 10.1007/s00704-007-0315-3
    [24] Manatsa D, Mukwada G (2012) Rainfall Mechanisms for the Dominant Rainfall Mode over Zimbabwe Relative to ENSO and/or IODZM. Sci World J 2012: 1–15.
    [25] Gaughan AE, Staub CG, Hoell A, et al. (2016) Inter- and Intra-annual precipitation variability and associated relationships to ENSO and the IOD in southern Africa. Int J Climatol 36: 1643–1656. doi: 10.1002/joc.4448
    [26] Ogwang BA, Guirong T, Haishan C (2012) Diagnosis of September - November Drought and the Associated Circulation Anomalies Over Uganda. Pakistan J Meteorol 9: 11–24.
    [27] Kabanda TA, Jury MR (1999) Inter-annual variability of short rains over northern Tanzania. Clim Res 13: 231–241. doi: 10.3354/cr013231
    [28] Nangombe S, Madyiwa S, Wang J (2018) Precursor conditions related to Zimbabwe's summer droughts. Theor Appl Climatol 131: 413–431. doi: 10.1007/s00704-016-1986-4
    [29] Manatsa D, Reason CJC, Mukwada G (2012) On the decoupling of the IODZM from southern Africa Summer rainfall variability. Int J Climatol 32: 727–746. doi: 10.1002/joc.2306
    [30] Simmonds I, Hope P (1997) Persistence Characteristics of Australian Rainfall Anomalies. Int J Climatol 17: 597–613. doi: 10.1002/(SICI)1097-0088(199705)17:6<597::AID-JOC173>3.0.CO;2-V
    [31] Manatsa D, Mushore T, Lenouo A (2017) Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO. Theor Appl Climatol 127: 259–274. doi: 10.1007/s00704-015-1632-6
    [32] Department of Meterological Services (1981) Climate Handbook of Zimbabwe, Zimbabwe Meteorol. Serv. Harare, 48.
    [33] Mavhura E, Collins A, Bongo PP (2017) Flood vulnerability and relocation readiness in Zimbabwe. Disaster Prev Manag An Int J 26: 41–54. doi: 10.1108/DPM-05-2016-0101
    [34] Muzenda-Mudavanhu C, Manyena B, Collins AE (2015) Disaster risk reduction knowledge among children in Muzarabani District, Zimbabwe. Nat Hazards 84: 911–931.
    [35] Bohle HG, Downing TE, Watts MJ (1994) Köppen Climate Classification for Bucharest.
    [36] Janus Corporate Solutions (2016) Weather and Climate in Singapore. Longman.
    [37] Matarira CH (1990) Theoretical and Ap. plied Climatology Frequency and Tracks of Anticyclones and Their Effect on Rainfall Pat- terns over Zimbabwe. Theor Appl Climatol 66: 53–66.
    [38] Makarau A, Jury MR (1997) Seasonal Cycle of Convective Spells Over Southern. Int J Climatol 17: 1317–1332. doi: 10.1002/(SICI)1097-0088(199710)17:12<1317::AID-JOC197>3.0.CO;2-A
    [39] Manatsa D, Morioka Y, Behera SK, et al. (2013) Link between Antarctic ozone depletion and summer warming over southern Africa. Nat Geosci 6: 934–939. doi: 10.1038/ngeo1968
    [40] Levitus S, Boyer T (1998) NOAA/OAR/ESRL PSD, Boulder, Colorado, USA.
    [41] Dee DP, Uppala SM, Simmons AJ, et al. (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137: 553–597. doi: 10.1002/qj.828
    [42] Kalnay E, Kanamitsu M, Kistler R, et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77: 437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [43] Smith TM, Reynolds RW, Peterson TC, et al. (2008) Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21: 2283–2296. doi: 10.1175/2007JCLI2100.1
    [44] Folland CK (1983) Regional-Scale International Variability Of Climate-A Northwest European-Perspective. Meteorol Mag 112: 163–183.
    [45] Mpeta EJ (1997) Intra-seasonal convection dynamics over southwest and northeast Tanzania: an observational study, University of Cape Town.
    [46] Naeraa M, Jury MR (1998) Meteorology and Atmospheric Physics Tropical Cyclone Composite Structure and Impacts over Eastern Madagascar During January-March 1994. Meteorol Atmos Phys 53: 43–53.
    [47] Jury MR, Levey KM (1997) Vertical structure of the atmosphere during wet spells over Southern Africa. Water SA 23: 51–55.
    [48] Hargraves R, Jury M (1997) Composite meteorological structure of flood events over the eastern mountains of South Africa. Water SA 23: 357–363.
    [49] Boschat G, Simmonds L, Purich A, et al. (2016) On the use of composite analyses to form physical hypotheses: An example from heat wave-SST associations. Sci Rep 6: 29599. doi: 10.1038/srep29599
    [50] Rocha A, Simmonds I (1997) Interannual Variability of South-Eastern African Summer Rainfall. Part Ii. Modelling the Impact of Sea-Surface Temperatures on Rainfall and Circulation. Int J Climatol 17: 267–290.
    [51] Simmonds I, Bi D, Hope P (1999) Atmospheric water vapor flux and its association with rainfall over China in summer. J Clim 12: 1353–1367. doi: 10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2
    [52] Preston-Whyte RA, Tyson PD (1988) The atmosphere and weather of Southern Africa. Oxford University Press.
    [53] Rocha A, Simmonds I (1997) Interannual Variability of South-Eastern African Summer Rainfall. Part 1: Relationships With Air–Sea Interaction Processes. Int J Climatol 17: 235–265.
    [54] Nicholson SE, Entekhabi D (1987) Rainfall Variability in Equatorial and Southern Africa: Relationships with Sea Surface Temperatures along the Southwestern Coast of Africa. J Clim Appl Meteorol 26: 561–578. doi: 10.1175/1520-0450(1987)026<0561:RVIEAS>2.0.CO;2
  • This article has been cited by:

    1. Ge Zhang, Zhiming Li, Anwarud Din, A stochastic SIQR epidemic model with Lévy jumps and three-time delays, 2022, 431, 00963003, 127329, 10.1016/j.amc.2022.127329
    2. Jiaxing Chen, Chengyi Xia, Matjaž Perc, The SIQRS Propagation Model With Quarantine on Simplicial Complexes, 2024, 11, 2329-924X, 4267, 10.1109/TCSS.2024.3351173
    3. Haokuan Cheng, Min Xiao, Yunxiang Lu, Haibo Bao, Leszek Rutkowski, Jinde Cao, Complex pattern evolution of a two-dimensional space diffusion model of malware spread, 2024, 99, 0031-8949, 045237, 10.1088/1402-4896/ad30ee
    4. Linji Yang, Qiankun Song, Yurong Liu, Stability and Hopf bifurcation analysis for fractional-order SVEIR computer virus propagation model with nonlinear incident rate and two delays, 2023, 547, 09252312, 126397, 10.1016/j.neucom.2023.126397
    5. Jie 杰 Gao 高, Jianfeng 建锋 Luo 罗, Xing 星 Li 李, Yihong 毅红 Li 李, Zunguang 尊光 Guo 郭, Xiaofeng 晓峰 Luo 罗, Triadic percolation in computer virus spreading dynamics, 2025, 34, 1674-1056, 028701, 10.1088/1674-1056/ad9ff8
    6. JunLing Wang, Xinxin Chang, Lei Zhong, A SEIQRS Computer Virus Propagation Model and Impulse Control With Two Delays, 2025, 0170-4214, 10.1002/mma.10721
    7. Junling Wang, Lei Zhong, Xinxin Chang, Sandip V. George, SEIQRS model analysis and optimal control with two delays, 2025, 20, 1932-6203, e0319417, 10.1371/journal.pone.0319417
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6220) PDF downloads(1001) Cited by(6)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog