This work aims to provide the numerical performances of the computer epidemic virus model with the time delay effects using the stochastic Levenberg-Marquardt backpropagation neural networks (LMBP-NNs). The computer epidemic virus model with the time delay effects is categorized into four dynamics, the uninfected S(x) computers, the latently infected L(x) computers, the breaking-out B(x) computers, and the antivirus PC's aptitude R(x). The LMBP-NNs approach has been used to numerically simulate three cases of the computer virus epidemic system with delay effects. The stochastic framework for the computer epidemic virus system with the time delay effects is provided using the selection of data with 11%, 13%, and 76% for testing, training, and verification together with 15 neurons. The proposed and data-based Adam technique is overlapped to execute the LMBP-NNs method's exactness. The constancy, authentication, precision, and capability of the LMBP-NNs scheme are perceived with the analysis of the state transition measures, regression actions, correlation performances, error histograms, and mean square error measures.
Citation: Wajaree Weera, Thongchai Botmart, Teerapong La-inchua, Zulqurnain Sabir, Rafaél Artidoro Sandoval Núñez, Marwan Abukhaled, Juan Luis García Guirao. A stochastic computational scheme for the computer epidemic virus with delay effects[J]. AIMS Mathematics, 2023, 8(1): 148-163. doi: 10.3934/math.2023007
[1] | Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized k-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043 |
[2] | Khaled Matarneh, Suha B. Al-Shaikh, Mohammad Faisal Khan, Ahmad A. Abubaker, Javed Ali . Close-to-convexity and partial sums for normalized Le Roy-type q-Mittag-Leffler functions. AIMS Mathematics, 2025, 10(6): 14288-14313. doi: 10.3934/math.2025644 |
[3] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
[4] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[5] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[6] | Bushra Kanwal, Saqib Hussain, Thabet Abdeljawad . On certain inclusion relations of functions with bounded rotations associated with Mittag-Leffler functions. AIMS Mathematics, 2022, 7(5): 7866-7887. doi: 10.3934/math.2022440 |
[7] | Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689 |
[8] | Gauhar Rahman, Iyad Suwan, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Muhammad Samraiz, Asad Ali . A basic study of a fractional integral operator with extended Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(11): 12757-12770. doi: 10.3934/math.2021736 |
[9] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[10] | Miguel Vivas-Cortez, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor . Generalized (p,q)-analogues of Dragomir-Agarwal's inequalities involving Raina's function and applications. AIMS Mathematics, 2022, 7(6): 11464-11486. doi: 10.3934/math.2022639 |
This work aims to provide the numerical performances of the computer epidemic virus model with the time delay effects using the stochastic Levenberg-Marquardt backpropagation neural networks (LMBP-NNs). The computer epidemic virus model with the time delay effects is categorized into four dynamics, the uninfected S(x) computers, the latently infected L(x) computers, the breaking-out B(x) computers, and the antivirus PC's aptitude R(x). The LMBP-NNs approach has been used to numerically simulate three cases of the computer virus epidemic system with delay effects. The stochastic framework for the computer epidemic virus system with the time delay effects is provided using the selection of data with 11%, 13%, and 76% for testing, training, and verification together with 15 neurons. The proposed and data-based Adam technique is overlapped to execute the LMBP-NNs method's exactness. The constancy, authentication, precision, and capability of the LMBP-NNs scheme are perceived with the analysis of the state transition measures, regression actions, correlation performances, error histograms, and mean square error measures.
In 1903, Mittag-Leffler [22] provided the function Eσ(z) defined by
Eσ(z)=∞∑j=0 zjΓ(σj+1),(σ,z∈C,R(σ)>0), |
where Γ is the gamma function and R means the real part.
Wiman [34] introduced the following generalized Mittag-Leffler function
Eσ,μ(z)=∞∑j=0 zjΓ(σj+μ),(σ,μ,z∈C,[R(σ),R(μ)]>0). |
Prabhakar [25] introduced the following function Eρσ,μ(z) in the form
Eρσ,μ(z)=∞∑j=0 (ρ)jΓ(μ+σj).zjj!, (σ,μ,ρ,z∈C,[R(σ),R(μ),R(ρ)]>0). |
Later, Shukla and Prajapati [27] (see also [32]) defined another generalized Mittag-Leffler function
Eρ,kσ,μ(z)=∞∑j=0 (ρ)kjΓ(μ+σj)zjj!,(σ,μ,ρ,z∈C,[R(σ),R(μ),R(ρ)]>0) |
where k∈(0,1)⋃N and (ρ)kj=Γ(ρ+kj)Γ(ρ) is the generalized Pochhammer symbol defined as
kkjk∏m=1(ρ+m−1k)j if k∈N. |
Bansal and Prajapat [5] and Srivastava and Bansal [31] investigated geometric properties of the Mittag-Leffler function Eσ,μ(z), including starlikeness, convexity, and close-to-convexity (see [1,4,6,8,12,13,17,28,29]). In reality, the generalized Mittag-Leffler function Eσ,μ(z) and its extensions are still widely used in geometric function theory and in a variety of applications (see, for details, [2,3,7,16,24]).
Let S(p) be the class of functions of the form
f(z)=zp+∞∑j=p+1ajzj, | (1.1) |
where f is holomorphic and multivalent in the open unit disk O={z:|z|<1}.
Let f and F be two functions in S(p). Then the convolution (or Hadamard product), denoted by f∗F, is defined as
(f∗F)(z)=zp+∞∑j=p+1ajdjzj=(F∗f)(z), |
where f(z) is in (1.1) and F(z)=zp+∞∑j=p+1djzj.
Let f(z) and h(z) be two analytic functions defined in O. The function f(z) is called subordinate to h(z), or h(z) is superordinate to f(z), denoted by f(z)≺h(z) and h(z)≺f(z), respectively, if there is a Schwarz function φ with φ(z)=0,|φ(z)|<1 and f(z)=h(φ(z)). If the function h is univalent in O, then the following equivalence is true if
f(z)≺h(z) (z∈O)⇔f(0)=h(0) and f(O)⊂h(O). |
Definition 1.1. ([18]). Let 0<q<1. Then [j]q! denotes the q-factorial, which is defined as follows:
[j]q!={[j]q[j−1]q…[2]q[1]q, j=1,2,3,…1, j=0 |
where [j]q=1−qj1−q=1+∑j−1m=1 qm and [0]q=0.
Definition 1.2 ([18]). The q-generalized Pochhammer symbol [ρ]j,q, ρ∈C, is given as
[ρ]j,q=[ρ]q[ρ+1]q[ρ+2]q…[ρ+j−1]q, |
and the q-Gamma function is defined as
Γq(ρ+1)=[ρ]qΓq(ρ) and Γq(1)=1. |
It follows that Γq(j+1)=[j]q!.
Lately, many results have been given for some related special functions such as the Wright function [3] and multivalent functions (see [10,23,26]).
Here, we propose a q-extension of specific extensions of the Mittag-Leffler function, motivated by the success of Mittag-Leffler function applications in physics, biology, engineering, and applied sciences. We generalize the Mittag-Leffler function given by Shukla and Prajapati [27] and obtain a new generalized q-Mittag-Leffler function.
Now, we present a new generalized q-Mittag-Leffler function as follows
Eρσ,μ(q;z)=z+∞∑j=2 (ρ)kjΓq(μ+σj)zjj!. | (1.2) |
It is obvious that, when q→1−, the resulting function is the generalized Mittag-Leffler function, which is given by Shukla and Prajapati [27].
Corresponding to the function Eρσ,μ(q;z) in (1.2), we establish the following generalized q-Mittag-Leffler function Eρσ,μ(p,q;z) in multivalent functions S(p), as given below
Eρσ,μ(p,q;z)=zp+∞∑j=p+1 (ρ)k(j−p)Γq(μ+σ(j−p))zj(j−p)!. | (1.3) |
Again, using the new function (1.3), we define the following function:
Gρσ,μ(p,q;z):=zpΓq(μ)Eρσ,μ(p,q;z)=zp+∞∑j=p+1 Γq(μ)(ρ)k(j−p)Γq(μ+σ(j−p))zj(j−p)!. | (1.4) |
Definition 1.3. For f∈S(p), we define the new linear operator Aμ,ρ;kσ;p,qf(z):S(p)→S(p) by
Aμ,ρ;kσ;p,qf(z)=Gρσ,μ(p,q;z)∗f(z)=zp+∞∑j=p+1 χjajzj, | (1.5) |
where χj=Γq(μ)(ρ)kjΓq(μ+σj)j!.
We now define a subclass Qμ,ρ;kσ;q(M,N;τ,p) of the family S(p) using the multivalent linear operator in (1.5) and the subordination concept.
Definition 1.4. Let Aμ,ρ;kσ;p,qf(z) be an operator in (1.5). A function f(z)∈S(p) is said to be in the class Qμ,ρ;kσ;q(M,N;τ,p) if satisfies the following subordination condition:
1p−τ(z(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)−τ)≺1+Mz1+Nz, (z∈O) | (1.6) |
or equivalently
z(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)≺p+(pN+(M−N)(p−τ))z1+Nz, (z∈O) |
and
|z(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)−pNz(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)−[pN+(M−N)(p−τ)]|<1, | (1.7) |
where −1≤M<N≤1, 0≤τ<p, and p∈N.
Remark 1.1. Some well-known special classes of the class Qμ,ρ;kσ;q(M,N;τ,p) can be obtained by choosing the values of the parameters ς,μ,ρ;τ,k,p,q, M, and N.
(1) Q0,0,10,1(M,N;τ,p)=S∗p(M,N;τ,p) was provided by Aouf [2].
(2) Q0,0,10,1(M,N;0,p)=S∗p(M,N;p) was provided by Goel and Sohi [16].
In this work, we introduce a new subclass of multivalent functions Qμ,ρ;kσ;q(M,N;τ,p) defined by the new linear operator Aμ,ρ;kσ;p,qf(z). And we study some geometric properties for the class Qμ,ρ;kσ;q(M,N;τ,p) such as the coefficient estimates, convexity and convex linear combination. Finally, the radius theorems associated with the generalized Srivastava-Attiya integral operator will be investigated.
The first theorem in this section presents the necessary and sufficient condition for the function f(z) in (1.1) belong to the class Qμ,ρ;kσ;q(M,N;τ,p).
Theorem 2.1. A function f(z) is in the class Qμ,ρ;kσ;q(M,N;τ,p) if and only if
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χj|aj|≤(M−N)(p−τ), | (2.1) |
where 1≤M<N≤1, 0≤τ<p, and p∈N.
Proof. Assume that the condition (2.1) is true. Then by (1.7), we have
|z(Aμ,ρ;kσ;p,qf(z))′−pAμ,ρ;kσ;p,qf(z)|−|Nz(Aμ,ρ;kσ;p,qf(z))′−[(M−N)(p−τ)+pN]Aμ,ρ;kσ;p,qf(z)|=|∞∑j=p+1(j−p)χjajzj|−|(M−N)(p−τ)zj−∞∑j=p+1[Nj−((M−N)(p−τ)+pN)]χjajzj|≤−(M−N)(p−τ)+∞∑j=p+1[(1+N)(j−p)+((M−N)(p−τ))]χj|aj|≤0. |
By maximum modulus theorem [11], we get f(z)∈Qμ,ρ;kσ;q(M,N;τ,p).
Conversely, suppose that f(z)∈Qμ,ρ;kσ;q(M,N;τ,p). Then
|z(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)−pNz(Aμ,ρ;kσ;p,qf(z))′Aμ,ρ;kσ;p,qf(z)−[pN+(M−N)(p−τ)]|=|∑∞j=p+1(j−p)χjajzj(M−N)(p−τ)zj−∑∞j=p+1[Nj−((M−N)(p−τ)+pN)]χjajzj|<1. |
Since R(z)≤|z|, we get
R{∑∞j=p+1(j−p)χjajzj(M−N)(p−τ)zj−∑∞j=p+1[Nj−((M−N)(p−τ)+pN)]χjajzj}<1. |
Taking z→1−, we have
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χj|aj|≤(M−N)(p−τ). |
This completes the proof.
Theorem 2.2. Let f1 and f2 be analytic functions in the class Qμ,ρ;kσ;q(M,N;τ,p). Then f1∗f2∈Qμ,ρ;kσ;q(M,N;τ,p), where
τ1=p−(1−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(1−p)+(M−N)(p−τ1))χ1]2−(M−N)2(p−τ)2χ1, | (2.2) |
where χ1=Γq(μ)(ρ)kΓq(μ+ς).
Proof. We will show that τ1 is the largest satisfying
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ1))χj(M−N)(p−τ1)aj,1aj,2≤1. | (2.3) |
Since f1,f2∈Qμ,ρ;kσ;q(M,N;τ,p), by the condition (2.1) and the Cauchy-Schwarz inequality, we get
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)√aj,1aj,2≤1. | (2.4) |
From (2.3) and (2.4), we observe that
√aj,1aj,2≤[((1+N)(j−p)+(M−N)(p−τ))χj](p−τ1)[((1+N)(j−p)+(M−N)(p−τ1))χj](p−τ). |
From (2.4), it is necessary to prove
(M−N)(p−τ)((1+N)(j−p)+(M−N)(p−τ))χj≤[((1+N)(j−p)+(M−N)(p−τ))χj](p−τ1)[((1+N)(j−p)+(M−N)(p−τ1))χj](p−τ). | (2.5) |
Furthermore, from the inequality (2.5) it follows that
τ1≤p−(j−p)(1+N)(M−N)(p−τ)2χj[((1+N)(j−p)+(M−N)(p−τ1))χj]2−(M−N)2(p−τ)2χj. |
Now, set
E(j)=p−(j−p)(1+N)(M−N)(p−τ)2χj[((1+N)(j−p)+(M−N)(p−τ1))χj]2−(M−N)2(p−τ)2χj. |
We observe that the function E(j) is increasing for j∈N. Putting j=1, we have
τ1=E(1)=p−(1−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(1−p)+(M−N)(p−τ1))χ1]2−(M−N)2(p−τ)2χ1. |
This completes the proof.
Theorem 2.3. Let f1 and f2 be analytic functions in the class Qμ,ρ;kσ;q(M,N;τ,p) of forms given in (1.1) with aj,1 and aj,2, respectively. Then
w(z)=zp+∞∑j=p+1(a2j,1+a2j,2)zj∈Qμ,ρ;kσ;q(M,N;τ,p), |
where
η=p−(1−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(1−p)+(M−N)(p−τ1))χ1]2−(M−N)2(p−τ)2χ1. |
Proof. By Theorem 2.1, we have
∞∑j=p+1 [((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)]2a2j,s≤∞∑j=p+1 [((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)aj,s]2≤1, (s=1,2). |
From the above inequality, we obtain
∞∑j=p+1 12[((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)]2(a2j,1+a2j,2)≤1. |
Therefore, the largest η can be obtained such that
((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)≤12[((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)]2. |
That is,
η≤p−2(j−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(j−p)+(M−N)(p−τ1))χ1]2−2(M−N)2(p−τ)2χ1. |
Now, set
E(j)=p−2(j−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(j−p)+(M−N)(p−τ1))χ1]2−2(M−N)2(p−τ)2χ1. |
We observe that the function E(j) is increasing for j∈N. Putting j=1, we have
η=E(1)=p−2(1−p)(1+N)(M−N)(p−τ)2χ1[((1+N)(1−p)+(M−N)(p−τ1))χ1]2−2(M−N)2(p−τ)2χ1. |
This completes the proof.
Theorem 2.4. Let f1,f2∈Qμ,ρ;kσ;q(M,N;τ,p). Then for γ∈[0,1], the function F(z)=(1−γ)f1+γf2 belongs to the class Qμ,ρ;kσ;q(M,N;τ,p).
Proof. Since the functions f1 and f2 belong to the class Qμ,ρ;kσ;q(M,N;τ,p),
F(z)=(1−γ)f1+γf2=zp+∞∑j=p+1ηjzj, |
where ηj=(1−γ)aj,1+γaj,2.
By (2.1), we observe that
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χj[(1−γ)aj,1+γaj,2]=(1−γ)∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χjaj,1+γ∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χjaj,2≤(1−γ)(M−N)(p−τ)+γ(M−N)(p−τ). |
Hence F(z)∈Qμ,ρ;kσ;q(M,N;τ,p).
Theorem 2.5. Let fs(z)=zp+∑∞j=p+1aj,szj be in the class Qμ,ρ;kσ;q(M,N;τ,p) for s=1,2,…,m. Then the function P(z)=∑ms=1ℵsfs, where ∑ms=1ℵs=1, is also in the class Qμ,ρ;kσ;q(M,N;τ,p).
Proof. By Theorem 2.1, we have
∞∑j=p+1 ((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)aj,s≤1. |
Since
P(z)=m∑s=1ℵsfs=m∑s=1ℵs(zp+∞∑j=p+1aj,szj)=zp+∞∑j=p+1(m∑s=1ℵsaj,s)zj, |
∞∑j=p+1((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ)m∑s=1ℵsaj,s≤1. |
Thus P(z)∈Qμ,ρ;kσ;q(M,N;τ,p).
In this section, we investigate radii of multivalent starlikeness, multivalent convexity, and multivalent close-to-convex for the function f(z) in the class Qμ,ρ;kσ;q(M,N;τ,p) with the generalized integral operator of Srivastava-Attiya.
Jung et al. [19] introduced an integral operator with one parameter as follows:
Iδ(f)(z):=2δzΓ(δ)∫z0 (log(zv) )δ−1f(v)dv=z+∞∑j=2 (2j+1)δajzj(δ>0;f∈S). |
In 2007, Srivastava and Attiya [30] investigated a new integral operator, which is called Srivastava-Attiya operator, given by
Ju,mf(z)=z+∞∑j=1(1+uj+u)δajzj. |
Many studies are concerned with the study of the operator of Srivastava-Attiya (see [9,14,15,20]).
Mishra and Gochhayat [21] (also [33]) provided a fractional differintegral operator Jmu,pf(z):S(p)→S(p) which is called a generalized of Srivastava-Attiya integral operator, defined by
Jmu,pf(z)=zp+∞∑j=p+1(p+uj+u)δajzj. | (3.1) |
Theorem 3.1. If f(z)∈Qμ,ρ;kσ;q(M,N;τ,p) and 0≤τ<p, then Jmu,pf(z) in (3.1) is multivalent starlike of order τ in |z|≤r1, where
r1=infj≥p+1{((1+N)(j−p)+(M−N)(p−τ))χj(j+u)δ(M−N)(j−2p+τ)(p+u)δ}. | (3.2) |
Proof. According to the definition of a starlike function in [28], we have
|z(Jmu,pf(z))′Jmu,pf(z)−p|≤p−τ, | (3.3) |
|z(Jmu,pf(z))′Jmu,pf(z)−p|=|∑∞j=p+1(j−p)(p+uj+u)δajzj∑∞j=p+1(p+uj+u)δajzj|≤∑∞j=p+1(j−p)(p+uj+u)δaj|z|j∑∞j=p+1(p+uj+u)δaj|z|j. |
By (3.2), we have
∞∑j=p+1(j−2p+τ)(p+u)δaj|z|j(p−τ)(j+u)δ≤1. |
By (2.1) in Theorem 2.1, it is clear that
(j−2p+τ)(p+u)δ(p−τ)(j+u)δ|z|j≤((1+N)(j−p)+(M−N)(p−τ))χj(M−N)(p−τ). |
Therefore,
|z|≤{((1+N)(j−p)+(M−N)(p−τ))χj(j+u)δ(M−N)(j−2p+τ)(p+u)δ}1j. |
This completes the proof.
Theorem 3.2. If f(z)∈Qμ,ρ;kσ;q(M,N;τ,p) and 0≤τ<p, then Jmu,pf(z) in (3.1) is multivalent convex of order τ in |z|≤r2, where
r2=infj≥p+1{((1+N)(j−p)+(M−N)(p−τ))χjp(j+u)δ(M−N)[j(j−2p+τ)](p+u)δ}. | (3.4) |
Proof. To verify (3.4), it is necessary to prove
|(1+z(Jmu,pf(z))′′(Jmu,pf(z))′)−p|≤p−τ, |
but the result is obtained by repeating the steps in Theorem 3.1.
Corollary 3.1. If f(z)∈Qμ,ρ;kσ;q(M,N;τ,p) and 0≤τ<p, then Jmu,pf(z) in (3.1) is multivalent close-to-convex of order τ in |z|≤r3, where
r3=infj≥1{((1+N)(j−p)+(M−N)(p−τ))χj(j+u)δ(M−N)j(p+u)δ}. | (3.5) |
In this work, we established and investigated a new generalized Mittag-Leffler function, which is a generalization of q-Mittag-Leffler function defined by Shukla and Prajapati [27]. Also, we studied some of the geometric properties of a certain subclass of multivalent functions. In addition, we introduced radius theorem using a generalized Srivastava-Attiya integral operator. Since the Mittag-Leffler function is of importance, it is related to a wide range of problems in mathematical physics, engineering, and the applied sciences. The results obtained in this article may have many other applications in special functions.
The authors express many thanks to the Editor-in-Chief, handling editor, and the reviewers for their outstanding comments that improve our paper.
The authors declare that they have no competing interests concerning the publication of this article.
[1] |
B. K. Mishra, D. Saini, Mathematical models on computer viruses, Appl. Math. Comput., 187 (2007), 929–936. https://doi.org/10.1016/j.amc.2006.09.062 doi: 10.1016/j.amc.2006.09.062
![]() |
[2] |
A. M. El-Sayed, A. A. Arafa, M. Khalil, A. Hassan, A mathematical model with memory for propagation of computer virus under human intervention, Prog. Fract. Differ. Appl., 2 (2016), 105–113. https://doi.org/10.18576/pfda/020203 doi: 10.18576/pfda/020203
![]() |
[3] |
M. Peng, X. He, J. Huang, T. Dong, Modeling computer virus and its dynamics, Math. Probl. Eng., 2013 (2013), 842614. https://doi.org/10.1155/2013/842614 doi: 10.1155/2013/842614
![]() |
[4] |
A. M. del Rey, Mathematical modeling of the propagation of malware: a review, Security Comm. Networks, 8 (2015), 2561–2579. https://doi.org/10.1002/sec.1186 doi: 10.1002/sec.1186
![]() |
[5] | A. M. del Rey, A SIR e-Epidemic model for computer worms based on cellular automata, In: Advances in artificial intelligence, Berlin: Springer, 2013,228–238. https://doi.org/10.1007/978-3-642-40643-0_24 |
[6] |
A. M. del Rey, G. R. Sánchez, A discrete mathematical model to simulate malware spreading, Int. J. Mod. Phys. C, 23 (2012), 1250064. https://doi.org/10.1142/S0129183112500647 doi: 10.1142/S0129183112500647
![]() |
[7] |
Y. Xu, J. Ren, Propagation effect of a virus outbreak on a network with limited anti-virus ability, Plos One, 11 (2016), e0164415. https://doi.org/10.1371/journal.pone.0164415 doi: 10.1371/journal.pone.0164415
![]() |
[8] |
Y. G. Sánchez, Z. Sabir, J. L. Guirao, Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID-19), Fractals, 28 (2020), 2040026. https://doi.org/10.1142/S0218348X20400265 doi: 10.1142/S0218348X20400265
![]() |
[9] |
Y. G. Sánchez, Z. Sabir, H. Günerhan, H. M. Baskonus, Analytical and approximate solutions of a novel nervous stomach mathematical model, Discrete Dyn. Nat. Soc., 2020 (2020), 5063271. https://doi.org/10.1155/2020/5063271 doi: 10.1155/2020/5063271
![]() |
[10] | M. S. S. Khan, A computer virus propagation model using delay differential equations with probabilistic contagion and immunity, 2014, arXiv: 1410.5718. |
[11] |
U. Fatima, M. Ali, N. Ahmed, M. Rafiq, Numerical modeling of susceptible latent breaking-out quarantine computer virus epidemic dynamics, Heliyon, 4 (2018), e00631. https://doi.org/10.1016/j.heliyon.2018.e00631 doi: 10.1016/j.heliyon.2018.e00631
![]() |
[12] |
B. K. Mishra, N. Jha, SEIQRS model for the transmission of malicious objects in computer network, Appl. Math. Model., 34 (2010), 710–715. https://doi.org/10.1016/j.apm.2009.06.011 doi: 10.1016/j.apm.2009.06.011
![]() |
[13] | A. S. Bist, Mathematical approaches for computer virus, Int. J. Eng. Sci. Res. Technol., 1 (2012), 429–431. |
[14] |
Y. Öztürk, M. Gülsu, Numerical solution of a modified epidemiological model for computer viruses, Appl. Math. Model., 39 (2015), 7600–7610. https://doi.org/10.1016/j.apm.2015.03.023 doi: 10.1016/j.apm.2015.03.023
![]() |
[15] |
J. Amador, J. R. Artalejo, Stochastic modeling of computer virus spreading with warning signals, J. Frankl. Inst., 350 (2013), 1112–1138. https://doi.org/10.1016/j.jfranklin.2013.02.008 doi: 10.1016/j.jfranklin.2013.02.008
![]() |
[16] |
M. Umar, Z. Sabir, M. A. Z. Raja, Intelligent computing for numerical treatment of nonlinear prey-predator models, Appl. Soft Comput., 80 (2019), 506–524. https://doi.org/10.1016/j.asoc.2019.04.022 doi: 10.1016/j.asoc.2019.04.022
![]() |
[17] |
M. Umar, F. Amin, H. A. Wahab, D. Baleanu, Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery, Appl. Soft Comput., 85 (2019), 105826. https://doi.org/10.1016/j.asoc.2019.105826 doi: 10.1016/j.asoc.2019.105826
![]() |
[18] |
M. Umar, Z. Sabir, M. A. Z. Raja, H. M. Baskonus, S. W. Yao, E. Ilhan, A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells, Results Phys., 25 (2021), 104235. https://doi.org/10.1016/j.rinp.2021.104235 doi: 10.1016/j.rinp.2021.104235
![]() |
[19] |
M. Umar, Z. Sabir, M. A. Z. Raja, Y. G. Sánchez, A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever, Results Phys., 19 (2020), 103585. https://doi.org/10.1016/j.rinp.2020.103585 doi: 10.1016/j.rinp.2020.103585
![]() |
[20] | A. Lanz, D. Rogers, T. L. Alford, An epidemic model of malware virus with quarantine, J. Adv. Math. Comput. Sci., 33 (2019), 1–10. |
[21] |
O. Bukola, A. O. Adetunmbi, T. T. Yusuf, An SIRS model of virus epidemic on a computer network, J. Adv. Math. Comput. Sci., 17 (2016), 1–12. https://doi.org/10.9734/BJMCS/2016/24816 doi: 10.9734/BJMCS/2016/24816
![]() |
[22] |
M. S. Arif, A. Raza, W. Shatanawi, M. Rafiq, M. Bibi, A stochastic numerical analysis for computer virus model with vertical transmission over the internet, Comput. Mater. Con., 61 (2019), 1025–1043. https://doi.org/10.32604/cmc.2019.08405 doi: 10.32604/cmc.2019.08405
![]() |
[23] |
M. S. Arif, A. Raza, M. Rafiq, M. Bibi, J. N. Abbasi, A. Nazeer, et al., Numerical simulations for stochastic computer virus propagation model, Comput. Mater. Con., 61 (2019), 61–77. https://doi.org/10.32604/cmc.2020.08595 doi: 10.32604/cmc.2020.08595
![]() |
[24] |
E. F. D. Goufo, Y. Khan, Q. A. Chaudhry, HIV and shifting epicenters for COVID-19, an alert for some countries, Chaos Soliton. Fract., 139 (2020), 110030. https://doi.org/10.1016/j.chaos.2020.110030 doi: 10.1016/j.chaos.2020.110030
![]() |
[25] |
N. Faraz, Y. Khan, E. D. Goufo, A. Anjum, A. Anjum, Dynamic analysis of the mathematical model of COVID-19 with demographic effects, Z. Naturforsch. C, 75 (2020), 389–396. https://doi.org/10.1515/znc-2020-0121 doi: 10.1515/znc-2020-0121
![]() |
[26] |
Z. Sabir, Stochastic numerical investigations for nonlinear three-species food chain system, Int. J. Biomath., 15 (2022), 2250005. https://doi.org/10.1142/S179352452250005X doi: 10.1142/S179352452250005X
![]() |
[27] |
M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics, Symmetry, 12 (2020), 1628. https://doi.org/10.3390/sym12101628 doi: 10.3390/sym12101628
![]() |
[28] |
M. Umar, Z. Sabir, F. Amin, J. L. Guirao, M. A. Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells, Eur. Phys. J. Plus, 135 (2020), 403. https://doi.org/10.1140/epjp/s13360-020-00417-5 doi: 10.1140/epjp/s13360-020-00417-5
![]() |
[29] |
Z. Sabir, Neuron analysis through the swarming procedures for the singular two-point boundary value problems arising in the theory of thermal explosion, Eur. Phys. J. Plus, 137 (2022), 638. https://doi.org/10.1140/epjp/s13360-022-02869-3 doi: 10.1140/epjp/s13360-022-02869-3
![]() |
[30] |
B. Wang, J. F. Gomez-Aguilar, Z. Sabir, M. A. Z. Raja, W. F. Xia, H. Jahanshahi, et al., Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks, Fractals, 2022 (2022), 2240147. https://doi.org/10.1142/S0218348X22401478 doi: 10.1142/S0218348X22401478
![]() |
[31] |
T. Saeed, Z. Sabir, M. S. Alhodaly, H. H. Alsulami, Y. G. Sánchez, An advanced heuristic approach for a nonlinear mathematical based medical smoking model, Results Phys., 32 (2022), 105137. https://doi.org/10.1016/j.rinp.2021.105137 doi: 10.1016/j.rinp.2021.105137
![]() |
[32] |
Z. Sabir, H. A. Wahab, Evolutionary heuristic with Gudermannian neural networks for the nonlinear singular models of third kind, Phys. Scr., 96 (2021), 125261. https://doi.org/10.1088/1402-4896/ac3c56 doi: 10.1088/1402-4896/ac3c56
![]() |
[33] |
A. Raza, U. Fatima, M. Rafiq, N. Ahmed, I. Khan, K.S. Nisar, et al., Mathematical analysis and design of the nonstandard computational method for an epidemic model of computer virus with delay effect: application of mathematical biology in computer science, Results Phys., 21 (2021), 103750. https://doi.org/10.1016/j.rinp.2020.103750 doi: 10.1016/j.rinp.2020.103750
![]() |
[34] |
K. Mukdasai, Z. Sabir, M. A. Z. Raja, R. Sadat, M. R. Ali, P. Singkibud, A numerical simulation of the fractional order Leptospirosis model using the supervise neural network, Alex. Eng. J., 61 (2022), 12431–12441. https://doi.org/10.1016/j.aej.2022.06.013 doi: 10.1016/j.aej.2022.06.013
![]() |
[35] |
T. Botmart, Z. Sabir, M. A. Z. Raja, M. R. Ali, R. Sadat, A. A. Aly, et al., A hybrid swarming computing approach to solve the biological nonlinear Leptospirosis system, Biomed. Signal Proces., 77 (2022), 103789. https://doi.org/10.1016/j.bspc.2022.103789 doi: 10.1016/j.bspc.2022.103789
![]() |
[36] |
M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. https://doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099
![]() |
[37] |
Q. Gao, J. Zhuang, Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model, Appl. Math. Comput., 368 (2020), 124584. https://doi.org/10.1016/j.amc.2019.124584 doi: 10.1016/j.amc.2019.124584
![]() |
[38] |
H. Zhou, S. Shen, J. Liu, Malware propagation model in wireless sensor networks under attack-defense confrontation, Comput. Commun., 162 (2020), 51–58. https://doi.org/10.1016/j.comcom.2020.08.009 doi: 10.1016/j.comcom.2020.08.009
![]() |
1. |
H. M. Srivastava, Sarem H. Hadi, Maslina Darus,
Some subclasses of p-valent γ -uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator,
2023,
117,
1578-7303,
10.1007/s13398-022-01378-3
|
|
2. | Alina Alb Lupaş, Applications of the q-Sălăgean Differential Operator Involving Multivalent Functions, 2022, 11, 2075-1680, 512, 10.3390/axioms11100512 | |
3. | Ali Mohammed Ramadhan, Najah Ali Jiben Al-Ziadi, New Class of Multivalent Functions with Negative Coefficients, 2022, 2581-8147, 271, 10.34198/ejms.10222.271288 | |
4. | Sarem H. Hadi, Maslina Darus, Alina Alb Lupaş, A Class of Janowski-Type (p,q)-Convex Harmonic Functions Involving a Generalized q-Mittag–Leffler Function, 2023, 12, 2075-1680, 190, 10.3390/axioms12020190 | |
5. | Abdullah Alatawi, Maslina Darus, Badriah Alamri, Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function, 2023, 15, 2073-8994, 785, 10.3390/sym15040785 | |
6. | Abdulmtalb Hussen, An application of the Mittag-Leffler-type Borel distribution and Gegenbauer polynomials on a certain subclass of bi-univalent functions, 2024, 10, 24058440, e31469, 10.1016/j.heliyon.2024.e31469 | |
7. | Sarem H. Hadi, Maslina Darus, Firas Ghanim, Alina Alb Lupaş, Sandwich-Type Theorems for a Family of Non-Bazilevič Functions Involving a q-Analog Integral Operator, 2023, 11, 2227-7390, 2479, 10.3390/math11112479 | |
8. | Sarem H. Hadi, Maslina Darus, Rabha W. Ibrahim, Third-order Hankel determinants for q -analogue analytic functions defined by a modified q -Bernardi integral operator , 2024, 47, 1607-3606, 2109, 10.2989/16073606.2024.2352873 | |
9. | Haewon Byeon, Manivannan Balamurugan, T. Stalin, Vediyappan Govindan, Junaid Ahmad, Walid Emam, Some properties of subclass of multivalent functions associated with a generalized differential operator, 2024, 14, 2045-2322, 10.1038/s41598-024-58781-6 | |
10. | Timilehin Gideon Shaba, Serkan Araci, Babatunde Olufemi Adebesin, 2023, Investigating q-Exponential Functions in the Context of Bi-Univalent Functions: Insights into the Fekctc-Szcgö Problem and Second Hankel Determinant, 979-8-3503-5883-4, 1, 10.1109/ICMEAS58693.2023.10429891 | |
11. | Sarem H. Hadi, Maslina Darus, 2024, 3023, 0094-243X, 070002, 10.1063/5.0172085 | |
12. | Sarem H. Hadi, Maslina Darus, Badriah Alamri, Şahsene Altınkaya, Abdullah Alatawi, On classes of ζ -uniformly q -analogue of analytic functions with some subordination results , 2024, 32, 2769-0911, 10.1080/27690911.2024.2312803 | |
13. | Sarem H. Hadi, Khalid A. Challab, Ali Hasan Ali, Abdullah A. Alatawi, A ϱ-Weyl fractional operator of the extended S-type function in a complex domain, 2024, 13, 22150161, 103061, 10.1016/j.mex.2024.103061 | |
14. | Ehsan Mejeed Hameed, Elaf Ali Hussein, Rafid Habib Buti, 2025, 3264, 0094-243X, 050109, 10.1063/5.0258939 | |
15. | Girish D. Shelake, Sarika K. Nilapgol, Priyanka D. Jirage, 2025, 3283, 0094-243X, 040016, 10.1063/5.0265526 |