Citation: John G Rogers. Paper making in a low carbon economy[J]. AIMS Energy, 2018, 6(1): 187-202. doi: 10.3934/energy.2018.1.187
[1] | Mathieu F. M. Cellier . Evolutionary analysis of Slc11 mechanism of proton-coupled metal-ion transmembrane import. AIMS Biophysics, 2016, 3(2): 286-318. doi: 10.3934/biophy.2016.2.286 |
[2] | Ken Takahashi, Takayuki Oda, Keiji Naruse . Coarse-grained molecular dynamics simulations of biomolecules. AIMS Biophysics, 2014, 1(1): 1-15. doi: 10.3934/biophy.2014.1.1 |
[3] | Stephanie H. DeLuca, Samuel L. DeLuca, Andrew Leaver-Fay, Jens Meiler . RosettaTMH: a method for membrane protein structure elucidation combining EPR distance restraints with assembly of transmembrane helices. AIMS Biophysics, 2016, 3(1): 1-26. doi: 10.3934/biophy.2016.1.1 |
[4] | Arjun Acharya, Madan Khanal, Rajesh Maharjan, Kalpana Gyawali, Bhoj Raj Luitel, Rameshwar Adhikari, Deependra Das Mulmi, Tika Ram Lamichhane, Hari Prasad Lamichhane . Quantum chemical calculations on calcium oxalate and dolichin A and their binding efficacy to lactoferrin: An in silico study using DFT, molecular docking, and molecular dynamics simulations. AIMS Biophysics, 2024, 11(2): 142-165. doi: 10.3934/biophy.2024010 |
[5] | Sebastian Kube, Petra Wendler . Structural comparison of contractile nanomachines. AIMS Biophysics, 2015, 2(2): 88-115. doi: 10.3934/biophy.2015.2.88 |
[6] | Tika Ram Lamichhane, Hari Prasad Lamichhane . Structural changes in thyroid hormone receptor-beta by T3 binding and L330S mutational interactions. AIMS Biophysics, 2020, 7(1): 27-40. doi: 10.3934/biophy.2020003 |
[7] | Ashwani Kumar Vashishtha, William H. Konigsberg . The effect of different divalent cations on the kinetics and fidelity of Bacillus stearothermophilus DNA polymerase. AIMS Biophysics, 2018, 5(2): 125-143. doi: 10.3934/biophy.2018.2.125 |
[8] | Juliet Lee . Insights into cell motility provided by the iterative use of mathematical modeling and experimentation. AIMS Biophysics, 2018, 5(2): 97-124. doi: 10.3934/biophy.2018.2.97 |
[9] | Chia-Wen Wang, Meng-Han Lin, Wolfgang B. Fischer . Cholesterol affected dynamics of lipids in tailor-made vesicles by ArcVes software during multi micro second coarse grained molecular dynamics simulations. AIMS Biophysics, 2023, 10(4): 482-502. doi: 10.3934/biophy.2023027 |
[10] | Yohei Matsunaga, Tsuyoshi Kawano . The C. elegans insulin-like peptides (ILPs). AIMS Biophysics, 2018, 5(4): 217-230. doi: 10.3934/biophy.2018.4.217 |
The main goal of this paper is to study one class of optimal control problems (OCPs) for a viscous Boussinesq system arising in the study of the dynamics of cardiovascular networks. We consider the boundary control problem for a
Minimize J(g,h,η,u):=12∫ΩαΩ(u(T)−uΩ)2 dx+ν2∫T0∫Ω(ηxx)2 dxdt+12∫T0|∫ΩαQ(η(t)+r0uxt(t)−ηQ) dx|2 dt+12∫T0(βg|g|2+βh|h|2) dt | (1) |
subject to the constraints
{ηt+ηxu+ηux+12r0ux−νηxx=0 in Q,[u−(δux)x]t+12(u2)x+μηx=f in Q, | (2) |
{η(0,⋅)=η0 in Ω,u(0,⋅)−(δ(⋅)ux(0,⋅))x=u0 in Ω, | (3) |
{η(⋅,0)=η(⋅,L)=η∗ in (0,T),δ(0)˙ux(⋅,0)+σ0u(⋅,0)=g, in (0,T),δ(L)˙ux(⋅,L)+σ1u(⋅,L)=h, in (0,T),δ(L)ux(0,L)=δ(0)ux(0,0)=0 | (4) |
and
(g,h)∈Gad×Had⊂L2(0,T)×L2(0,T). | (5) |
Here,
Optimal control problem (1)-(5) comes from the fluid dynamic models of blood flows in arterial systems. It is well known that the cardiovascular system consists of a pump that propels a viscous liquid (the blood) through a network of flexible tubes. The heart is one key component in the complex control mechanism of maintaining pressure in the vascular system. The aorta is the main artery originating from the left ventricle and then bifurcates to other arteries, and it is identified by several segments (ascending, thoracic, abdominal). The functionality of the aorta, considered as a single segment, is worth exploring from a modeling perspective, in particular in relationship to the presence of the aortic valve.
In the first part of our investigation (see [5]) we make use of the standard viscous hyperbolic system (see [2,21]) which models cross-section area
∂S∂t+∂(Su)∂x−ν∂2S∂x2=0, | (6) |
∂u∂t+u∂u∂x+1ρ∂P∂x=f, | (7) |
where
η=r−r0=1√π(√S−√S0)≃S−S02√πS0, | (8) |
where
The fluid structure interaction is modeled using inertial forces, which gives the pressure law
P=Pext+βr20η+ρωh∂2η∂t2. | (9) |
Here,
This leads to the following Boussinesq system:
{ηt+ηxu+ηux+12r0ux−νηxx=0,ut+uux+2Ehρr20ηx+ρωhρηxtt=f, |
where
As for the OCP that is related with the arterial system, we are interested in finding the optimal heart rate (HR) which leads to the minimization of the following cost functional
J=∫t0+Tpulset0|Pavg(t)−Pref|2dt=∫t0+Tpulset0|1L∫L0P(x,t)dx−Pref|2dt. | (10) |
The systolic period is taken to be consistently one quarter of
It is easy to note that relations (8)-(9) lead to the following representation for the cost functional (10)
J=∫t0+Tpulset0|1L∫L0P(x,t)dx−Pref|2dt=1L2∫t0+Tpulset0|∫L0(Pext(t)+2Ehr20η(t,x)+ρωhηtt(t,x)−LPref)dx|2dt. | (11) |
Since
The research in the field of the cardiovascular system is very active (see, for instance the literature describing the dynamics of the vascular network coupled with a heart model, [2,9,10,12,15,16,17,18,19,20,21]). However, there seems to be no studies that focus on both aspects at the same time: a detailed description of the four chambers of the heart and on the spatial dynamics in the aorta. Some numerical aspects of optimizing the dynamics of the pressure and flow in the aorta as well as the heart rate variability, taking into account the elasticity of the aorta together with an aortic valve model at the inflow and a peripheral resistance model at the outflow, based on the discontinuous Galerkin method and a two-step time integration scheme of Adam-Bashfort, were recently treated in [3] for the Boussinesq system like (2). More broadly, theory and applications of optimization and control in spatial networks, basing on the different types of conservation laws have been extensively developed in literature, have been successfully applied to telecommunications, transportation or supply networks ([6,7]).
From mathematical point of view, the characteristic feature of the Boussinesq system (2) is the fact that it involves a pseudo-parabolic operator with unbounded coefficient in its principle part. In the first part of this paper it was shown that for any pair of boundary controls
Let
‖u‖L2(Ω,δ dx)=(∫Ωu2δ dx)1/2<+∞. |
We set
(φ,ψ)V0=(φ′,ψ′)H ∀φ,ψ∈V0 |
and
(φ,ψ)V=(φ,ψ)H+(φ′,ψ′)H ∀φ,ψ∈V, |
respectively.
We also make use of the weighted Sobolev space
‖u‖Vδ=(∫Ω(u2+δ(u′)2)dx)1/2 |
is finite. Note that due to the following estimate,
‖u‖2V:=∫Ω(u2+(u′)2)dx≤max{1,δ−10}∫Ω(u2+δ(u′)2)dx=max{1,δ−10}‖u‖2Vδ. | (12) |
Recall that
Let us recall some well-known inequalities, that will be useful in the sequel (see [5]).
●
● (Friedrich's Inequality) For any
‖u‖H≤L‖ux‖H=L‖u‖V0. | (13) |
By
‖u‖L2(0,T;V0):=(∫T0‖u(t)‖2V0dt)1/2<+∞. |
By analogy we can define the spaces
∫T0φ(t)⟨˙u(t),v⟩V∗;Vdt=−∫T0˙φ(t)⟨u(t),v⟩V∗;Vdt, ∀v∈V, |
where
We also make use of the following Hilbert spaces
W0(0,T)={u∈L2(0,T;V0): ˙u∈L2(0,T;V∗0)},Wδ(0,T)={u∈L2(0,T;Vδ): ˙u∈L2(0,T;V∗δ)}, |
supplied with their common inner product, see [8,p. 473], for instance.
Remark 1. The following result is fundamental (see [8]): Let
(ⅰ)
max1≤t≤T‖u(t)‖H≤CE(‖u‖L2(0,T;V)+‖˙u‖L2(0,T;V∗)); |
(ⅱ) if
∫ts(⟨˙u(γ),v(γ)⟩V∗;V+⟨u(γ),˙v(γ)⟩V∗;V)dγ=(u(t),v(t))H−(u(s),v(s))H | (14) |
for all
The similar assertions are valid for the Hilbert triplet
Let
f∈L∞(0,T;H), μ∈L∞(0,T;V), σ0∈L∞(0,T), σ1∈L∞(0,T), | (15) |
αΩ∈L∞(Ω), αQ∈L∞(Q), uΩ∈L2(Ω), ηQ∈L2(0,T;H), | (16) |
u0∈Vδ, η0∈H10(Ω), r0∈H1(Ω), | (17) |
be given distributions. In particular,
We assume that the sets of admissible boundary controls
Gad={g∈L2(0,T): g0≤g≤g1 a.e. in (0,T)},Had={h∈L2(0,T): h0≤h≤h1 a.e. in (0,T)}, | (18) |
where
The optimal control problem we consider in this paper is to minimize the discrepancy between the given distributions
Definition 3.1. We say that, for given boundary controls
η(t)=w(t)+η∗, w(⋅)∈W0(0,T), u(⋅)∈Wδ(0,T), | (19) |
δ(L)ux(0,L)=0, δ(0)ux(0,0)=0, | (20) |
(w(0),χ)H=(η0−η∗,χ)H for all χ∈H, | (21) |
(u(0)−(δux(0))x,χ)Vδ=(u0,χ)Vδ for all χ∈Vδ, | (22) |
and the following relations
⟨˙w(t),φ⟩V∗0;V0+((w(t)u(t))x,φ)H+ν(wx(t),φx)H +12(r0ux(t)+2η∗ux(t),φ)H=0, | (23) |
⟨˙u(t),ψ⟩V∗δ;Vδ+∫Ωδ˙ux(t)ψxdx+(u(t)ux(t),ψ)H+(μ(t)wx(t),ψ)H +σ1(t)u(t,L)ψ(L)−σ0(t)u(t,0)ψ(0) =(f(t),ψ)H+h(t)ψ(L)−g(t)ψ(0) | (24) |
hold true for all
Remark 2. Let us mention that if we multiply the left- and right-hand sides of equations (23)-(24) by function
∫T0⟨A1(w(t),u(t)),φ(t)⟩V∗0;V0dt=0, ∀φ(⋅)∈L2(0,T;V0), | (25) |
∫T0⟨A2(w(t),u(t)),ψ(t)⟩V∗δ;Vδdt=0, ∀ψ(⋅)∈L2(0,T;Vδ), | (26) |
where
A1(w,u)=∂w∂t−νwxx+wxu+wux+12r0ux+η∗ux∈V∗0, | (27) |
A2(w,u)=[∂∂t(u−(δux)x)+12(u2)x+μwx−fδ(0)˙ux(⋅,0)+σ0u(⋅,0)−gδ(L)˙ux(⋅,L)+σ1u(⋅,L)−h]∈V∗δ. | (28) |
Lemma 3.2 ([5]). Assume that the conditions (15)-(17) hold true. Let
(η(⋅),u(⋅))∈(W0(0,T)+η∗)×Wδ(0,T),w∈L∞(0,T;H)∩L2(0,T;H2(Ω)∩V0),˙w∈L2(0,T;H), u∈W1,∞(0,T;Vδ) | (29) |
and there exists a constant
‖w‖2L2(0,T;H2(Ω))+‖w‖2L∞(0,T;H)+‖˙w‖2L2(0,T;H)≤D∗, | (30) |
‖u‖2L∞(0,T;Vδ)+‖˙u‖2L∞(0,T;Vδ)≤D∗. | (31) |
We also define the feasible set to the problem (1)-(5), (18) as follows:
Ξ={(g,h,η,u) |g∈Gad, h∈Had,η(t)=w(t)+η∗, w∈W0(0,T), u∈Wδ(0,T),(w(t),u(t)) satisfies relations (19)-(24)for all φ∈V0, ψ∈Vδ, and a.e. t∈[0,T],J(g,h,η,u)<+∞.} | (32) |
We say that a tuple
J(g0,h0,η0,u0)=inf(g,h,η,u)∈ΞJ(g,h,η,u). |
In [5] it was shown that
While proving these hypotheses, the authors in [5] obtained a series of useful estimates for the weak solutions to initial-boundary value problem (2)-(4).
Lemma 3.3. [5,Lemmas 6.3 and 6.5 along with Remark 6.5] Let
‖w(t)‖2H+‖u(t)‖2Vδ≤C1, ‖˙w(t)‖V∗0≤C2, ‖˙u(t)‖Vδ≤C3. | (33) |
In the context of solvability of OCP (18)-(5), the regularity of the solutions of the corresponding initial-boundary value problem (2)-(4) plays a crucial role.
Theorem 3.4 ([5]). The set of feasible solutions
Now we proceed with the result concerning existence of optimal solutions to OCP (1)-(5), (18).
Theorem 3.5. For each
f∈L∞(0,T;L2(Ω)), μ∈L∞(0,T;V), σ0∈L∞(0,T), σ1∈L∞(0,T),αΩ∈L∞(Ω), αQ∈R+, uΩ∈L2(Ω), ηQ∈W(0,T;H),u0∈Vδ, η0∈V0, r0∈H1(Ω), δ∈L1(Ω) |
the optimal control problem (1)-(5), (18) admits at least one solution
Proof. We apply for the proof the direct method of the calculus of variations. Let us take
Ξλ={(g,h,η,u)∈Ξ : J(g,h,η,u)≤λ}≠∅. |
Since the cost functional (1) is bounded below on
‖ηxx‖2L2(0,T;L2(Ω))=‖wxx‖2L2(0,T;L2(Ω))≤‖w‖2L2(0,T;H2(Ω))≤D∗,‖uxt‖2L2(0,T;H)≤max{1,δ−10}‖˙u‖2L∞(0,T;Vδ)≤D∗. |
Therefore, within a subsequence, still denoted by the same index, we can suppose that
gn⇀g0 in L2(0,T), hn⇀h0 in L2(0,T),un→u0 strongly in L2(0,T;H),un∗⇀u0 weakly-∗ in L∞(0,T;Vδ),˙un⇀v weakly in L2(0,T;Vδ) and weakly-∗ in L∞(0,T;Vδ), |
where
‖un(t)‖2Vδ≤C1 for all n∈N and for all t∈[0,T], |
whence, passing to a subsequence, if necessary, we obtain
un(T,⋅)⇀u0(T,⋅) in Vδ,un(T,⋅)→u0(T,⋅) strongly in H |
due to the continuity of embedding
ηn(t,x)⇀η0(t,x) in V0, ˙u(t,x)⇀˙u0(t,x) in Vδ for a.e. t∈[0,T],(ηn(t,x)+r0(x)un xt(t,x)−ηQ)⇀(η0(t,x)+r0(x)u0xt(t,x)-ηQ)) in L1(Ω)for a.e. t∈[0,T],∫ΩaQ(ηn(t,x)+r0(x)un xt(t,x)−ηQ)dx→→∫ΩaQ(η0(t,x)+r0(x)un xt(t,x)−ηQ))dx for a.e. t∈[0,T],limn→∞∫T0(∫ΩaQ(ηn(t,x)+r0(x)un xt(t,x)−ηQ)dx)2 dt = ∫T0(∫ΩaQ(η0(t,x)+r0(x)un xt(t,x)−ηQ)))2 dt, |
we have
This section aims to prove a range of auxiliary results that will be used in the sequel. Throughout this section the tuple
The following proposition aims to prove rather technical result, however it is useful for substantiation of the first-order optimality conditions to the initial OCP (1)-(5).
Proposition 1. Let
u0[u0xxη0+2u0xη0x+η0xxu0]−(αQ)2∫Ω(η0−ηQ)dx∈L2(0,T;V∗),η0[u0xxη0+2u0xη0x+η0xxu0]∈L2(0,T;V∗). |
Proof. To begin with, let us prove that
η0[u0xxη0+2u0xη0x+η0xxu0]∈L2(0,T;V∗). |
Obviously, in order to show that
u0[u0xxη0+2u0xη0x+η0xxu0]−(αQ)2∫Ω(η0−ηQ)dx∈L2(0,T;V∗) |
it would be enough to apply the similar arguments. Since
‖u0xxη0+2u0xη0x+η0xxu0‖V∗≤˜C for a.a. t∈[0,T]. |
It should be noticed that as far as
u0x∈L2(Ω;δ dx)↪L2(Ω) for a.a. t∈[0;T], |
then
Also the fact that
‖u0xx(t)η0(t)+2u0x(t)η0x(t)+η0xx(t)u0(t)‖V∗=sup‖v‖V≤1⟨u0xx(t)η0(t)+2u0x(t)η0x(t)+η0xx(t)u0(t),v⟩V∗;V=∫Ωu0xx(t)η0(t)vdx+2∫Ωu0x(t)η0x(t)vdx+∫Ωη0xx(t)u0(t)vdx≤‖η0(t)‖C(¯Ω)‖v‖V‖u0xx(t)‖V∗+‖η0x(t)‖L∞(Ω)‖u0x(t)‖H‖v‖H+‖u0‖C(¯Ω)‖ηxx(t)‖H‖v‖H≤‖v‖V×(‖η0(t)‖C(¯Ω)‖u0xx‖V∗+‖η0x(t)‖L∞(Ω)‖u0x(t)‖L2(Ω)+‖u0‖C(¯Ω)‖ηxx(t)‖L2(Ω))⏟C(t). |
It is clear that if only
‖u0xx‖V∗=‖1δ((δu0x)x−δxu0x)‖V∗≤1δ0(‖(δu0x)x‖V∗+‖δxu0x‖V∗) | (34) |
and
‖C(t)‖2L2(0;T)≤2δ20‖η0‖2C(0,T;H)∫T0(‖(δu0x)x‖2V∗+‖δxu0x‖2V∗)dt+2max{L,L−1}δ0∫T0‖η0x‖2V‖u0‖2Vδdt+‖u0‖2C(0,T;H)∫T0‖η0xx‖2Hdt≤2δ20‖η0‖2C(0,T;H)∫T0(‖(δu0x)x‖2V∗+‖δxu0x‖2V∗)dt+2max{L,L−1}δ0‖u0‖2W1,∞(0,T;Vδ)‖η0‖2L2(0,T;H2)+‖u0‖2C(0,T;H)‖η0‖2L2(0,T;H2). | (35) |
Let us show that the integrals
∫T0‖δxu0x(t)‖2V∗dt=∫T0(sup‖v‖V≤1∫Ω|δx||u0x(t)||v|dx)2dt≤∫T0(sup‖v‖V≤1‖v‖C(¯Ω)‖δ‖V‖u(t)‖V)2dt≤c2(E)δ0‖v‖2V‖δ‖2V‖u‖2L2(0,T;Vδ)≤c2(E)Tδ0‖δ‖2V‖u‖2L∞(0,T;Vδ). |
Now, to estimate the second integral, we make use of the equation (2)
∫T0‖(δu0x)x‖2V∗dt=∫T0(sup‖v‖V≤1∫Ω|(δu0x)xv|dx)2dt=∫T0(sup‖v‖V≤1∫Ω|[∫t0(f(s)−u0(s)u0x(s)−μ(s)η0x(s))ds+u0(t)+u0+(δ(u0)x)x]v|dx)2dt≤∫T02(sup‖v‖V≤1∫Ω|∫t0(f(s)v−u0(s)u0x(s)v−μ(s)η0x(s)v)ds|dx)2dt+∫T02(sup‖v‖V≤1∫Ω|(u0(t)+u0+(δ(u0)x)x)v|dx)2dt≤∫T02(sup‖v‖V≤1∫Ω∫T0|f(s)v−u0(s)u0x(s)v−μ(s)η0x(s)v)|dsdx)2dt+∫T02(sup‖v‖V≤1[‖u0(t)‖V‖v‖V+‖u0‖V‖v‖V+‖(δ(u0)x)x‖V∗‖v‖V])2dt≤∫T02(sup‖v‖V≤1∫T0∫Ω[|f(s)v|+|u0(s)u0x(s)v|+|μ(s)η0x(s)v|]dxds)2dt+∫T06([‖u0(t)‖2V+‖u0‖2V+‖(δ(u0)x)x‖2V∗])2dt≤∫T02(sup‖v‖V≤1∫T0(‖f(t)‖H‖v‖V+‖u0(t)‖C(¯Ω)‖u0(t)‖V‖v‖V+‖μ(t)‖H‖η0(t)‖V‖v‖C(¯Ω))ds)2dt+6Tδ0‖u0‖2L∞(0,T;Vδ)+6T‖u0‖2V+6T‖(δ(u0)x)x‖2V∗≤6T[T‖f‖2L2(0,T;H)+(c(E))2max{1,δ−10}T‖u0‖4L∞(0,T;Vδ)+(c(E))2‖μ‖2L2(0,T;H)‖η0‖2L2(0,T;V)]+6Tδ0‖u0‖2L∞(0,T;Vδ)+6T‖u0‖2V+6T‖(δ(u0)x)x‖2V∗<+∞. |
It is worth to mention here that, in fact,
∫Ω(δ(u0)x)2dx≤‖δ‖C(¯Ω)∫Ωδ((u0)x)2dx≤c(E)‖δ‖V‖u0‖Vδ. |
It remains to note that the property
Let us consider two operators
A,B:L2(0,T;V0)×L2(0,T;Vδ)→[L2(0,T;V∗0)]2×[L2(0,T)]2, |
defined on the set of vector functions
(Ap)(t):=A(t)p(t)=(p(t)q(t)−(δqx(t))xγ1[δqx(t)]−γ2[δqx(t)]), | (36) |
(Bp)(t):=B(t)p(t)=(u0px(t)+νpxx(t)+(μq)x(t)(η0+12r0)px(t)+12(r0)xp(t)+u0qx(t)−(σ1(t)+γ1[u0])γ1[q(t)](σ0(t)+γ2[u0])γ2[q(t)]). | (37) |
Here, we use the fact that
Lemma 4.1. The operator
for some constant
‖A(t)v‖˜V∗≤C‖v‖˜V+g(t), for a.e. t∈[0,T], ∀v∈˜V; |
it is strictly monotone uniformly with respect to
⟨A(t)v1−A(t)v2,v1−v2⟩˜V∗;˜V≥‖v11−v12‖2H+m‖v21−v22‖2Vδ,∀v1,v2∈˜V and for a.e. t∈[0,T]. |
Moreover, the operator
‖Bv1−Bv2‖L2(0,T;˜V∗)≤L‖v1−v2‖L2(0,T;˜V), for all v1,v2∈L2(0,T;˜V). |
Proof. Since the radial continuity of operator
‖A(t)v‖˜V∗=sup‖z‖˜V≤1|⟨A(t)v,z⟩˜V∗;˜V|=sup‖z‖V0+‖y‖Vδ≤1|∫Ω(vz+wy)dx−∫Ω(δwx)xydx+δ(L)wx(L)y(L)−δ(0)wx(0)y(0)|=sup‖z‖˜V≤1|∫Ω(vz+wy)dx+∫Ωδwxyxdx|≤sup‖z‖˜V≤1(‖v‖H‖z‖H+‖w‖H‖y‖H+‖w‖Vδ‖y‖Vδ)≤2(‖v‖V0+‖y‖Vδ)=2‖v‖˜V. |
As for the monotonicity property, for every
⟨A(t)p1−A(t)p2,p1−p2⟩˜V∗;˜V=∫Ω(p1−p2)2dx+∫Ω(q1−q2)2dx−∫Ω[(δ(q1)x)x−(δ(q2)x)x](q1−q2)dx+[δ(L)(q1(⋅,L))x−δ(L)(q2(⋅,L))x](q1(⋅,L)−q2(⋅,L))−[δ(0)(q1(⋅,0))x−δ(0)(q2(⋅,0))x](q1(⋅,0)−q2(⋅,0))=‖p1−p2‖H+‖q1−q2‖H+‖q1−q2‖2L2(Ω,δdx). |
It remains to show the Lipschitz continuity of operator
\begin{align*} &\|B{\bf{v}}-B{\bf{w}}\|_{L^2(0,T;\widetilde{V}^\ast)} = \sup\limits_{\|{\bf{z}}\|_{\widetilde{V}\le 1}}\left|\langle B{\bf{v}}-B{\bf{w}},{\bf{z}} \rangle_{\widetilde{V}^\ast;\widetilde{V}}\right|\\& = \int_0^T\Big[ \left|(u^0(t)({v_1}_x(t)-{w_1}_x(t)),z_1(t))_{H}\right|+ \nu\left|({v_1}_x(t)-{w_1}_x(t),{z_1}_x(t))_{H}\right|\\ &+\left|(\mu_x({v_2}(t)-{w_2}(t)), z_1(t))_H\right|+ \left|(\mu({v_2}_x(t)-{w_2}_x(t)), z_1(t))_H\right|\\ &+\frac{1}{2}\left|\left((r_0+2\eta^0)({v_1}_x(t)-{w_1}_x(t)),z_2(t)\right)_{H}\right|\\ &+\frac{1}{2}\left|\left((r_0)_x({v_1}(t)-{w_1}(t)),z_2(t)\right)_{H}\right|+ \left|(u^0(t)({v_2}_x(t)-{w_2}_x(t)),z_2(t))_{H}\right| \\ &+\left|(\sigma_1(t)+u^0(t,L))(v_2(t,L)-w_2(t,L))z_2(t,L)\right|\\ &+\left|(\sigma_0(t)+u^0(t,0))(v_2(t,0)-w_2(t,0))z_2(t,0)\right|\Big]\,dt\\ &\le\|u^0\|_{C(Q)}\|v_1-w_1\|_{L^2(0,T;V_0)}\|z_1\|_{L^2(0,T;V_0)}+\nu\|v_1-w_1\|_{L^2(0,T;V_0)}\|z_1\|_{L^2(0,T;V_0)}\\ &+\int_0^T\Big( 2\|z\|_{C(\overline{\Omega})}\delta_0^{-1/2}\|\mu\|_V\|v_2-w_2\|_{V_\delta}+ \frac{1}{2}(\|r_0+2\eta^0\|_{H}\\ &+\|r_0\|_V)\|v_1-w_1\|_{V}\|z_2\|_{C(\overline{\Omega})}\Big)\,dt +\|u^0\|_{C(Q)}\delta_0^{-1}\|v_2-w_2\|_{V_\delta}\|z_2\|_{V_\delta}\\ &+\int_0^T \left(|\sigma_1(t)|+|\sigma_0(t)|+2\|u^0(t)\|_{C(\overline{\Omega})}\right)\|v_2(t)-w_2(t)\|_{C(\overline{\Omega})}\,dt. \end{align*} |
Taking into account the continuous embedding
\|v\|_{C(\overline{\Omega})}\le c(E)\|v\|_V\le c(E)\delta_0^{-1/2}\|v\|_{V_\delta}, |
we finally have
\|B{\bf{v}}-B{\bf{w}}{{\|}_{{{L}^{2}}(0,T;{{\widetilde{V}}^{*}})}}\le L\|{\bf{v}}-{\bf{w}}{{\|}_{{{L}^{2}}(0,T;\widetilde{V})}}, |
where
\begin{align*} C_1& = \|u^0\|_{C(Q)}+\nu+c(E)(\|r_0\|_{V}+\|\eta^0\|_{C(0,T;H)}),\\ C_2& = 2c(E)\delta_0^{-1}\|\mu\|_{L^\infty(0,T;V)} +\|u^0\|_{C(Q)}\delta_0^{-1}+c(E)(\|\sigma_1\|_{L^2(0,T)}\\ &+\|\sigma_2\|_{L^2(0,T)}+2\|u^0\|_{C(Q)}). \end{align*} |
This concludes the proof.
Lemma 4.2. Operator
A:L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2, |
which is defined by (36), is radially continuous, strictly monotone and there exists an inverse Lipschitz-continuous operator
A^{-1}:\left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2\to L^2(0,T;V_0)\times L^2(0,T;V_\delta) |
such that
\begin{gather*} (A^{-1}f)(t) = A^{-1}(t)f(t)\ \ for \ a.e.\ \ t\in [0,T]\\ and\ for\ all\ f\in \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2, \end{gather*} |
where
A(t):V_0\times V_\delta\to \left[V_0^\ast\right]^2\times\mathbb{R}\times\mathbb{R}. |
Proof. It is easy to see that the action of operator
\begin{align} & A(t){\bf{p}}(t) = \left( \begin{array}{l} {A_1}(t)p(t)\;\\ {A_2}(t)q(t) \end{array} \right) , \\ &{{A}_{1}}:{{L}^{2}}(0,T;{{V}_{0}})\to {{L}^{2}}(0,T;V_{0}^{*}), \\ &{{A}_{2}}:{{L}^{2}}(0,T;{{V}_{\delta }})\to {{L}^{2}}(0,T;V_{0}^{*})\times {{L}^{2}}(0,T)\times {{L}^{2}}(0,T), \\ \end{align} |
where
A_1(t)p(t) = p(t) \text{ and }A_2(t) q(t) = \left(\begin{array}{c} q(t)-(\delta q_x(t))_x\\[1ex] \gamma_1[\delta q_x(t)]\\[1ex] -\gamma_2[\delta q_x(t)] \end{array}\right). |
It is easy to see, that
\langle (A_2 q_1)(t)-(A_2q_2)(t),q_1(t)-q_2(t)\rangle_{V_\delta^\ast;V_\delta} = \|q_1-q_2\|_{V_\delta}. |
Moreover,
A_2^{-1}:L^2(0,T;V_0^\ast)\times L^2(0,T)\times L^2(0,T)\to L^2(0,T;V_\delta) |
such that
(A_2^{-1}f)(t) = A_2^{-1}(t)f(t)\ \text{for a.e. }\ t\in [0,T]\ \text{ and }\ \forall\,f\in \left[L^2(0,T;V_0^\ast)\right]\times \left[L^2(0,T)\right]^2, |
where
Before proceeding further, we make use of the following result concerning the solvability of Cauchy problems for pseudoparabolic equations (for the proof we refer to [11,Theorem 2.4]).
Theorem 4.3. For operators
A, B:L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2 |
defined in (36), (37), and for any
F\in \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2\ \ \ and\ \ \ \ b\in V_0^\ast\times V_\delta^\ast, |
the Cauchy problem
\begin{gather*} \left(A(t){\bf{p}}\right)'_t+B(t){\bf{p}} = F(t),\\ A(T){\bf{p}}(T) = b \end{gather*} |
admits a unique solution.
In this section we focus on the derivation of the first-order optimality conditions for optimization problem (1)-(5). The Lagrange functional
\begin{align*} \mathcal{L}&:\Big(W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\Big)\times W^{1,\infty}(0,T;V_\delta) \times L^2(0,T)\times L^2(0,T)\times \mathbb{R}\\ &\times \Big(W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\Big)\times W^{1,\infty}(0,T;V_\delta)\to\mathbb{R}, \end{align*} |
associated to problem (1)-(5) (see also Remark 2) is defined by
\begin{align*} \mathcal{L}&(w,u,g,h,\lambda,p,q) = \lambda J(g,h,w,u)\\ &-\int_0^T\left[\langle A_1(w,u),p\rangle_{V_0^\ast;V_0}+\langle A_2(w,u),q\rangle_{V_\delta^\ast;V_\delta}\right]\,dt\\ & = \lambda J(g,h,w,u)\\ &-\int_0^T\left[\langle \dot{w},p\rangle_{V_0^\ast;V_0}-\nu\langle w_{xx},p\rangle_{V_0^\ast;V_0}+((wu)_x,p)_H +\frac{1}{2}((r_0+2\eta^\ast)u_x,p)_H\right]\,dt\\ &-\int_0^T\left[\langle \dot{u}-(\delta\dot{u}_x)_x,q\rangle_{V_\delta^\ast;V_\delta}+\frac{1}{2}\left((u^2)_x,q\right)_H +(\mu w_x,q)_H-(f,q)_H\right]\,dt\\ &-\int_0^T\Big[\left(\delta(L)\dot{u}_x(t,L)+\sigma_1(t)u(t,L)-h\right)q(t,L)\\ &- \left(\delta(0)\dot{u}_x(t,0)+\sigma_0(t)u(t,0)-g\right)q(t,0)\Big]\,dt\\ & = \lambda J(g,h,w,u)\\ &-\int_0^T\left[\langle \dot{w},p\rangle_{V_0^\ast;V_0}-\nu\langle w_{xx},p\rangle_{V_0^\ast;V_0}+((wu)_x,p)_H +\frac{1}{2}((r_0+2\eta^\ast)u_x,p)_H\right]\,dt\\ &-\int_0^T\left[\langle \dot{u},q\rangle_{V_\delta^\ast;V_\delta}+\int_\Omega \delta\dot{u}_x q_x \,dx+\frac{1}{2}\left((u^2)_x,q\right)_H +(\mu w_x,q)_H-(f,q)_H\right]\,dt\\ &-\int_0^T\left[\sigma_1(t)u(t,L)q(t,L)-h(t)q(t,L)- \sigma_0(t)u(t,0)q(t,0)+g(t)q(t,0)\right]\,dt. \end{align*} |
Let us shift the correspondent derivatives from
\begin{align*} \mathcal{L}&(w,u,g,h,\lambda,p,q) = \lambda J(g,h,w,u)\\ &+\int_0^T\left[\langle {w},\dot{p}\rangle_{V_0^\ast;V_0}+\nu\langle w,p_{xx}\rangle_{V_0^\ast;V_0}+(wu,p_x)_H +\frac{1}{2}( u,((r_0+2\eta^\ast)p)_x)_H\right]\,dt \\ &-\int_\Omega p(T)w(T)\,dx +\int_\Omega p(0)w(0)\,dx\\ &+\int_0^T\left[\langle {u},\dot{q}\rangle_{V_\delta^\ast;V_\delta} +\int_\Omega \delta{u}_x \dot{q}_x \,dx+\frac{1}{2}\left(u^2,q_x\right)_H +( w,(\mu q)_x)_H+(f,q)_H\right]\,dt\\ &-\langle {u}(T,\cdot),{q}(T,\cdot)\rangle_{V_\delta^\ast;V_\delta}-\int_\Omega \delta{u}_x(T){q}_x(T)\,dx\\ &+\langle {u}(0,\cdot),{q}(0,\cdot)\rangle_{V_\delta^\ast;V_\delta} +\int_\Omega \delta{u}_x(0){q}_x(0)\,dx\\ &-\int_0^T\left[\sigma_1(t)u(t,L)q(t,L)-h(t)q(t,L)- \sigma_0(t)u(t,0)q(t,0)+g(t)q(t,0)\right]\,dt\\ = &\lambda J(g,h,w,u)\\ &+\int_0^T\left[\langle {w},\dot{p}\rangle_{V_0^\ast;V_0}+\nu\langle w,p_{xx}\rangle_{V_0^\ast;V_0}+(wu,p_x)_H +\frac{1}{2}( u,((r_0+2\eta^\ast)p)_x)_H\right]\,dt\\ &-\int_\Omega p(T)w(T)\,dx+\int_\Omega p(0)w(0)\,dx\\ &+\int_0^T\left[\langle {u},\dot{q}\rangle_{V_\delta^\ast;V_\delta}+\int_\Omega \delta{u}_x \dot{q}_x \,dx+\frac{1}{2}\left(u^2,q_x\right)_H +( w,(\mu q)_x)_H+(f,q)_H\right]\,dt \\ &-\langle {u}(T,\cdot),{q}(T,\cdot)-(\delta{q}_x(T,\cdot))_x\rangle_{V_\delta^\ast;V_\delta}-\delta(L)u(T,L)q_x(T,L)\\ &+ \delta(0)u(T,0)q_x(T,0) +\langle {u}(0,\cdot)-(\delta{u}_x(0,\cdot))_x,{q}(0,\cdot)\rangle_{V_\delta^\ast;V_\delta}\\ &-\int_0^T\left[\sigma_1(t)u(t,L)q(t,L)-h(t)q(t,L)- \sigma_0(t)u(t,0)q(t,0)+g(t)q(t,0)\right]\,dt\\ &-\frac{1}{2}\int_0^T(u^2(t,L)q(t,L) -u^2(t,0)q(t,0))\,dt\\ = &\lambda J(g,h,w,u)\\ &+\int_0^T\left[\langle {w},\dot{p}\rangle_{V_0^\ast;V_0}+\nu\langle w,p_{xx}\rangle_{V_0^\ast;V_0}+(wu,p_x)_H +\frac{1}{2}( u,((r_0+2\eta^\ast)p)_x)_H\right]\,dt\\ &-\int_\Omega p(T)w(T)\,dx +\int_\Omega p(0)w(0)\,dx\\ &+\int_0^T\left[\langle {u},\dot{q}-(\delta \dot{q}_x)_x\rangle_{V_\delta^\ast;V_\delta}+\frac{1}{2}\left(u^2,q_x\right)_H +( w,(\mu q)_x)_H+(f,q)_H\right]\,dt\\ &-\langle {u}(T,\cdot),{q}(T,\cdot)-(\delta{q}_x(T,\cdot))_x\rangle_{V_\delta^\ast;V_\delta}\\ &-\int_0^T\left[(\sigma_1(t)q(t,L)-(\delta(L)\dot{q}_x(t,L))u(t,L)-h(t)q(t,L)\right]\,dt\\ &-\int_0^T\left[\sigma_0(t)(q(t,0)-(\delta(0)\dot{q}_x(t,0))u(t,0)-g(t)q(t,0)\right]\,dt\\ &-\frac{1}{2}\int_0^T(u^2(t,L)q(t,L) -u^2(t,0)q(t,0))\,dt. \end{align*} |
For each fixed
(w,u,g,h)\in \Big(W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\Big)\times W^{1,\infty}(0,T;V_\delta)\times L^2(0,T)\times L^2(0,T). |
Notice that, for a fixed
Further we make use of the following relation
Also, to simplify the deduction and in order to avoid the demanding of the increased smoothness on solutions of the initial Boussinesq system (2)-(5), we use (see [4] and [5]) elastic model for the hydrodynamic pressure
P(t,x) = P_{ext}+\frac{\beta }{r_{0}^{2}}\eta |
instead of the inertial one
\begin{gather} \label{3.F3} P = P_{ext}+\frac{\beta }{r_{0}^{2}}\eta +\rho _{\omega }h\frac{\partial ^{2}\eta }{\partial t^{2}} = P_{ext}+\frac{\beta }{r_{0}^{2}}\eta -\frac{1}{2}\rho _{\omega }hr_0 u_{xt}. \end{gather} | (38) |
Indeed, if we suppose the wall thickness
As a result, the cost functional
\begin{align} \notag J(g,h,w,u)& = \frac{1}{2}\int_\Omega \alpha_\Omega\left(u(T)-u_\Omega\right)^2\,dx+\frac{1}{2} \int_0^T\int_\Omega \big((w(t)u(t))_x+u_x(t)\eta^\ast\big)^2\,dx \,dt\\ \notag &+ \frac{1}{2}\int_0^T\left|\int_\Omega \alpha_Q\Big(w(t)+\eta^\ast-\eta_Q\Big)\,dx\right|^2\, dt\\ &+ \frac{1}{2}\int_0^T\Big(\beta_g\,|g|^2+\beta_h\,|h|^2\Big)\,dt.\label{4.1} \end{align} | (39) |
In order to formulate the conjugate system for an optimal solution
z\in W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\ \ \ \ \text{and}\ \ \ \ v\in W^{1,\infty}(0,T;V_\delta)\times L^2(0,T). |
With that in mind we emphasize the following point. Since the elements
w+z\in W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\ \ \ \ \text{and}\ \ \ \ u+v\in W^{1,\infty}(0,T;V_\delta)\times L^2(0,T) |
are some admissible solutions to OCP (39), (2)-(5), it follows that the increments
\left\{ \begin{array}{*{35}{l}} z(0,\cdot ) = 0\ \ \ \text{ in }\ \Omega , \\ v(0,\cdot )-{{\left( \delta (\cdot ){{v}_{x}}(0,\cdot ) \right)}_{x}} = 0\ \ \ \text{ in }\ \Omega , \\ \end{array} \right. | (40) |
\left\{ \begin{array}{*{35}{l}} z(\cdot ,0) = z(\cdot ,L) = 0\ \ \ \ \text{ in }\ (0,T), \\ \delta (0){{{\dot{v}}}_{x}}(\cdot ,0)+{{\sigma }_{0}}v(\cdot ,0) = 0,\ \ \ \ \text{ in }\ (0,T), \\ \delta (L){{{\dot{v}}}_{x}}(\cdot ,L)+{{\sigma }_{1}}v(\cdot ,L) = 0,\ \ \ \ \text{ in }\ (0,T), \\ \delta (L){{v}_{x}}(0,L) = \delta (0){{v}_{x}}(0,0) = 0. \\ \end{array} \right. | (41) |
Taking into account the definition of the Fréchet derivative of nonlinear mappings, we get
J(g,h,w+z,u) = J(g,h,w,u)+{{J}_{w}}z+{{R}_{0}}(w,z), |
where
\begin{align} \label{7.15.a} R_0(w,z) = \frac{1}{2}\int_0^T\int_\Omega \left((z u)_x\right)^2 \,dx\,dt+\int_0^T\left|\int_\Omega a_Q z(t)\right|^2\,dt, \end{align} | (42) |
and
\begin{align*} J_w z& = J(g,h,w+z,u)-J(g,h,w,u)-{R}_0(w,z)\\ & = \frac{1}{2}\int_0^T\int_\Omega \big(((w(t)+z(t))u(t))_x+u_x(t)\eta^\ast\big)^2\,dx \,dt\\ &- \frac{1}{2}\int_0^T\int_\Omega \big((w(t)u(t))_x+u_x(t)\eta^\ast\big)^2\,dx \,dt\\ &+\frac{1}{2}\int_0^T\left|\int_\Omega \alpha_Q\Big(w(t)+z(t)+\eta^\ast-\eta_Q\Big)\,dx\right|^2\, dt\\ &-\frac{1}{2}\int_0^T\left|\int_\Omega \alpha_Q\Big(w(t)+\eta^\ast-\eta_Q\Big)\,dx\right|^2\, dt\\ & = \int_0^T\int_\Omega \big((w(t)u(t))_x+u_x(t)\eta^\ast\big)\big((z(t)u(t))_x\big)\,dx\,dt\\ &+\int_0^T\left(\int_\Omega\alpha_Q\Big(w(t)+\eta^\ast-\eta_Q\Big)\,dx\right)\left(\int_\Omega\alpha_Q z(t)\,dx\right)\,dt \\ & = \int_0^T\int_\Omega(w_x u+u_xw+u_x\eta^\ast)(u_x z+z_x u)\,dx\,dt\\ &+\alpha^2_Q\int_0^T\int_\Omega \left(\int_\Omega\Big(w(t)+\eta^\ast-\eta_Q\Big)\,dx\right)z(t)\,dx\,dt\\ & = \int_0^T\int_\Omega\Big[(w_x u_x u+(u_x)^2w+(u_x)^2\eta^\ast)-(w_x u^2+u_xuw+u_xu\eta^\ast)_x \Big]z(t)\,dx\,dt\\ &+\alpha^2_Q\int_0^T\int_\Omega \left(\int_\Omega\Big(w(t)+\eta^\ast-\eta_Q\Big)\,dx\right)z(t)\,dx\,dt. \end{align*} |
It is obviously follows from (42) that
\frac{|R_0(w,x)|}{\|z\|_{L^2(0,T;H^2(\Omega)\cap V_0)}}\rightarrow 0\ \ \ \ \text{as}\ \ \ \ \|z\|_{L^2(0,T;H^2(\Omega)\cap V_0)}\to 0. |
Hence, after some transformations, we have
\begin{align} \notag J_w z& = \int_0^T\int_\Omega \Big(- u\left[u_{xx}(w+\eta^\ast)+2u_xw_x+w_{xx}u\right]\\ &+\alpha^2_Q \int_\Omega\Big(w(t)+\eta^\ast-\eta_Q\Big)\,dx\Big)z(t)\,dx\,dt.\label{7.15} \end{align} | (43) |
Treating similarly to the other derivative, we obtain
J(g,h,w,u+v) = J(g,h,w,u)+J_u v+\widetilde{\mathcal{R}}_0(u,v), |
where the remainder
\begin{align} \label{7.15.b} \widetilde{\mathcal{R}}_0(u,v) = \frac{1}{2}\int_\Omega a_\Omega v^2(T) \,dx+\frac{1}{2}\int_0^T\int_\Omega\left((wv)_x+v_x\eta^\ast\right)^2\,dx\,dt,\\ \notag |\widetilde{\mathcal{R}}_0(u,v)|/\|v\|_{W^{1,\infty}(0,T;V_\delta)}\rightarrow 0\ \ \ \text{as}\ \ \ \|v\|_{W^{1,\infty}(0,T;V_\delta)}\to 0, \end{align} | (44) |
and
\begin{align} \notag J_u v& = J(g,h,w,u+v)-J(g,h,w,u)-\widetilde{\mathcal{R}}_0(u,v)\\ \notag & = \frac{1}{2}\int_\Omega \alpha_\Omega\left(u(T)+v(T)-u_\Omega\right)^2\,dx-\frac{1}{2}\int_\Omega \alpha_\Omega\left(u(T)-u_\Omega\right)^2\,dx\\ \notag &+ \frac{1}{2}\int_0^T\int_\Omega \big((w(t)(u(t)+v(t)))_x+(u_x(t)+v_x(t))\eta^\ast\big)^2\,dx \,dt\\ \notag &-\frac{1}{2}\int_0^T\int_\Omega \big((w(t)u(t))_x+u_x(t)\eta^\ast\big)^2\,dx \,dt\\ \notag & = \int_\Omega\alpha_\Omega(u(T)-u_\Omega)v(T)\,dx\\ \notag &-\int_0^T\int_\Omega (w+\eta^\ast)\left[u_{xx}(w+\eta^\ast)+2u_xw_x+w_{xx}u\right]\,dx\,dt\\ \notag &+\int_0^T \eta^\ast((w^0(t,L) u^0(t,L))_x+u^0_x\eta^\ast)v(t,L)\,dt\\ &-\int_0^T \eta^\ast((w^0(t,0) u^0(t,0))_x+u^0_x(t,0)\eta^\ast) v(t,0)\,dt. \label{7.16} \end{align} | (45) |
We are now in a position to identify the Fréchet derivatives
\begin{align*} \mathcal{L}_w z& = \lambda J_w z+\int_0^T\Big[\langle {z},\dot{p}\rangle_{V_0^\ast;V_0}+\nu\langle z,p_{xx}\rangle_{V_0^\ast;V_0}+(zu,p_x)_H +( z,(\mu q)_x)_H\Big]\,dt\\ &-\langle z(T),p(T)\rangle_{V^\ast_0;V_0} \end{align*} |
and
\begin{align*} \mathcal{L}_u v& = \lambda J_u v+\int_0^T\left[(wv,p_x)_H+\frac{1}{2}( v,((r_0+2\eta^\ast)p)_x)_H\right]\,dt\\ &+\int_0^T\left[\langle {v},\dot{q}-\delta(\dot{q}_x)_x\rangle_{V_\delta^\ast;V_\delta}+\left(uv,q_x\right)_H\right]\,dt\\ &-\langle {v}(T,\cdot),{q}(T,\cdot)-(\delta{q}_x(T,\cdot))_x\rangle_{V_\delta^\ast;V_\delta}\\ &-\int_0^T\Big[\left(\sigma_1(t)q(t,L)-\delta(L)\dot{q}_x(t,L)\right)v(t,L)\\ &- \left(\sigma_0(t)q(t,0)-\delta(0)\dot{q}_x(t,0)\right)v(t,0)\Big]\,dt\\ &-\int_0^T(u(t,L)v(t,L)q(t,L)-u(t,0)v(t,0)q(t,0))\,dt\\ &-\delta(L)v(T,L)q_x(T,L)+\delta(0)v(T,0)q_x(T,0). \end{align*} |
As for the Fréchet derivatives
\begin{align*} \mathcal{L}_g k(t)& = \mathcal{L}(w,u,g+k,h,p,q)-\mathcal{L}(w,u,g,h,p,q)-R(g,k)\\& = \int_0^T \beta_g g(t)k(t)\,dt-\int_0^T k(t)q(t,0)\,dt-R(g,k),\\ \mathcal{L}_h l(t)& = \mathcal{L}(w,u,g,h+l,p,q)-\mathcal{L}(w,u,g,h,p,q)-R(h,l)\\& = \int_0^T \beta_h h(t)l(t)\,dt+\int_0^T l(t)q(t,L)\,dt-R_2(h,l), \end{align*} |
where
\begin{gather*} R_1(g,k) = \frac{1}{2}\int_0^T \beta_g k^2(t)\,dt, \ \ \ \ R_2(h,l) = \frac{1}{2}\int_0^T \beta_h l^2(t)\,dt,\\ |R_1(g,k)|/\|k\|_{L^2(0,T)}\to 0\ \text{ as }\ \|k\|_{L^2(0,T)}\to 0,\\ \text{ and }\ |R_2(h,l)|/\|l\|_{L^2(0,T)}\to 0\ \text{ as }\ \|l\|_{L^2(0,T)}\to 0. \end{gather*} |
Taking into account the calculations given above, we arrive at the following representation of the first-order optimality conditions for OCP (2)-(5), (39).
Theorem 5.1. Let
(p,q)\in \Big[W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\Big]\times W^{1,\infty}(0,T;V_\delta) |
such that the following system
\begin{align} \notag \int_0^T&\Big[\left < \dot{w}^0(t),\varphi\right > _{V_0^\ast;V_0}+((w^0(t)u^0(t))_x,\varphi)_{H}+\nu(w^0_x(t),\varphi_x)_H\\ &+\frac{1}{2}\left(r_0 u^0_x(t)+2\eta^\ast u^0_x(t),\varphi\right)_H\Big]\,dt = 0, \end{align} | (46) |
\begin{align} \notag \int_0^T&\Big[\left < \dot{u}^0(t),\psi\right > _{V_\delta^\ast;V_\delta}+\int_\Omega \delta\dot{u}^0_x(t)\psi_x \,dx\\ \notag &+(u^0(t)u^0_x(t),\psi)_H +\left(\mu(t) w^0_x(t),\psi\right)_H+\sigma_1(t) u^0(t,L)\psi(L)\\ \notag&-\sigma_0(t) u^0(t,0)\psi(0)\Big]\,dt\\ \label{7.1b} & = \int_0^T\Big[\left(f(t),\psi\right)_H +h^0(t)\psi(L)-g^0(t)\psi(0)\Big]\,dt, \end{align} | (47) |
\begin{align} \notag \int_0^T&\Big[\langle \dot{p}(t),\varphi(t)\rangle_{V_0^\ast;V_0}+\nu\langle p_{xx}(t),\varphi(t)\rangle_{V_0^\ast;V_0} +\left(p_{x}(t)u^0(t),\varphi(t)\right)_H\\ \notag&+((\mu q(t))_x, \varphi(t))_H\Big]\,dt-(p(T),\varphi(T))_H\\ \notag & = \int_0^T\int_\Omega \left(u^0\big[u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\big]\right)\varphi(t) \,dx\,dt\\ &-\int_0^T\int_\Omega \left(\alpha^2_Q\int_\Omega \left(\eta^0(t)-\eta_Q(t)\right)\,dx\right)\varphi(t) \,dx\,dt, \end{align} | (48) |
\begin{align} \notag \int_0^T&\Big[\langle \dot{q}(t)-(\delta \dot{q}_x(t))_x,\psi(t)\rangle_{V_\delta^\ast;V_\delta}+( q_x(t)u^0(t),\psi(t))_H\Big]\,dt\\ \notag &+\int_0^T\Big[ \left( p_x(t) \eta^0(t),\psi(t))\right)_{H}+\frac{1}{2} \left((r_0p(t))_x,\psi(t)\right)_H\Big]\,dt\\ \notag &- \int_0^T [(\sigma_1(t)+u^0(t,L))q(t,L)-\delta(L) \dot{q}_x(t,L)]\psi(t,L)\,dt\\ \notag &+\int_0^T[(\sigma_0(t)+u^0(t,0))q(t,0)-\delta(0)\dot{q}_x(t,0) ]\psi(t,0)\,dt\\ \notag &-\langle {v}(T,\cdot),{q}(T,\cdot)-(\delta{q}_x(T,\cdot))_x\rangle_{V_\delta^\ast;V_\delta}\\ \notag&-\delta(L) q_x(T,L)\psi(T,L)+\delta(0) q_x(T,0))\psi(T,0)\\ \notag & = \int_0^T\int_\Omega \eta^0\big[u^0_{xx}(t)\eta^0(t))+2u^0_x(t) \eta^0_x(t)+\eta^0_{xx}(t)u^0(t)\big]\psi(t)\,dx\,dt\\ \notag &-\int_\Omega a_\Omega(u^0(T)-u_\Omega)\psi(T) \,dx-\int_0^T \eta^\ast(\eta^0_x(t,L) u^0(t,L)\\ \label{7.2} &+\eta^\ast u_x^0(t,L))\psi(t,L)\,dt+\int_0^T \eta^\ast(\eta_x^0(t,0) u^0(t,0)+\eta^\ast u^0_x(t,0)) \psi(t,0)\,dt, \end{align} | (49) |
\begin{align} &\int_0^T (\beta_g g^0(t)-q(t,0))(g(t)-g^0(t))\,dt\ge 0,\ \ \ \ \forall\, g\in G_{ad}, \end{align} | (50) |
\begin{align} &\int_0^T (\beta_h h^0(t)+q(t,L))(h(t)-h^0(t))\,dt\ge 0\,\ \ \ \ \forall\, h\in H_{ad}, \end{align} | (51) |
\begin{align} \eta^0(t) = w^0(t)+\eta^\ast, \end{align} | (52) |
\begin{align} \delta(L)u^0_x(0,L) = 0,\ \ \ \ \delta(0)u^0_x(0,0) = 0,\ \ \ \ \delta(L) q_x(T,L) = 0, \ \ \ \ \delta(0) q_x(T,0) = 0, \end{align} | (53) |
\begin{align} w^0(0) = \eta^0_0-\eta^\ast,\ \ \ \ p(T) = 0,\ \ \ \ p(\cdot,0) = p(\cdot,L) = 0, \end{align} | (54) |
\begin{align} u^0(0)-(\delta u^0_x(0))_x = u_0,\ \ \ \ q(T)-(\delta q_x(T))_x = \lambda a_\Omega(u^0(T)-u_\Omega) \end{align} | (55) |
holds true for all
\varphi\in W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0),\ \psi\in W^{1,\infty}(0,T;V_\delta),\ \varphi\in V_0, \ \psi\in V_\delta, |
and a.e.
Proof. Since the derived optimality conditions (46)-(55) are the direct consequence of the Lagrange principle, we focus on the solvability of the variational problems (48)-(49) for the adjoint variables
\begin{align} \notag p_t +\nu p_{xx}&+p_{x}u^0+(\mu q)_x\\ & = \lambda u^0\big[u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\big] - \lambda(\alpha_Q)^2\int_\Omega \left(\eta^0-\eta_Q\right)\,dx, \end{align} | (56) |
\begin{align} [{q}-(\delta{q}_x)_x]_t& +q_x u^0+p_x \eta^0+\frac{1}{2}(r_0 p)_x = \lambda\eta^0\big[u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\big], \end{align} | (57) |
\begin{align} \delta(L)\dot{q}_x(\cdot,L)-(\sigma_1+u^0(\cdot,L)) q(\cdot,L) = -\lambda\eta^\ast(\eta^0_x(\cdot,L) u^0(\cdot,L) +u^0_x(\cdot,L)\eta^\ast)\label{7.10}, \end{align} | (58) |
\begin{align} \delta(0)\dot{q}_x(\cdot,0)-(\sigma_0+u^0(\cdot,0)) q(\cdot,0) = -\lambda\eta^\ast(\eta^0_x(\cdot,0) u^0(\cdot,0)+u^0_x(\cdot,0)\eta^\ast), \end{align} | (59) |
\begin{align} q(T)-(\delta q_x(T))_x = \lambda a_\Omega(u^0(T)-u_\Omega), \end{align} | (60) |
\begin{align} \delta(L) q_x(T,L) = \delta(0) q_x(T,0) = 0, \end{align} | (61) |
\begin{align} p(T) = 0,\ \ \ \ p(\cdot,0) = p(\cdot,L) = 0. \end{align} | (62) |
In the operator presentation, the system (56)-(62) takes the form (see [11]):
\begin{gather*} \left(A(t){\bf{p}}\right)'_t+B(t){\bf{p}} = F(t), \ \ \ \ A(T){\bf{p}}(T) = {\bf{b}}, \end{gather*} |
where the operators
A(t), B(t): L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2 |
are defined in (36)-(37), and
\begin{align*} {\bf{b}}& = (0, \lambda a_\Omega(u^0(T)-u_\Omega), 0, 0)\in V_0^\ast\times V_0^\ast\times\mathbb{R}\times\mathbb{R},\\ F(t)& = (f_1,f_2,\phi_1,\phi_2)^t\in \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2,\\ f_1(t)& = \lambda u^0\big[u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\big]- \lambda(\alpha_Q)^2\int_\Omega \left(\eta^0-\eta_Q\right)\,dx,\\ f_2(t)& = \lambda \eta^0\big[u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\big],\\ \phi_1(t)& = -\lambda\eta^\ast(\eta^0_x(t,L) u^0(t,L) +u^0_x(t,L)\eta^\ast),\\ \phi_2(t)& = \lambda\eta^\ast(\eta^0_x(t,0) u^0(t,0) +u^0_x(t,0)\eta^\ast). \end{align*} |
As a result, the existence of a unique pair
F\in \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2\ \text{ and }\ {\bf{b}}\in V_0^\ast\times V_0^\ast\times\mathbb{R}\times\mathbb{R}, |
the Lagrange multiplier
\mathcal{L} = \mathcal{L}(w,u,g,h,\lambda,p,q) |
can be taken equal to
[1] | Suhr M, Klein G, Kourti I, et al. (2015) Best Available Techniques (BAT) Reference Document for the Production of Pulp, Paper and Board, Industrial Emissions Directive 2010/75/EU report JRC95678, EUR 27235 EN, ISBN 978-92-79-48167-3 (PDF), ISSN 1831-9424 (online), doi:10.2791/370629 Luxembourg: Publications Office of the European Union. |
[2] | Jacobs, Institute of Paper Science and Technology (2006) Pulp and Paper Industry Energy Bandwidth Study, American Institute of Chemical Engineers (AIChE) report for Department of Energy's Industrial Technologies Program, Project Number: 16CX8700. |
[3] | Ghosh K (2011) Fundamentals of Paper Drying-Theory and Application from Industrial Perspective, Evaporation, Condensation and Heat transfer, Amimul Ahsan A,(Ed.), ISBN: 978-953-307-583-9, InTech. Available from: http://www.intechopen.com/books/evaporation-condensation-and-heat-transfer/fundamentalsof-paper-drying-theory-and-application-from-industrial-perspective. |
[4] | EURELECTRIC (2011) Pathways to Carbon-Neutral Electricity in Europe by 2050 Full Report, Union of the Electricity Industry – EURELECTRIC - A.I.S.B.L., Boulevard de l'Impératrice, 66 -Bte 2-B-1000 Brussels, www.eurelectric.org. |
[5] | The Committee on Climate Change (2015) Sectoral scenarios for the Fifth Carbon Budget Technical report. Available from: https://www.theccc.org.uk/. |
[6] | Worrell E, Price L, Neelis M, et al. (2008) World Best Practice Energy Intensity Values for Selected Industrial Sectors, Ernest Orlando Lawrence Berkeley National Laboratory report LBNL-62806 REV. 2. |
[7] | Blum O, Maur B, Öller H (2008) Revision of Best Available Technique Reference Document For The Pulp & Paper Industry, Report Nr. 2 Use Of Energy Saving Techniques. Umwett Bundes Amt Munich Commissioned by Federal Environmental Agency Germany (UBA Germany), Dessau, TU Darmstadt. Available from: www.dehst.de/SharedDocs?Downloads/Archiv?BVT_UBA_Papier-Zellstoff.pdf?_blob=publicationFile. |
[8] | Natural Resource Canada (2006) Benchmarking Energy Use In Canadian Pulp And Paper Mills, ISBN:0-662-69589-5, 2. Available from: http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/oee/pdf/industrial/technical-info/benchmarking/pulp-paper/pdf/benchmark-pulp-paper-e.pdf. |
[9] | Miller T, Kramer C, Fisher A (2015) Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing, report prepared for DOE / EERE's Advanced Manufacturing Office by Energetics Incorporated, DOE/EE-123. Available from: http://www.energy.gov/sites/prod/files/2015/08/f26/pulp_and_paper_bandwidth_report.pdf. |
[10] | WSP, Parsons Brinckerhoff (2015) Industrial Decarbonisation and Energy Efficiency Roadmaps To 2050-Pulp And Paper Pathways to Decarbonisation in 2050. report DVNE.GL. |
[11] |
Kong L, Hasanbeigi A, Price L (2016) Assessment of emerging energy-efficiency technologies for the pulp and paper industry: A technical review. J Clean Prod 122: 5–28. doi: 10.1016/j.jclepro.2015.12.116
![]() |
[12] | Confederation of European Paper Industries (CEPI) (2013) Two Team Project Report Unfold the future. Available from: http://www.cepi.org/node/16891. |
[13] | Ottestam C (2009) New and innovative processes for radical changes in the European pulp & paper industry, Publishable Final activity STFI-Packforsk report ECOTARGET 500345. |
[14] |
Laurijssen J, De Gram FJ, Worrel E, et al. (2010) Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry. Energy 35: 3738–3750. doi: 10.1016/j.energy.2010.05.023
![]() |
[15] | Carbon Trust (2011) Industrial Energy Efficiency Accelerator-Guide to the paper sector. CTG059. |
[16] |
Fleiter T, Fehrenbach D, Worrell E, et al. (2012) Energy efficiency in the German pulp and paper industry-A model-based assessment of saving potentials. Energy 40: 84–99. doi: 10.1016/j.energy.2012.02.025
![]() |
[17] | Confederation of European Paper Industries (CEPI) 2015 Key Statistics 2014 European Pulp And Paper Industry. Available from: http://www.cepi.org/system/files/public/documents/publications/statistics/2015/Key%20Statistics%202014%20FINAL.pdf. |
[18] |
Hamaguchi M, Cardoso M, Vakkilainen E (2012) Alternative technologies for biofuels production in kraft pulp mills-potential and prospects. Energies 5: 2288–2309. doi: 10.3390/en5072288
![]() |
[19] | Thornley P, Upham P, Huang Ye, et al. (2010) Corrigendum to integrated assessment of bioelectricity technology options. Energy Policy 37: 890–903. |
[20] | Likon M, Trebše P (2012) Recent advances in paper mill sludge management, industrial waste, Kuan-Yeow Show (Ed.), ISBN: 978-953-51-0253-3, InTech. Available from: http://www.intechopen.com/books/industrial-waste/papermill-sludge-as-valuable-raw-material. |
[21] |
Laurijssen J, Marsidi M, Westenbroek A, et al. (2010) Paper and biomass for energy: The impact of paper recycling on energy and CO2, emissions. Resour Conserv Recy 54: 1208–1218. doi: 10.1016/j.resconrec.2010.03.016
![]() |
[22] | Gavrilescu D, Popa VI (2008) Energy from biomass in pulp and paper mills. Environ Eng Manag J 7: 537–546. |
[23] |
Monte MC, Fuente E, Blanco A, et al. (2009) Waste management from pulp and paper production in the European Union. Waste Manag 29: 293–308. doi: 10.1016/j.wasman.2008.02.002
![]() |
[24] | Li H, Finney K (2010) EPSRC Thermal Management of Industrial Processes A Review of Drying Technologies, Report Prepared by: SUWIC, Sheffield University. |
[25] | IEA (2014) Application of Industrial Heat Pumps IEA Industrial Energy-related Systems and Technologies Annex 13 IEA Heat Pump Programme Annex 35 Final Report. Available from: http://www.izw-online.de/annex35/Daten/AN35_Final_Report_Part_1_for_publishing.pdf. |
[26] | Kaida T, Sakuraba I, Hashimoto K, et al. (2015) Experimental performance evaluation of heat pump-based steam supply system 9th International Conference on Compressors and their Systems IOP Publishing IOP Conf. Series: Materials Science and Engineering 90 (2015) 012076. |
[27] | Chen Q (2010) Review of Industrial Condensing Boilers (Technology & Cost), report for EPSRC Thermal Management of Industrial Processes project, Sheffield University Waste Incineration Centre (SUWIC) Department of Chemical and Process Engineering Sheffield University. |
[28] | Confederation of European Paper Industries (2015) The Age of Fibre The pulp and paper industry's most innovative products, overview report on innovations. Available from: www.cepi.org June 2016. |
[29] | Johnson M, Hart P (2016) Biorefining in a kraft mill. BioResources 11: 10677–10710. |
[30] | Gómez D, Watterson J, Americano B, et al. (2006) IPCC Guidelines for National Greenhouse Gas Inventories 2.1CHAPTER 2 STATIONARY COMBUSTION, Volume 2: Energy. Available from: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf. |
[31] |
Newell JP, Vos RO (2012) Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities. Environ Impact Asses 37: 23–36. doi: 10.1016/j.eiar.2012.03.005
![]() |
[32] |
Stephenson NL, Das AJ, Condit R, et al. (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90–93. doi: 10.1038/nature12914
![]() |
[33] | Cabalova I, Kacik F, Geffert A, et al. (2011) The Effects of Paper Recycling and its Environmental Impact, Environmental Management in Practice, Dr. Broniewicz E (Ed.), ISBN:978-953-307-358-3, InTech. Available from: http://www.intechopen.com/books/environmental-management-inpractice/the-effects-of-paper-recycling-and-its-environmental-impact. |
[34] | U.S. Environmental protection agency, Paper Making and Recycling (2016) Available from: https://archive.epa.gov/wastes/conserve/materials/paper/web/html/papermaking.html. |
[35] | Confederation of Paper Industries (2016) Recycling of Coffee Cups and Similar, Laminate Packaging, position paper. Available from: http://www.paper.org.uk./. |
[36] | SimplyCups web site, 2016. Available from: http://www.simplycups.co.uk/simply-cups-to-recover-and-recycle-smart-planet-technologies-breakthrough-paper-coffee-cup/. |
1. | Davide Sala, Ugo Cosentino, Anna Ranaudo, Claudio Greco, Giorgio Moro, Dynamical Behavior and Conformational Selection Mechanism of the Intrinsically Disordered Sic1 Kinase-Inhibitor Domain, 2020, 10, 2075-1729, 110, 10.3390/life10070110 | |
2. | Marzieh Gharouni, Hamid Mosaddeghi, Jamshid Mehrzad, Ali Es-haghi, Alireza Motavalizadehkakhky, In silico profiling and structural insights of zinc metal ion on O6-methylguanine methyl transferase and its interactions using molecular dynamics approach, 2021, 27, 1610-2940, 10.1007/s00894-020-04631-x | |
3. | Xiaojuan Hu, Maja-Olivia Lenz-Himmer, Carsten Baldauf, Better force fields start with better data: A data set of cation dipeptide interactions, 2022, 9, 2052-4463, 10.1038/s41597-022-01297-3 | |
4. | Christina Eleftheria Tzeliou, Markella Aliki Mermigki, Demeter Tzeli, Review on the QM/MM Methodologies and Their Application to Metalloproteins, 2022, 27, 1420-3049, 2660, 10.3390/molecules27092660 | |
5. | Francis E. Jenney, Hongxin Wang, Simon J. George, Jin Xiong, Yisong Guo, Leland B. Gee, Juan José Marizcurrena, Susana Castro-Sowinski, Anna Staskiewicz, Yoshitaka Yoda, Michael Y. Hu, Kenji Tamasaku, Nobumoto Nagasawa, Lei Li, Hiroaki Matsuura, Tzanko Doukov, Stephen P. Cramer, Temperature-dependent iron motion in extremophile rubredoxins – no need for ‘corresponding states’, 2024, 14, 2045-2322, 10.1038/s41598-024-62261-2 | |
6. | Karuna Anna Sajeevan, Bibek Acharya, Sakib Ferdous, Dan M. Park, Joseph A. Cotruvo, Ratul Chowdhury, Computationally Derived Structural Insights into Rare Earth Selectivity in Lanmodulin and its Variants, 2025, 20010370, 10.1016/j.csbj.2025.02.005 |