Citation: Gustavo Aguilar, Pranjali D. Muley, Charles Henkel, Dorin Boldor. Effects of biomass particle size on yield and composition of pyrolysis bio-oil derived from Chinese tallow tree (Triadica Sebifera L.) and energy cane (Saccharum complex) in an inductively heated reactor[J]. AIMS Energy, 2015, 3(4): 838-850. doi: 10.3934/energy.2015.4.838
[1] | Benoît Perthame, Edouard Ribes, Delphine Salort . Career plans and wage structures: a mean field game approach. Mathematics in Engineering, 2019, 1(1): 38-54. doi: 10.3934/Mine.2018.1.38 |
[2] | Yves Achdou, Ziad Kobeissi . Mean field games of controls: Finite difference approximations. Mathematics in Engineering, 2021, 3(3): 1-35. doi: 10.3934/mine.2021024 |
[3] | Diogo Gomes, Julian Gutierrez, Ricardo Ribeiro . A mean field game price model with noise. Mathematics in Engineering, 2021, 3(4): 1-14. doi: 10.3934/mine.2021028 |
[4] | Mario Pulvirenti . On the particle approximation to stationary solutions of the Boltzmann equation. Mathematics in Engineering, 2019, 1(4): 699-714. doi: 10.3934/mine.2019.4.699 |
[5] | Pablo Blanc, Fernando Charro, Juan J. Manfredi, Julio D. Rossi . Games associated with products of eigenvalues of the Hessian. Mathematics in Engineering, 2023, 5(3): 1-26. doi: 10.3934/mine.2023066 |
[6] | François Murat, Alessio Porretta . The ergodic limit for weak solutions of elliptic equations with Neumann boundary condition. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021031 |
[7] | Dmitrii Rachinskii . Bifurcation of relative periodic solutions in symmetric systems with hysteretic constitutive relations. Mathematics in Engineering, 2025, 7(2): 61-95. doi: 10.3934/mine.2025004 |
[8] | Isabeau Birindelli, Kevin R. Payne . Principal eigenvalues for k-Hessian operators by maximum principle methods. Mathematics in Engineering, 2021, 3(3): 1-37. doi: 10.3934/mine.2021021 |
[9] | Luis Silvestre, Stanley Snelson . Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian. Mathematics in Engineering, 2023, 5(2): 1-36. doi: 10.3934/mine.2023034 |
[10] | Serena Della Corte, Antonia Diana, Carlo Mantegazza . Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow. Mathematics in Engineering, 2022, 4(6): 1-104. doi: 10.3934/mine.2022054 |
The centrality of necessary conditions in optimal control is well-known and has originated an immense literature in the fields of optimization and nonsmooth analysis, see, e.g., [3,16,17,29,33,35].
In control theory, the celebrated Pontryagin Maximum Principle plays the role of the classical Euler-Lagrange equations in the calculus of variations. In the case of unrestricted state space, such conditions provide Lagrange multipliers---the so-called co-states---in the form of solutions to a suitable adjoint system satisfying a certain transversality condition. Among various applications of necessary optimality conditions is the deduction of further regularity properties for minimizers which, a priori, would just be absolutely continuous.
When state constraints are present, a large body of results provide adaptations of the Pontryagin Principle by introducing appropriate corrections in the adjoint system. The price to pay for such extensions usually consists of reduced regularity for optimal trajectories which, due to constraint reactions, turn out to be just Lipschitz continuous while the associated co-states are of bounded variation, see [20].
The maximum principle under state constraints was first established by Dubovitskii and Milyutin [17] (see also the monograph [35] for different forms of such a result). It may happen that the maximum principle is degenerate and does not yield much information (abnormal maximum principle). As explained in [8,10,18,19] in various contexts, the so-called "inward pointing condition" generally ensures the normality of the maximum principle under state constraints. In our setting (calculus of variation problem, with constraints on positions but not on velocities), this will never be an issue. The maximum principle under state constraints generally involves an adjoint state which is the sum of a
Let
$ \Gamma = \Big\{\gamma\in AC(0, T;\mathbb{R}^n):\ \gamma(t)\in\overline{\Omega}, \ \ \forall t\in[0, T]\Big\}, $ |
with the uniform metric. For any
$ \Gamma[x] = \left\{\gamma\in\Gamma: \gamma(0) = x\right\}. $ |
We consider the problem of minimizing the classical functional of the calculus of variations
$ J[\gamma] = \int_{0}^T f(t, \gamma(t), \dot{\gamma}(t)) \, dt + g(\gamma(T)). $ |
Let
$ \inf\limits_{\gamma\in\Gamma[ x]}J[\gamma], \ \ \ \ \mbox{where} \ \ \ \ \ J[\gamma] = \Big\{\int_{0}^T f(t, \gamma(t), \dot{\gamma}(t)) \, dt + g(\gamma(T))\Big\}, $ | (1.1) |
where
$ {˙γ⋆(t)=−DpH(t,γ⋆(t),p(t)) for all t∈[0,T]˙p(t)=DxH(t,γ⋆(t),p(t))−Λ(t,γ⋆,p)1∂Ω(γ⋆)DbΩ(γ⋆(t))for a. e. t∈[0,T] $ | (1.2) |
where
$ infγ∈AC(0,T;Rn)γ(0)=x{∫T0[f(t,γ(t),˙γ(t))+1ϵ dΩ(γ(t))]dt+1δ dΩ(γ(T))+g(γ(T))}. $ |
Then, we show that all solutions of the penalized problem remain in
A direct consequence of our necessary conditions is the Lipschitz regularity of the value function associated to (1.1) (Proposition 4.1).
Our interest is also motivated by application to mean field games, as we explain below. Mean field games (MFG) theory has been developed simultaneously by Lasry and Lions ([25,26,27]) and by Huang, Malhamé and Caines ([23,24]) in order to study differential games with an infinite number of rational players in competition. The simplest MFG model leads to systems of partial differential equations involving two unknown functions: the value function
This paper is organised as follows. In Section 2, we introduce the notation and recall preliminary results. In Section 3, we derive necessary conditions for the constrained problem. Moreover, we prove the
Throughout this paper we denote by
$ ||A|| = \max\limits_{x\in \mathbb{R}^n, \; |x| = 1} ||Ax|| \ . $ |
For any subset
$ 1S(x)={1 x∈S,0x∈Sc. $ |
We write
Let
$ \|\phi\|_{k, \infty}: = \sup\limits_{\tinyx∈U|α|≤k} |D^\alpha\phi(x)| \lt \infty $ |
Let
The distance function from
$ d_\Omega(x): = \inf\limits_{y \in \overline{\Omega}} |x-y| \ \ \ \ \ (x\in \mathbb{R}^n). $ |
We define the oriented boundary distance from
$ {b_\Omega}(x) = d_\Omega(x) -d_{\Omega^c}(x) \ \ \ \ (x\in\mathbb{R}^n). $ |
We recall that, since the boundary of
$ bΩ(⋅)∈C2b on Σρ0={y∈B(x,ρ0):x∈∂Ω}. $ | (2.1) |
Throughout the paper, we suppose that
Take a continuous function
$ p⋅(y−x)≤f(y)−f(x)+C|y−x|2 for all y that satisfy |y−x|≤ϵ. $ |
The set of all proximal subetaadients of
The set of all limiting subetaadients of
Lemma 2.1. Let
$ ∂pdΩ(x)=∂dΩ(x)={DbΩ(x) 0<bΩ(x)<ρ0,DbΩ(x)[0,1]x∈∂Ω,0x∈Ω, $ |
where
The proof is given in the Appendix.
Let
$ supp(η):={x∈X:η(V)>0 for each neighborhood V of x}. $ |
We say that a sequence
$ \lim\limits_{i\rightarrow \infty} \int_X f(x)\, d\eta_i(x) = \int_X f(x) \, d\eta \ \ \ \ \forall f \in C_b(X). $ |
We denote by
$ d_1(m, m') = sup\Big\{\int_X f(x)\, dm(x)-\int_X f(x)\, dm'(x)\ \Big|\ f:X\rightarrow\mathbb{R}\ \ \mbox{is 1-Lipschitz} \Big\}, $ | (2.2) |
for all
Let
$ d_1(m(t), m(s))\leq C|t-s|, \ \ \ \ \forall t, s\in[0, T], $ | (2.3) |
for some constant
Let
$ \Gamma = \Big\{\gamma\in AC(0, T;\mathbb{R}^n):\ \gamma(t)\in\overline{\Omega}, \ \ \forall t\in[0, T]\Big\}. $ |
For any
$ \Gamma[x] = \left\{\gamma\in\Gamma: \gamma(0) = x\right\}. $ |
Let
$ \inf\limits_{\gamma\in\Gamma[ x]}J[\gamma], \ \ \ \ \mbox{where} \ \ \ \ \ J[\gamma] = \Big\{\int_{0}^T f(t, \gamma(t), \dot{\gamma}(t)) \, dt + g(\gamma(T))\Big\}. $ | (3.1) |
We denote by
$ \mathcal{X}[x] = \Big\{\gamma^\star\in \Gamma[x]: J[\gamma^\star] = \inf\limits_{\Gamma[x]}J[\gamma]\Big\}. $ |
We assume that
(g1)
(f0)
$ |f(t, x, 0)|+|D_xf(t, x, 0)|+|D_vf(t, x, 0)|\leq M \ \ \ \ \forall\ (t, x)\in [0, T]\times U.\label{bm} $ | (3.2) |
(f1) For all
$ \frac{I}{\mu} \leq D^2_{vv}f(t, x, v)\leq I\mu, $ | (3.3) |
$ ||D_{vx}^2f(t, x, v)||\leq \mu(1+|v|), $ | (3.4) |
for all
(f2) For all
$ |f(t, x, v)-f(s, x, v)|\leq \kappa(1+|v|^2)|t-s| $ | (3.5) |
$ |D_vf(t, x, v)-D_vf(s, x, v)|\leq \kappa(1+|v|)|t-s| $ | (3.6) |
for all
Remark 3.1. By classical results in the calculus of variation (see, e.g., [15, Theorem 11.1i]), there exists at least one minimizer of (3.1) in
In the next lemma we show that (f0)-(f2) imply the useful growth conditions for
Lemma 3.1. Suppose that (f0)-(f2) hold. Then, there exists a positive constant
$ |D_vf(t, x, v)|\leq C(\mu, M)(1+|v|)\label{l4}, $ | (3.7) |
$ |D_xf(t, x, v)|\leq C(\mu, M)(1+|v|^2)\label{lx}, $ | (3.8) |
$ \frac{1}{4\mu}|v|^2-C(\mu, M)\leq f(t, x, v)\leq 4\mu|v|^2 +C(\mu, M)\label{l3}, $ | (3.9) |
for all
Proof. By (3.2), and by (3.3) one has that
$ |Dvf(t,x,v)|≤|Dvf(t,x,v)−Dvf(t,x,0)|+|Dvf(t,x,0)|≤∫10|D2vvf(t,x,τv)||v|dτ+|Dvf(t,x,0)|≤μ|v|+M≤C(μ,M)(1+|v|) $ |
and so (3.7) holds. Furthermore, by (3.2), and by (3.4) we have that
$ |Dxf(t,x,v)|≤|Dxf(t,x,v)−Dxf(t,x,0)|+|Dxf(t,x,0)|≤∫10|D2xvf(t,x,τv)||v|dτ+M≤μ(1+|v|)|v|+M≤C(μ,M)(1+|v|2). $ |
Therefore, (3.8) holds. Moreover, fixed
$ f(t,x,v)=f(t,x,0)+⟨Dvf(t,x,0),v⟩+12⟨D2vvf(t,x,ξ)v,v⟩. $ |
By (3.2), (3.3), and by (3.7) we have that
$ −C(μ,M)+14μ|v|2≤−M−C(μ,M)|v|+12μ|v|2≤f(t,x,v)≤M+C(μ,M)|v|+μ2|v|2≤C(μ,M)+4μ|v|2, $ |
and so (3.9) holds. This completes the proof.
In the next result we show a special property of the minimizers of (3.1).
Lemma 3.2. For any
$ \int_0^T\frac{1}{4\mu}|\dot{\gamma}^\star(t)|^2\, dt\leq K, $ |
where
$ K: = T\Big(C(\mu, M)+M\Big)+2\max\limits_{U}|g(x)|. $ | (3.10) |
Proof. Let
$ ∫T0f(t,γ⋆(t),˙γ⋆(t))dt+g(γ⋆(T))≤∫T0f(t,x,0)dt+g(x)≤Tmax[0,T]×U|f(t,x,0)|+maxU|g(x)|. $ | (3.11) |
Using (3.2) and (3.9) in (3.11), one has that
$ \int_0^T\frac{1}{4\mu}|\dot{\gamma}^\star(t)|^2\, dt\leq K, $ |
where
$ K: = T\Big(C(\mu, M)+M\Big)+2\max\limits_{U}|g(x)|. $ |
We denote by
$ H(t, x, p) = \sup\limits_{v\in \mathbb{R}^n} \Big\{ -\langle p, v\rangle - f(t, x, v)\Big\}, \qquad \forall \ (t, x, p)\in [0, T]\times U\times \mathbb{R}^n. $ |
Our assumptions on
(H0)
$ |H(t, x, 0)|+|D_xH(t, x, 0)|+|D_pH(t, x, 0)|\leq M' \ \ \ \ \forall\ (t, x)\in [0, T]\times U. $ | (3.12) |
(H1) For all
$ \frac{I}{\mu} \leq D^2_{pp}H(t, x, p)\leq I\mu, $ | (3.13) |
$ ||D_{px}^2H(t, x, p)||\leq C(\mu, M')(1+|p|), $ | (3.14) |
for all
(H2) For all
$ |H(t, x, p)-H(s, x, p)|\leq \kappa C(\mu, M')(1+|p|^2)|t-s|, $ | (3.15) |
$ |D_pH(t, x, p)-D_pH(s, x, p)|\leq \kappa C(\mu, M')(1+|p|)|t-s|, $ | (3.16) |
for all
Remark 3.2. Arguing as in Lemma 3.1 we deduce that
$ |D_pH(t, x, p)|\leq C(\mu, M')(1+|p|), $ | (3.17) |
$ |D_xH(t, x, p)|\leq C(\mu, M')(1+|p|^2), $ | (3.18) |
$ \frac{1}{4\mu}|p|^2-C(\mu, M')\leq H(t, x, p)\leq 4\mu|p|^2 +C(\mu, M'), $ | (3.19) |
for all
Under the above assumptions on
Theorem 3.1. For any
(i)
(ii) There exist:
(a) a Lipschitz continuous arc
(b) a constant
$ 0\leq\nu\leq \max\left\{1, 2\mu \ \sup\limits_{x\in U}\Big|D_pH(T, x, Dg(x))\Big|\right\}, $ |
which satisfy the adjoint system
$ {˙γ⋆=−DpH(t,γ⋆,p) for all t∈[0,T],˙p=DxH(t,γ⋆,p)−Λ(t,γ⋆,p)1∂Ω(γ⋆)DbΩ(γ⋆)for a.e. t∈[0,T], $ | (3.20) |
and the transversality condition
$ p(T) = D g(\gamma^\star(T))+ \nu D{b_\Omega}(\gamma^\star(T)){\bf 1}_{\partial\Omega}(\gamma^\star(T)), $ |
where
Moreover,
(iii) the following estimate holds
$ ||\dot{\gamma}^\star||_\infty\leq L^\star, \ \ \ \forall \gamma^\star\in \mathcal{X}[x], $ | (3.21) |
where
The (feedback) function
In this section, we prove Theorem 3.1 in the special case of
The proof is based on [12, Theorem 2.1] where the Maximum Principle under state constraints is obtained for a Mayer problem. The reasoning requires several intermediate steps.
Fix
$ infγ∈AC(0,T;Rn)γ(0)=x{∫T0[f(t,γ(t),˙γ(t))+1ϵ dΩ(γ(t))]dt+1δ dΩ(γ(T))+g(γ(T))}. $ | (3.22) |
Then, we will show that, for
Observe that the Hamiltonian associated with the penalized problem is given by
$ Hϵ(t,x,p)=supv∈Rn{−⟨p,v⟩−f(t,x,v)−1ϵ dΩ(x)}=H(t,x,p)−1ϵ dΩ(x), $ | (3.23) |
for all
By classical results in the calculus of variation (see, e.g., [15, Section 11.2]), there exists at least one mimimizer of (3.22) in
Remark 3.3. Arguing as in Lemma 3.2 we have that, for any
$ ∫T0[14μ|˙γ(t)|2+1ϵ dΩ(γ(t))]dt≤K, $ | (3.24) |
where
The first step of the proof consists in showing that the solutions of the penalized problem remain in a neighborhood of
Lemma 3.3. Let
$ ∀ x∈¯Ω, γ∈Xϵ,δ[x] ⟹ supt∈[0,T]dΩ(γ(t))≤ρ. $ | (3.25) |
Proof. We argue by contradiction. Assume that, for some
$ ϵk↓0, δk>0, tk∈[0,T], xk∈¯Ω, γk∈Xϵk,δk[xk] and dΩ(γk(tk))>ρ, for all k≥1. $ |
By Remark 3.3, one has that for all
$ ∫T0[14μ|˙γk(t)|2+1ϵk dΩ(γk(t))]dt≤K, $ |
where
$ dΩ(γk(tk))−dΩ(γk(s))≤(4μK)1/2|tk−s|1/2, s∈[0,T]. $ |
Since
$ d_\Omega(\gamma_k(s)) \gt \rho-(4\mu K)^{1/2}|t_k-s|^{1/2}. $ |
Hence,
$ K\geq \frac{1}{\epsilon_k}\int_0^T d_\Omega(\gamma_k(t))\, dt\geq \frac{1}{\epsilon_k}\int_{J} d_\Omega(\gamma_k(t))\, dt \geq \frac{1}{\epsilon_k} \frac{\rho^3}{32\mu K}. $ |
But the above inequality contradicts the fact that
In the next lemma, we show the necessary conditions for the minimizers of the penalized problem.
Lemma 3.4. Let
(i)
(ii) there exists an arc
$ {˙γ(t)=−DpH(t,γ(t),p(t)), for all t∈[0,T],˙p(t)=DxH(t,γ(t),p(t))−λ(t)ϵ DbΩ(γ(t)),for a.e. t∈[0,T],p(T)=Dg(γ(T))+βδ DbΩ(γ(T)), $ | (3.26) |
where
$ λ(t)∈{{0}ifγ(t)∈Ω,{1}if0<dΩ(γ(t))<ρ,[0,1]ifγ(t)∈∂Ω, $ | (3.27) |
and
$ β∈{{0}ifγ(T)∈Ω,{1}if0<dΩ(γ(T))<ρ,[0,1]ifγ(T)∈∂Ω. $ | (3.28) |
Moreover,
(iii) the function
$ r(t):=H(t,γ(t),p(t))−1ϵ dΩ(γ(t)), ∀t∈[0,T] $ |
belongs to
$ \int_0^T|\dot{r}(t)|\, dt\leq \kappa(T+4\mu K), $ |
where
(iv) the following estimate holds
$ |p(t)|^2\leq 4\mu\left[\frac{1}{\epsilon}d_\Omega(\gamma(t))+ \frac{C_1}{\delta^2}\right], \ \ \ \ \ \forall t \in[0, T], $ | (3.29) |
where
Proof. In order to use the Maximum Principle in the version of [35, Theorem 8.7.1], we rewrite (3.22) as a Mayer problem in a higher dimensional state space. Define
$ X(t)=(γ(t)z(t)), $ |
where
$ {˙X(t)=(˙γ(t)˙z(t))=Fϵ(t,X(t),u(t)),X(0)=(x00). $ |
where
$ Fϵ(t,X,u)=(uLϵ(t,x,u)) $ |
and
$ \min \Big\{ \Phi(X^u(T)):u \in L^1\Big\}, $ | (3.30) |
where
$ Hϵ(t,X,P,u)=−⟨P,Fϵ(t,X,u)⟩,∀(t,X,P,u)∈[0,T]×Rn+1×Rn+1×Rn. $ |
We observe that, as
(ⅰ)
(ⅱ)
(ⅲ)
(ⅳ)
(ⅴ)
where
$ (p, b, \lambda_0)\not \equiv (0, 0, 0), $ | (3.31) |
$ (\dot{r}(t), \dot{p}(t)) \in -b(t)\ co\ \partial_{t, x}\mathcal{L}_{\epsilon}(t, \gamma(t), \dot{\gamma}(t)), $ | (3.32) |
$ \dot{b}(t) = 0, $ | (3.33) |
$ p(T) \in \lambda_0\ \partial(g+\frac{1}{\delta} \ d_{\Omega})(\gamma(T)), $ | (3.34) |
$ b(T) = \lambda_0, $ | (3.35) |
$ r(t) = H_\epsilon(t, \gamma(t), p(t)), $ | (3.36) |
where
Note that the Weierstrass Condition (ⅳ) becomes
$ -\langle p(t), \dot{\gamma}(t)\rangle-f(t, \gamma(t), \dot \gamma(t)) = \sup\limits_{u\in \mathbb{R}^n} \Big\{-\langle p(t), u\rangle -f(t, \gamma(t), u)\Big\}. $ | (3.37) |
Therefore
$ ˙γ(t)=−DpH(t,γ(t),p(t)),a.e.t∈[0,T]. $ | (3.38) |
By Lemma 2.1, by the definition of
$ ∂t,xLϵ(t,x,u)⊂{[−κ(1+|u|2),κ(1+|u|2)]×Dxf(t,x,u)ifx∈Ω,[−κ(1+|u|2),κ(1+|u|2)]×(Dxf(t,x,u)+1ϵ DbΩ(x))if0<bΩ(x)<ρ,[−κ(1+|u|2),κ(1+|u|2)]×(Dxf(t,x,u)+1ϵ[0,1] DbΩ(x))ifx∈∂Ω. $ |
Thus (3.32) implies that there exists
$ |\dot{r}(t)| \leq \kappa(1+|\dot{\gamma}(t)|^2), \ \ \forall t \in [0, T], $ | (3.39) |
$ \dot{p}(t) = -D_x f(t, \gamma(t), \dot{\gamma}(t))-\frac{\lambda(t)}{\epsilon} \ D{b_\Omega}(\gamma(t)), \ \; \text{a.e.}\ t\in [0, T]. $ | (3.40) |
Hence, by (3.39), and by Remark 3.3 we conclude that
$ ∫T0|˙r(t)|dt≤κ∫T0(1+|˙γ(t)|2)dt≤κ(T+4μK). $ | (3.41) |
Moreover, by Lemma 2.1, and by assumption on
$ \partial\Big(g+\frac{1}{\delta}\ d_{\Omega}\Big)(x) \subset {Dg(x)ifx∈Ω,Dg(x)+1δ DbΩ(x)if0<bΩ(x)<ρ,Dg(x)+1δ[0,1] DbΩ(x)ifx∈∂Ω. $ |
So, by (3.34), there exists
$ p(T)=Dg(x)+βδ DbΩ(x). $ | (3.42) |
Finally, by well-known properties of the Legendre transform one has that
$ D_xH(t, x, p) = -D_xf\big(t, x, - D_pH(t, x, p)\big). $ |
So, recalling (3.38), (3.40) can be rewritten as
$ \dot{p}(t) = D_x H(t, \gamma(t), p(t))-\frac{\lambda(t)}{\epsilon}\ D{b_\Omega}(\gamma(t)), \; \text{a.e.}\ t\in [0, T]. $ |
We have to prove estimate (3.29). Recalling (3.23) and (3.19), we have that
$ Hϵ(t,γ(t),p(t))=H(t,γ(t),p(t))−1ϵ dΩ(γ(t))≥14μ|p(t)|2−C(μ,M′)−1ϵ dΩ(γ(t)). $ |
So, using (3.41) one has that
$ |Hϵ(T,γ(T),p(T))−Hϵ(t,γ(t),p(t))|=|r(T)−r(t)|≤∫Tt|˙r(s)|ds≤κ(T+4μK). $ |
Moreover, (3.42) implies that
$ 14μ|p(t)|2−C(μ,M′)−1ϵ dΩ(γ(t))≤Hϵ(t,γ(t),p(t))≤Hϵ(T,γ(T),p(T))+κ(T+4μK)≤4μ|p(T)|2+C(μ,M′)+κ(T+4μK)≤8μ[1δ2+||Dg||2∞]+C(μ,M′)+κ(T+4μK). $ |
Hence,
$ |p(t)|2≤4μ[1ϵdΩ(γ(t))+C1δ2], $ |
where
Finally, by the regularity of
Lemma 3.5. Let
Proof. Let
$ ˙γ(t)=−DpH(t,γ(t),p(t)),˙p(t)=DxH(t,γ(t),p(t))−1ϵDbΩ(γ(t)), $ |
for
In the next two lemmas, we show that, for
$ ϵ0=ϵ(ρ0), where ρ0 is such that (2.1) holds and ϵ(⋅) is given by Lemma 3.3. $ |
Lemma 3.6. Let
$ δ=12μN∧1, $ | (3.43) |
where
$ N = \sup\limits_{x\in \mathbb{R}^n}|D_pH(T, x, Dg(x))|. $ |
Fix any
$ \langle \dot{\gamma}(T), D{b_\Omega}(\gamma(T))\rangle\leq 0. $ |
Proof. As
$ ⟨DpH(T,γ(T),p(T)),DbΩ(γ(T))⟩=⟨DpH(T,γ(T),Dg(γ(T))),DbΩ(γ(T))⟩+⟨DpH(T,γ(T),Dg(γ(T))+1δ DbΩ(γ(T)))−DpH(T,γ(T),Dg(γ(T))),DbΩ(γ(T))⟩. $ |
Recalling that
$ ⟨DpH(T,γ(T),Dg(γ(T))+1δ DbΩ(γ(T)))−DpH(T,γ(T),Dg(γ(T))),1δ DbΩ(γ(T))⟩≥12μ1δ2 |DbΩ(γ(T))|2=12δ2μ. $ |
So,
$ ⟨DpH(T,γ(T),p(T)),DbΩ(γ(T))⟩≥12δμ−|DpH(T,γ(T),Dg(γ(T)))|. $ |
Therefore, we obtain
$ ⟨˙γ(T),DbΩ(γ(T))⟩=−⟨DpH(T,γ(T),p(T)),DbΩ(γ(T))⟩≤−12δμ+|DpH(T,γ(T),Dg(γ(T)))|. $ |
Thus, choosing
Lemma 3.7. Fix
$ \forall x\in \overline{\Omega}, \ \gamma\in\mathcal{X}_{\epsilon, \delta}[x] \ \ \Longrightarrow \ \ \gamma(t)\in \overline{\Omega} \ \ \ \forall t\in[0, T]. $ |
Proof. We argue by contradiction. Assume that there exist sequences
$ \epsilon_k \downarrow 0, \ t_k \in [0, T], \ x_k \in \overline{\Omega}, \ \gamma_k\in\mathcal{X}_{\epsilon_k, \delta}[x_k] \ \mbox{and} \ \gamma_k(t_k) \notin \overline{\Omega}, \ \ \ \mbox{for all}\ k\geq 1. $ | (3.44) |
Then, for each
$ {dΩ(γk(ak))=0,dΩ(γk(t))>0 t∈(ak,bk),dΩ(γk(bk))=0 or else bk=T. $ |
Let
$ dΩ(γk(¯tk))=maxt∈[ak,bk]dΩ(γk(t)). $ |
We note that, by Lemma 3.5,
Step 1
We claim that
$ d2dt2dΩ(γk(t))|t=¯tk≤0. $ | (3.45) |
Indeed, (3.45) is trivial if
$ ddtdΩ(γk(t))|t=¯tk≥0. $ |
Moreover, Lemma 3.6 yields
$ ddtdΩ(γk(t))|t=¯tk≤0. $ |
So,
$ ddtdΩ(γk(t))|t=¯tk=0, $ |
and we have that (3.45) holds true at
Step 2
Now, we prove that
$ 1μϵk≤C(μ,M′,κ)[1+4μC1δ2+4μϵk dΩ(γk(¯tk))], ∀k≥1, $ | (3.46) |
where
$ ¨γ(¯tk)=−D2ptH(˜tk,γ(˜tk),p(˜tk))−⟨D2pxH(˜tk,γ(˜tk),p(˜tk)),˙γ(˜tk)⟩−⟨D2ppH(˜tk,γ(˜tk),p(˜tk)),˙p(˜tk)⟩. $ | (3.47) |
Developing the second order derivative of
$ 0≥⟨D2dΩ(γ(˜tk))˙γ(˜tk),˙γ(˜tk)⟩+⟨DdΩ(γ(˜tk)),¨γ(˜tk)⟩=⟨D2dΩ(γ(˜tk))DpH(˜tk,γ(˜tk),p(˜tk)),DpH(˜tk,γ(˜tk),p(˜tk))⟩−⟨DdΩ(γ(˜tk)),D2ptH(˜tk,γ(˜tk),p(˜tk))⟩+⟨DdΩ(γ(˜tk)),D2pxH(˜tk,γ(˜tk),p(˜tk))DpH(˜tk,γ(˜tk),p(˜tk))⟩−⟨DdΩ(γ(˜tk)),D2ppH(˜tk,γ(˜tk),p(˜tk))DxH(˜tk,γ(˜tk),p(˜tk))⟩+1ϵ⟨DdΩ(γ(˜tk)),D2ppH(˜tk,γ(˜tk),p(˜tk))DdΩ(γ(˜tk))⟩. $ |
We now use the growth properties of
$ 1μϵk≤C(μ,M′)(1+|p(˜tk)|)2+κC(μ,M′)(1+|p(˜tk)|)≤C(μ,M′,κ)(1+|p(˜tk)|2), $ |
where the constant
$ \begin{align*} \frac{1}{\mu\epsilon_k} \leq C(\mu, M', \kappa)\left[1+4\mu\frac{C_1}{\delta^2}+\frac{4\mu}{\epsilon_k} d_{{\Omega}}(\gamma({\tilde t_k}))\right], \ \ \forall \ k\geq 1, \end{align*} $ |
where
Conclusion
Let
$ \begin{equation*} \sup\limits_{t\in[0, T]} d_\Omega(\gamma(t))\leq \rho, \ \ \ \ \forall \gamma\in\mathcal{X}_{\epsilon, \delta}[x]. \end{equation*} $ |
Hence, using (3.46), we deduce that
$ \begin{equation*} \frac{1}{2\mu\epsilon_k}\leq 4 C(\mu, M', \kappa)\left[1+4\mu\frac{C_1}{\delta^2}\right]. \end{equation*} $ |
Since the above inequality fails for
An obvious consequence of Lemma 3.7 is the following:
Corollary 3.1. Fix
We are now ready to complete the proof of Theorem 3.1.
Proof of Theorem 3.1. Let
$ \begin{equation}\label{pT} p(T) = Dg(\gamma^\star(T))+ \nu \ D{b_\Omega}(\gamma^\star(T)). \end{equation} $ | (3.48) |
By Lemma 3.4
$ \dot{\gamma}^\star(t) = -D_pH(t, \gamma^\star(t), p(t)), \ \ \ \forall\ t\in[0, T]. $ | (3.49) |
Moreover,
$ |p(t)|\leq 2\frac{\sqrt{\mu C_1}}{\delta}, \ \ \ \forall t\in[0, T], $ |
where
$ ||\dot{\gamma}^\star||_\infty = \sup\limits_{t\in [0, T]}|D_p H(t, \gamma^\star(t), p(t))|\leq C(\mu, M')\Big(\sup\limits_{t\in [0, T]} |p(t)|+1\Big)\leq C(\mu, M')\Big(2\frac{\sqrt{\mu C_1}}{\delta}+1\Big)\Big) = L^\star, $ |
where
Finally, we want to find an explicit expression for
$ \begin{equation*} D = \Big\{t \in[0, T]: \gamma^\star(t)\in\partial\Omega\Big\}\; {\rm and}\; D_{\rho_0} = \Big\{t \in[0, T]: |{b_\Omega}(\gamma^\star(t))| \lt \rho_0\Big\}, \end{equation*} $ |
where
$ \begin{equation*} \dot \psi(t) = \Big\langle D{b_\Omega}(\gamma^\star(t)), \dot \gamma^\star(t)\Big\rangle = \Big\langle D{b_\Omega}(\gamma^\star(t)), -D_pH(t, \gamma^\star(t), p(t)) \Big\rangle. \end{equation*} $ |
Since
$ \begin{eqnarray*} \ddot{\psi}(t)& = &-\Big\langle D^2{b_\Omega}(\gamma^\star(t))\dot \gamma^\star(t), D_pH\big(t, \gamma^\star(t), p(t)\big)\Big\rangle - \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pt}^2 H\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &-& \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{px}^2 H\big(t, \gamma^\star(t), p(t)\big)\dot \gamma^\star(t)\Big\rangle-\Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2 H\big(t, \gamma^\star(t), p(t)\big)\dot{p}(t)\Big\rangle\\ & = &\Big\langle D^2{b_\Omega}(\gamma^\star(t))D_pH\big(t, \gamma^\star(t), p(t)\big), D_pH\big(t, \gamma^\star(t), p(t)\big)\Big\rangle \\ &-& \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pt}^2 H\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &+& \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{px}^2 H\big(t, \gamma^\star(t), p(t)\big)D_pH\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &-&\Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2H\big(t, \gamma^\star(t), p(t)\big)D_xH\big(t, \gamma^\star(t), p(t)\big)\rangle\\ &+&\frac{\lambda(t)}{\epsilon}\ \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2H\big(t, \gamma^\star(t), p(t)\big)D{b_\Omega}(\gamma^\star(t))\Big\rangle. \end{eqnarray*} $ |
Let
$ \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2 H\big(t, \gamma^\star(t), p(t)\big)D{b_\Omega}(\gamma^\star(t))\Big\rangle \gt 0, \qquad {\rm a.e.} \;t\in D_{\rho_0}. $ |
So, for a.e.
$ \begin{align*} \frac{\lambda(t)}{\epsilon} = &\frac{1}{\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2 H(t, \gamma^\star(t), p(t))D{b_\Omega}(\gamma^\star(t))\rangle}\ \Big[ \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pt}^2 H\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &-\Big\langle D^2{b_\Omega}(\gamma^\star(t))D_pH\big(t, \gamma^\star(t), p(t)\big), D_pH\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &- \Big\langle D{b_\Omega}(\gamma^\star(t)), D_{px}^2 H\big(t, \gamma^\star(t), p(t)\big)D_pH\big(t, \gamma^\star(t), p(t)\big)\Big\rangle\\ &+\Big\langle D{b_\Omega}(\gamma^\star(t)), D_{pp}^2H\big(t, \gamma^\star(t), p(t)\big)D_xH\big(t, \gamma^\star(t), p(t)\big) \Big\rangle \Big]. \end{align*} $ |
Since
Remark 3.4. The above proof gives a representation of
$ \begin{align*} \Lambda(t, x, p) = &\frac{1}{\theta(t, x, p)}\ \Big[ -\Big\langle D^2{b_\Omega}(x)D_pH\big(t, x, p\big), D_pH\big(t, x, p\big)\Big\rangle- \Big\langle D{b_\Omega}(x), D_{pt}^2 H\big(t, x, p\big)\Big\rangle- \\ &\Big\langle D{b_\Omega}(x), D_{px}^2 H\big(t, x, p\big)D_pH\big(t, x, p\big)\Big\rangle+\Big\langle D{b_\Omega}(x), D_{pp}^2H\big(t, x, p\big)D_xH\big(t, x, p\big) \Big\rangle \Big], \end{align*} $ |
where
We now want to remove the extra assumption
$ \begin{align}\label{xi} \begin{cases} \xi(x) = 0 \ \ \ \ &\mbox{if} \ \ x\in (-\infty, \frac{1}{3}], \\ 0 \lt \xi(x) \lt 1 &\mbox{if}\ \ x\in (\frac{1}{3}, \frac{2}{3}), \\ \xi = 1 &\mbox{if} \ \ x \in [\frac{2}{3}, +\infty). \end{cases} \end{align} $ | (3.50) |
Lemma 3.8. Let
$ \sigma_0 = dist(\overline{\Omega}, \mathbb{R}^n\setminus U) \gt 0. $ |
Suppose that
$ \begin{equation*} \widetilde{f}(t, x, v) = \xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\frac{|v|^2}{2}+ \left (1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)f(t, x, v), \ \ \ \forall \ (t, x, v)\in[0, T]\times\mathbb{R}^n\times\mathbb{R}^n, \end{equation*} $ |
that satisfies conditions (f0)-(f2) with
$ \widetilde{g}(x) = \left( 1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)g(x), \ \ \ \ \forall x\in\mathbb{R}^n, $ |
that satisfies condition (g1) with
Note that, since
Proof. By construction we note that
$ \begin{align*} D_v\widetilde{f}(t, x, v) = \xi\left(\frac{{b_\Omega}(x)}{\sigma}\right) v + \left (1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)D_vf(t, x, v), \end{align*} $ |
and
$ \begin{align*} D_{vv}^2\widetilde{f}(t, x, v) = \xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)I+\left (1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)D_{vv}^2f(t, x, v). \end{align*} $ |
Hence, by the definition of
$ \begin{equation*} \Big(1\wedge\frac{1}{\mu}\Big)I\leq D_{vv}^2\widetilde{f}(t, x, v)\leq (1\vee \mu) I, \ \ \ \ \ \forall \ (t, x, v)\in[0, T]\times\mathbb{R}^n\times \mathbb{R}^n. \end{equation*} $ |
Since
Moreover, since
$ \begin{eqnarray*} D_x(D_v\widetilde{f}(t, x, v))& = &\dot{\xi}\left(\frac{{b_\Omega}(x)}{\sigma}\right)v\otimes\frac{D{b_\Omega}(x)}{\sigma}+\left(1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)D_{vx}^2f(t, x, v)\\ &-&\dot{\xi}\left(\frac{{b_\Omega}(x)}{\sigma}\right)D_vf(t, x, v)\otimes\frac{D{b_\Omega}(x)}{\sigma}, \end{eqnarray*} $ |
and by (3.4) we obtain that
$ \begin{equation*} ||D_{vx}^2\widetilde{f}(t, x, v)||\leq C(\mu, M)(1+|v|) \ \ \ \forall (t, x, v)\in [0, T]\times \mathbb{R}^n\times\mathbb{R}^n. \end{equation*} $ |
For all
$ \begin{equation*} \Big|\widetilde{f}(t, x, v)-\widetilde{f}(s, x, v)\Big| = \left| \left (1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right) \big[ f(t, x, v)-f(s, x, v)\big]\right|\leq \kappa(1+|v|^2)|t-s| \end{equation*} $ |
for all
$ \begin{align*} &\big|D_v\widetilde{f}(t, x, v))-D_v\widetilde{f}(s, x, v))\big|\leq \left|\left (1-\xi\left(\frac{{b_\Omega}(x)}{\sigma}\right)\right)\big[D_{v}f(t, x, v)-D_vf(s, x, v))\big]\right|\\ &\leq \kappa(1+|v|)|t-s|, \end{align*} $ |
for all
Finally, by the regularity of
Suppose that
$ \begin{equation}\label{vf} u(t, x) = \inf\limits_{\begin{array}{c} \gamma\in \Gamma\\ \gamma(t) = x \end{array}} \int_{t}^T f(s, \gamma(s), \dot{\gamma}(s)) \, ds + g(\gamma(T)). \end{equation} $ | (4.1) |
Proposition 4.1. Let
Proof. First, we shall prove that
$ \begin{align*} \begin{cases} {\bar \gamma}(t) = y, \\ \dot{{\bar \gamma}}(s) = \dot{\gamma}(s) +\frac{x-y}{\tau} \ \ &\mbox{if} \ s\in[t, t+\tau] \ \ \text{a.e.}, \\ \dot{{\bar \gamma}}(s) = \dot{\gamma}(s) \ \ &\mbox{otherwise}, \end{cases} \end{align*} $ |
where
(a)
(b)
(c)
(d)
Indeed, by the definition of
$ \begin{align*} {\bar \gamma}(t+\tau)-{\bar \gamma}(t) = {\bar \gamma}(t+\tau)-y = \int_t^{t+\tau}\Big(\dot{\gamma}(s)+\frac{x-y}{\tau}\Big)\, ds = \gamma(t+\tau)-y, \end{align*} $ |
and this gives (a). Moreover, by (a), and by the definition of
$ \begin{align*} \Big|{\bar \gamma}(s)-\gamma(s)\Big|\leq\Big|y-x+\int_t^s (\dot{\bar \gamma}(\sigma)- \dot{\gamma}(\sigma)) \, d\sigma\Big| = \Big|y-x+ \int_t^{s}\frac{x-y}{\tau} \, d\sigma\Big|\leq |y-x| \end{align*} $ |
and so (c) holds. Since
$ \begin{align*} &|{\bar \gamma}(s)-x_0|\leq|{\bar \gamma}(s)-y|+|y-x_0|\leq\left|\int_t^s \dot{{\bar \gamma}}(\sigma)\, d\sigma\right|+r\leq \int_t^s \ \Big|\dot{\gamma}(\sigma)+\frac{x-y}{\tau}\Big|\, d\sigma+r\\ &\leq \int_t^s \Big[ |\dot{\gamma}(\sigma)|+ \frac{|x-y|}{\tau}\Big]\, d\sigma+r \leq L^\star (s-t)+\frac{|x-y|}{\tau}(s-t)+r\leq L^\star\tau +|x-y|+r. \end{align*} $ |
Recalling that
$ \begin{equation*} |{\bar \gamma}(s)-x_0|\leq \frac{|x-y|}{2}+|x-y|+r\leq 4r. \end{equation*} $ |
Therefore,
Now, owing to the dynamic programming principle, by (a) one has that
$ \begin{equation} u(t, y)\leq \int_t^{t+\tau} f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))\, ds + u(t+\tau, \gamma(t+\tau)). \end{equation} $ | (4.2) |
Since
$ \begin{equation*} u(t, y)\leq u(t, x) +\int_t^{t+\tau} \Big[f(s, {\bar \gamma}(s), \dot{\bar \gamma}(s))-f(s, \gamma(s), \dot{\gamma}(s))\Big] \, ds. \end{equation*} $ |
By (3.7), (3.8), and the definition of
$ \begin{align*} &|f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))-f(s, \gamma(s), \dot{\gamma}(s))|\\ &\leq|f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))-f(s, {\bar \gamma}(s), \dot{\gamma}(s))|+|f(s, {\bar \gamma}(s), \dot{\gamma}(s))-f(s, \gamma(s), \dot{\gamma}(s))|\\ &\leq \int_0^1 |\langle D_vf(s, {\bar \gamma}(s), \lambda\dot{{\bar \gamma}}(s)+(1-\lambda)\dot{\gamma}(s)), \dot{{\bar \gamma}}(s)-\dot{\gamma}(s)\rangle|\, d\lambda\\ & + \int_0^1|D_xf(s, \lambda{\bar \gamma}(s)+(1-\lambda)\gamma(s), \dot{\gamma}(s)), {\bar \gamma}(s)-\gamma(s)\rangle|\, d\lambda\\ &\leq C(\mu, M)|\dot{{\bar \gamma}}(s)-\dot{\gamma}(s)|\int_0^1 (1+|\lambda\dot{{\bar \gamma}}(s)+(1-\lambda)\dot{\gamma}(s)|)\, d\lambda \\ &+ C(\mu, M)|{\bar \gamma}(s)-\gamma(s)|\int_0^1(1+ |\dot{\gamma}(s)|^2)\, d\lambda. \end{align*} $ |
By Theorem 3.1 one has that
$ \int_0^1 (1+|\lambda\dot{{\bar \gamma}}(s)+(1-\lambda)\dot{\gamma}(s)|)\, d\lambda\leq 1+4L^\star, $ | (4.3) |
$ \int_0^1(1+ |\dot{\gamma}(s)|^2)\, d\lambda\leq 1+(L^\star)^2. $ | (4.4) |
Using (4.3), (4.4), and (c), by the definition of
$ \begin{equation}\label{bl1} |f(s, {\bar \gamma}(s), \dot{{\bar \gamma}}(s))-f(s, \gamma(s), \dot{\gamma}(s))|\leq C(\mu, M)(1+4L^\star)\frac{|x-y|}{\tau}+C(\mu, M)(1+(L^\star)^2)|x-y|, \end{equation} $ | (4.5) |
for a.e.
$ \begin{align*} &u(t, y)\leq u(t, x) + C(\mu, M)(1+4L^\star)\int_t^{t+\tau}\frac{|x-y|}{\tau} \, ds+ C(\mu, M)(1+(L^\star)^2)\int_t^{t+\tau} |x-y|\, ds\\ &\leq u(t, x) + C(\mu, M)(1+4L^\star)\big|x-y\big|+\tau C(\mu, M)(1+(L^\star)^2)\big|x-y\big|\leq u(t, x)+C_{L^\star}|x-y| \end{align*} $ |
where
In order to prove Lipschitz continuity in time, let
$ \begin{equation}\label{3e} |u(t_2, x)-u(t_1, x)|\leq |u(t_2, x)-u(t_2, \gamma(t_2))|+|u(t_2, \gamma(t_2))-u(t_1, x)|. \end{equation} $ | (4.6) |
The first term on the right-side of (4.6) can be estimated using the Lipschitz continuity in space of
$ \begin{equation}\label{4} |u(t_2, x)-u(t_2, \gamma(t_2))|\leq C_{L^\star}|x-\gamma(t_2)| \leq C_{L^\star}\int_{t_1}^{t_2}|\dot{\gamma}(s)|\, ds\leq L^\star C_{L^\star} (t_2-t_1). \end{equation} $ | (4.7) |
We only have to estimate the second term on the right-side of (4.6). By the dynamic programming principle, (3.9), and the assumptions on
$ \begin{align}\label{5} |u(t_2, \gamma(t_2))-u(t_1, x)|& = \Big |\int_{t_1}^{t_2}f(s, \gamma(s), \dot{\gamma}(s))\, ds\Big|\leq \int_{t_1}^{t_2}|f(s, \gamma(s), \dot{\gamma}(s))|\, ds\\ &\leq \int_{t_1}^{t_2} \Big[C(\mu, M)+ 4\mu |\dot{\gamma}(s)|^2\Big]\, ds\leq \Big[C(\mu, M)+4\mu L^\star\Big] (t_2-t_1)\nonumber \end{align} $ | (4.8) |
Using (4.7) and (4.8) to bound the right-hand side of (4.6), we obtain that
In this section we want to apply Theorem 3.1 to a mean field game (MFG) problem with state constraints. Such a problem was studied in [11], where the existence and uniqueness of constrained equilibria was obtained under fairly general assumptions on the data. Here, we will apply our necessary conditions to deduce the existence of more regular equilibria than those constructed in [11], assuming the data
Assumptions
Let
(D1) For all
$ \begin{align} |F(x, m_1)-F(x, m_2)|+ |G(x, m_1)-G(x, m_2)| \leq \kappa d_1(m_1, m_2), \label{lf} \end{align} $ | (4.9) |
for any
(D2) For all
$ \begin{equation*} |D_xF(x, m)|+|D_xG(x, m)|\leq \kappa, \ \ \ \ \forall \ x\in U, \ \forall \ m\in \mathcal{P}(\overline{\Omega}). \end{equation*} $ |
Let
(L0)
$ \begin{equation}\label{bml} |L(x, 0)|+|D_xL(x, 0)|+|D_vL(x, 0)|\leq M, \ \ \ \ \forall \ x\in U. \end{equation} $ | (4.10) |
(L1)
$ \frac{I}{\mu} \leq D^2_{vv}L(x, v)\leq I\mu, $ | (4.11) |
$ ||D_{vx}^2L(x, v)||\leq \mu(1+|v|), $ | (4.12) |
for all
Remark 4.1. (ⅰ)
(ⅱ) Arguing as Lemma 3.1 we deduce that there exists a positive constant
$ |D_xL(x, v)|\leq C(\mu, M)(1+|v|^2), $ | (4.13) |
$ |D_vL(x, v)|\leq C(\mu, M)(1+|v|), $ | (4.14) |
$ \frac{|v|^2}{4\mu}-C(\mu, M) \leq L(x, v)\leq 4\mu|v|^2 +C(\mu, M), $ | (4.15) |
for all
Let
$ H(t, x, p) = H_L(x, p)-F(x, m(t)), \ \ \ \forall\ (t, x, p)\in[0, T]\times U\times\mathbb{R}^n, $ |
where
$ \begin{equation*} H_L(x, p) = \sup\limits_{v\in\mathbb{R}^n}\Big\{-\langle p, v\rangle-L(x, v)\Big\}, \ \ \ \ \ \forall\ (x, p)\in U\times\mathbb{R}^n. \end{equation*} $ |
The assumptions on
1.
$ \begin{equation} |H_L(x, 0)|+|D_xH_L(x, 0)|+|D_pH_L(x, 0)|\leq M', \ \ \ \ \forall x\in U. \end{equation} $ | (4.16) |
2.
$ \frac{I}{\mu}\leq D_{pp}H_L(x, p)\leq I\mu, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \forall \ (x, p)\in U\times\mathbb{R}^n, $ | (4.17) |
$ ||D_{px}^2 H_L(x, p)||\leq C(\mu, M')(1+|p|), \ \ \ \forall \ (x, p)\in U\times \mathbb{R}^n, $ | (4.18) |
where
For any
$ \begin{equation*} e_t(\gamma) = \gamma(t), \ \ \ \ \forall \gamma\in\Gamma. \end{equation*} $ |
For any
$ \begin{equation*} m^\eta(t) = e_t\sharp\eta \ \ \ \ \forall t\in [0, T]. \end{equation*} $ |
Remark 4.2. We observe that for any
(ⅰ)
(ⅱ) Let
For any fixed
$ \begin{equation*} J_\eta [\gamma] = \int_0^T \Big[L(\gamma(t), \dot \gamma(t))+ F(\gamma(t), m^\eta(t))\Big]\ dt + G(\gamma(T), m^\eta(T)), \ \ \ \ \ \forall \gamma\in\Gamma. \end{equation*} $ |
For all
$ \begin{equation*} \Gamma^\eta[x] = \Big\{ \gamma\in\Gamma[x]:J_\eta[\gamma] = \min\limits_{\Gamma[x]} J_\eta\Big\}. \end{equation*} $ |
It is shown in [11] that, for every
Definition 4.1. Let
$ \begin{equation*} supp(\eta)\subseteq \bigcup\limits_{x\in\overline{\Omega}} \Gamma^\eta[x]. \end{equation*} $ |
Let
Definition 4.2. Let
$ \begin{equation*} \mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma') = \{\eta\in\mathcal{P}_{m_0}(\Gamma'): m^\eta \in {\rm Lip}(0, T;\mathcal{P}(\overline{\Omega}))\}. \end{equation*} $ |
Remark 4.3. We note that
$ j(x)(t) = x \ \ \ \ \forall t \in[0, T]. $ |
Then,
$ \eta : = j\sharp m_0 $ |
is a Borel probability measure on
In order to show that
$ \begin{equation*} e_0 \sharp \eta (B) = \eta (e_0^{-1}(B)) = \sum\limits_{i = 1}^{2} \lambda_i \eta_i(e_0^{-1}(B)) = \sum\limits_{i = 1}^{2} \lambda_i e_0 \sharp \eta_i(B) = \sum\limits_{i = 1}^{2} \lambda_i m_0(B) = m_0 (B). \end{equation*} $ |
So,
In the next result, we apply Theorem 3.1 to prove a useful property of minimizers of
Proposition 4.2. Let
$ \begin{equation}\label{l0} ||\dot{\gamma}||_\infty\leq L_0, \ \ \ \forall \gamma\in \Gamma^\eta[x], \end{equation} $ | (4.19) |
where
Proof. Let
$ \begin{equation*} ||\dot{\gamma}||_\infty\leq L_0, \ \ \ \forall \gamma\in \Gamma^\eta[x], \end{equation*} $ |
where
We denote by
$ \begin{equation}\label{tgamma} \Gamma_{L_0} = \{\gamma \in \Gamma:||\dot\gamma||_\infty\leq L_0\}. \end{equation} $ | (4.20) |
Lemma 4.1. Let
Proof. Arguing as in Remark 4.3, we obtain that
Let
$ \begin{equation*} d_1(m^\eta(t_2), m^\eta(t_1)) = \sup\Big\{\int_{\overline{\Omega}} \phi(x)(m^\eta(t_2, \, dx)-m^\eta(t_1, \, dx))\ \Big|\ \phi:\overline{\Omega}\rightarrow\mathbb{R}\ \ \mbox{is 1-Lipschitz} \Big\}. \end{equation*} $ |
Since
$ \begin{align*} &\int_{\overline\Omega} \phi(x)\, (m^\eta(t_2, dx)-m^\eta(t_1, dx)) = \int_{\Gamma}\Big[ \phi(e_{t_2}(\gamma))-\phi(e_{t_1}(\gamma))\Big] \, d\eta(\gamma)\\ & = \int_{\Gamma} \Big[\phi(\gamma(t_2))-\phi(\gamma(t_1))\Big] \, d\eta(\gamma) \leq \int_{\Gamma} |\gamma(t_2)-\gamma(t_1)|\, d\eta(\gamma). \end{align*} $ |
Since
$ \begin{align*} \int_{\Gamma} |\gamma(t_2)-\gamma(t_1)|\, d\eta(\gamma)\leq L_0\int_{\Gamma} |t_2-t_1|\, d\eta(\gamma) = L_0|t_2-t_1| \end{align*} $ |
and so
In the next result, we deduce the existence of more regular equilibria than those constructed in [11].
Theorem 4.1. Let
Proof. First of all, we recall that for any
*We say that
$ \begin{equation}\label{dise} \begin{cases} \eta(d\gamma) = \int_{\overline{\Omega}} \eta_x(d\gamma) m_0(\, dx), \\ supp(\eta_x)\subset \Gamma[x] \ \ m_0-\mbox{a.e.} \ x\in \overline{\Omega} \end{cases} \end{equation} $ | (4.21) |
(see, e.g., [2, Theorem 5.3.1]). Proceeding as in [11], we introduce the set-valued map
$ E:\mathcal{P}_{m_0}(\Gamma)\rightrightarrows \mathcal{P}_{m_0}(\Gamma), $ |
by defining, for any
$ \begin{equation}\label{ein} E(\eta) = \Big\{ \widehat{\eta}\in\mathcal{P}_{m_0}(\Gamma): supp(\widehat{\eta}_x)\subseteq \Gamma^\eta[x] \ \ m_0-\mbox{a.e.} \ x \in \overline{\Omega}\Big\}. \end{equation} $ | (4.22) |
We recall that, by [11, Lemma 3.6], the map
Now, we consider the restriction
$ E_0:\mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma_{L_0}) \rightrightarrows \mathcal{P}_{m_0}(\Gamma), \ \ \ E_0(\eta) = E(\eta) \ \ \forall \eta \in\mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma_{L_0}). $ |
We will show that the set-valued map
$ \begin{equation}\label{lin} E_0(\mathcal{P}_{m_0}^{{\rm Lip}}(\Gamma_{L_0}))\subseteq \mathcal{P}^{{\rm Lip}}_{m_0}(\Gamma_{L_0}). \end{equation} $ | (4.23) |
Indeed, let
$ \Gamma^\eta[x]\subset \Gamma_{L_0} \ \ \ \forall x \in \overline{\Omega}, $ |
and by definition of
$ supp(\widehat{\eta})\subset \Gamma_{L_0}. $ |
So,
Since
We recall the definition of a mild solution of the constrained MFG problem, given in [11].
Definition 4.3. We say that
(i)
(ii) u is given by
$ \begin{equation}\label{v} u(t, x) = \inf\limits_{\tiny\begin{array}{c} \gamma\in \Gamma\\ \gamma(t) = x \end{array}} \left\{\int_t^T \left[L(\gamma(s), \dot \gamma(s))+ F(\gamma(s), m(s))\right]\ ds + G(\gamma(T), m(T))\right\}, \end{equation} $ | (4.24) |
for
Theorem 4.2. Let
(i)
(ii)
The question of the Lipschitz continuity up to the boundary of the value function under state constraints was addressed in [28] and [34], for stationary problems, and in a very large literature that has been published since. We refer to the survey paper [20] for references.
Proof. Let
Remark 4.4. Recall that
$ \int_{\overline{\Omega}} (F(x, m_1)-F(x, m_2))d(m_1-m_2)(x)\ \geq\ 0, $ | (4.25) |
for any
Suppose that
In this Appendix we prove Lemma 2.1. The only case which needs to be analyzed is when
$ d_\Omega( y)-d_\Omega( x) -\langle p, y- x\rangle \geq C| y- x|^2, \ \ \text{for any} \ y \ \text{such that}\ | y- x|\leq \epsilon, $ | (5.1) |
for some constant
$ \begin{equation*} d_\Omega( y)-d_\Omega( x)-\langle D{b_\Omega}( x), y- x\rangle\geq {b_\Omega}( y)-{b_\Omega}( x)-\langle D{b_\Omega}( x), y- x\rangle \geq C | y- x|^2. \end{equation*} $ |
This shows that
$ \begin{equation*} d_\Omega( y)-d_\Omega( x)-\langle \lambda D {b_\Omega}( x), y- x\rangle\geq \lambda\left( d_\Omega( y)-d_\Omega( x)-\langle D {b_\Omega}( x), y- x\rangle\right) \ \ \ \forall \lambda \in[0, 1], \end{equation*} $ |
we further obtain the inclusion
$ \begin{equation*} D{b_\Omega}( x)[0, 1]\subset\partial d_\Omega( x). \end{equation*} $ |
Next, in order to show the reverse inclusion, let
$ {b_\Omega}( y)-{b_\Omega}( x) -\langle p, y- x\rangle \geq C| y- x|^2, \ \ \ | y- x|\leq \epsilon. $ | (5.2) |
Since
$ \begin{equation}\label{p2} {b_\Omega}( y)-{b_\Omega}( x)\leq\langle D{b_\Omega}( x), y- x\rangle +C| y- x|^2 \end{equation} $ | (5.3) |
for some constant
$ \begin{equation*} \left\langle D{b_\Omega}( x)-p, \frac{ y- x}{| y- x|}\right\rangle\geq C| y- x|. \end{equation*} $ |
Hence, passing to the limit for
$ \begin{equation*} \langle D{b_\Omega}( x)-p, v\rangle \geq 0, \ \ \ \ \forall v\in T_{\Omega^c}( x), \end{equation*} $ |
where
$ D{b_\Omega}( x)-p = \lambda v( x), $ |
where
$ p = (1-\lambda) D{b_\Omega}( x). $ |
Now, we prove that
$ \begin{equation*} 0 = d_\Omega( y)\geq (1-\lambda)\langle D {b_\Omega}( x), y- x\rangle + C| y- x|^2. \end{equation*} $ |
Hence,
$ \begin{equation*} (1-\lambda)\left\langle D{b_\Omega}( x), \frac{ y- x}{| y- x|}\right\rangle\leq -C| y- x|. \end{equation*} $ |
Passing to the limit for
$ \begin{equation*} (1-\lambda)\left\langle D {b_\Omega}( x), w\right\rangle \leq 0, \ \ \ \ \ \forall w\in T_{\overline{\Omega}}( x), \end{equation*} $ |
where
This work was partly supported by the University of Rome Tor Vergata (Consolidate the Foundations 2015) and by the Istituto Nazionale di Alta Matematica "F. Severi" (GNAMPA 2016 Research Projects). The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. The second author is grateful to the Universitá Italo Francese (Vinci Project 2015).
The authors declare no conflict of interest.
[1] | Muley PD, Henkel C, Abdollahi KK, et al. (2015) Pyrolysis and Catalytic Upgrading of Pinewood Sawdust Using Induction Heating Reactor. Energ Fuel. |
[2] | Urbatsch L (2000) Chinese tallow tree (Triadica sebifera (L.) Small. Plant Guide. Natural Resources Conservation Service (NRCS). |
[3] |
Heo HS, Park HJ, Park Y-K, et al. (2010) Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresource technol 101: S91-S96. doi: 10.1016/j.biortech.2009.06.003
![]() |
[4] |
Lu Q, Yang Xl, Zhu Xf (2008) Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrol 82: 191-198. doi: 10.1016/j.jaap.2008.03.003
![]() |
[5] |
McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresource Technol 83: 47-54. doi: 10.1016/S0960-8524(01)00119-5
![]() |
[6] |
Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energ Fuel 20: 848-889. doi: 10.1021/ef0502397
![]() |
[7] |
Bergström D, Israelsson S, ñhman M, et al. (2008) Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Process Technol 89: 1324-1329. doi: 10.1016/j.fuproc.2008.06.001
![]() |
[8] |
Liao R, Gao B, Fang J (2013) Invasive plants as feedstock for biochar and bioenergy production. Bioresource technol 140: 439-442. doi: 10.1016/j.biortech.2013.04.117
![]() |
[9] |
Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30: 1479-1493. doi: 10.1016/S0146-6380(99)00120-5
![]() |
[10] |
Tsai WT, Lee MK, Chang YM (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrol 76: 230-237. doi: 10.1016/j.jaap.2005.11.007
![]() |
[11] |
Uzun BB, Kanmaz G (2013) Effect of operating parameters on bio-fuel production from waste furniture sawdust. Waste Manage Res 31: 361-367. doi: 10.1177/0734242X12470402
![]() |
[12] |
Ateş F, Pütün E, Pütün AE (2004) Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. J Anal Appl Pyrol 71: 779-790. doi: 10.1016/j.jaap.2003.11.001
![]() |
[13] |
Miao Z, Grift TE, Hansen AC, et al. (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crop Prod 33: 504-513. doi: 10.1016/j.indcrop.2010.12.016
![]() |
[14] | Onay ñ (2003) Production of Bio-Oil from Biomass: Slow Pyrolysis of Rapeseed (Brassica napus L.) in a Fixed-Bed Reactor. Energ Sources 25: 879-892. |
[15] | Şensöz S, Angın D, Yorgun S (2000) Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenerg 19: 271-279. |
[16] |
Rhén C, Gref R, Sjöström M, et al. (2005) Effects of raw material moisture content, densification pressure and temperature on some properties of Norway spruce pellets. Fuel Process Technol 87: 11-16. doi: 10.1016/j.fuproc.2005.03.003
![]() |
[17] |
Shen J, Wang XS, Garcia-Perez M, et al. (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88: 1810-1817. doi: 10.1016/j.fuel.2009.05.001
![]() |
[18] |
Bennadji H, Smith K, Serapiglia MJ, et al. (2014) Effect of Particle Size on Low-Temperature Pyrolysis of Woody Biomass. Energ Fuel 28: 7527-7537. doi: 10.1021/ef501869e
![]() |
[19] | Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biot38: 803-807. |
[20] | Jubinsky G, Anderson LC (1996) The invasive potential of Chinese tallow-tree (Sapium sebiferum Roxb.) in the Southeast. Castanea: 226-231. |
[21] | Fennell LP, Boldor D (2013) Dielectric characterization of the seeds of invasive Chinese Tallow Tree. J Microwave Power EE 47: 237-250. |
[22] | Henkel C (2014) A Study of Induction Pyrolysis of Lignocellulosic Biomass for the Production of Bio-oil: Louisiana State University. |
[23] |
Bedmutha RJ, Ferrante L, Briens C, et al. (2009) Single and two-stage electrostatic demisters for biomass pyrolysis application. Chem Eng Process: Process Intensification 48: 1112-1120. doi: 10.1016/j.cep.2009.02.007
![]() |
[24] | Scholze B, Meier D (2001) Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups. J Anal Appl Pyrol 60: 41-54. |
[25] |
Demirbas A, Demirbas H (2004) Estimating the Calorific Values of Lignocellulosic Fuels. Energ Explor Exploit 22: 135. doi: 10.1260/0144598041475198
![]() |
[26] |
Luo S, Xiao B, Hu Z, et al. (2010) Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. Int J Hydrogen Energ 35: 93-97. doi: 10.1016/j.ijhydene.2009.10.048
![]() |
[27] |
Vamvuka D, Kakaras E, Kastanaki E, et al. (2003) Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 82: 1949-1960. doi: 10.1016/S0016-2361(03)00153-4
![]() |
[28] |
Jung SH, Kang BS, Kim JS (2008) Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. J Anal Appl Pyrol 82: 240-247. doi: 10.1016/j.jaap.2008.04.001
![]() |
1. | Yves Achdou, Paola Mannucci, Claudio Marchi, Nicoletta Tchou, Deterministic mean field games with control on the acceleration, 2020, 27, 1021-9722, 10.1007/s00030-020-00634-y | |
2. | Philip Jameson Graber, Charafeddine Mouzouni, On Mean Field Games models for exhaustible commodities trade, 2020, 26, 1292-8119, 11, 10.1051/cocv/2019008 | |
3. | Pierre Cardaliaguet, Alessio Porretta, 2020, Chapter 1, 978-3-030-59836-5, 1, 10.1007/978-3-030-59837-2_1 | |
4. | Siting Liu, Matthew Jacobs, Wuchen Li, Levon Nurbekyan, Stanley J. Osher, Computational Methods for First-Order Nonlocal Mean Field Games with Applications, 2021, 59, 0036-1429, 2639, 10.1137/20M1334668 | |
5. | Piermarco Cannarsa, Rossana Capuani, Pierre Cardaliaguet, Mean field games with state constraints: from mild to pointwise solutions of the PDE system, 2021, 60, 0944-2669, 10.1007/s00526-021-01936-4 | |
6. | J. Frédéric Bonnans, Justina Gianatti, Laurent Pfeiffer, A Lagrangian Approach for Aggregative Mean Field Games of Controls with Mixed and Final Constraints, 2023, 61, 0363-0129, 105, 10.1137/21M1407720 | |
7. | Rossana Capuani, Antonio Marigonda, Marta Mogentale, 2022, Chapter 34, 978-3-030-97548-7, 297, 10.1007/978-3-030-97549-4_34 | |
8. | Piermarco Cannarsa, Wei Cheng, Cristian Mendico, Kaizhi Wang, Weak KAM Approach to First-Order Mean Field Games with State Constraints, 2021, 1040-7294, 10.1007/s10884-021-10071-9 | |
9. | Saeed Sadeghi Arjmand, Guilherme Mazanti, Multipopulation Minimal-Time Mean Field Games, 2022, 60, 0363-0129, 1942, 10.1137/21M1407306 | |
10. | Saeed Sadeghi Arjmand, Guilherme Mazanti, Nonsmooth mean field games with state constraints, 2022, 28, 1292-8119, 74, 10.1051/cocv/2022069 | |
11. | Rossana Capuani, Antonio Marigonda, Constrained Mean Field Games Equilibria as Fixed Point of Random Lifting of Set-Valued Maps, 2022, 55, 24058963, 180, 10.1016/j.ifacol.2022.11.049 | |
12. | Saeed Sadeghi Arjmand, Guilherme Mazanti, 2021, On the characterization of equilibria of nonsmooth minimal-time mean field games with state constraints, 978-1-6654-3659-5, 5300, 10.1109/CDC45484.2021.9683104 | |
13. | Samuel Daudin, Optimal control of the Fokker-Planck equation under state constraints in the Wasserstein space, 2023, 00217824, 10.1016/j.matpur.2023.05.002 | |
14. | Rossana Capuani, Antonio Marigonda, Michele Ricciardi, Random Lift of Set Valued Maps and Applications to Multiagent Dynamics, 2023, 31, 1877-0533, 10.1007/s11228-023-00693-0 | |
15. | Michael Hintermüller, Thomas M. Surowiec, Mike Theiß, On a Differential Generalized Nash Equilibrium Problem with Mean Field Interaction, 2024, 34, 1052-6234, 2821, 10.1137/22M1489952 | |
16. | Yves Achdou, Paola Mannucci, Claudio Marchi, Nicoletta Tchou, Deterministic Mean Field Games on Networks: A Lagrangian Approach, 2024, 56, 0036-1410, 6689, 10.1137/23M1615073 | |
17. | Guilherme Mazanti, A note on existence and asymptotic behavior of Lagrangian equilibria for first-order optimal-exit mean field games, 2024, 0, 2156-8472, 0, 10.3934/mcrf.2024064 | |
18. | P. Jameson Graber, Remarks on potential mean field games, 2025, 12, 2522-0144, 10.1007/s40687-024-00494-3 | |
19. | Michele Ricciardi, Mauro Rosestolato, Mean field games incorporating carryover effects: optimizing advertising models, 2024, 1593-8883, 10.1007/s10203-024-00500-x |