Processing math: 100%
Review

Current and future biocompatibility aspects of biomaterials for hip prosthesis

  • Received: 16 November 2015 Accepted: 15 December 2015 Published: 28 December 2015
  • The field of biomaterials has turn into an electrifying area because these materials improve the quality and longevity of human life. The first and foremost necessity for the selection of the biomaterial is the acceptability by human body. However, the materials used in hip implants are designed to sustain the load bearing function of human bones for the start of the patient’s life. The most common classes of biomaterials used are metals, polymers, ceramics, composites and apatite. These five classes are used individually or in combination with other materials to form most of the implantation devices in recent years. Numerous current and promising new biomaterials i.e. metallic, ceramic, polymeric and composite are discussed to highlight their merits and their frailties in terms of mechanical and metallurgical properties in this review. It is concluded that current materials have their confines and there is a need for more refined multi-functional materials to be developed in order to match the biocompatibility, metallurgical and mechanical complexity of the hip prosthesis.

    Citation: Amit Aherwar, Amit K Singh, Amar Patnaik. Current and future biocompatibility aspects of biomaterials for hip prosthesis[J]. AIMS Bioengineering, 2016, 3(1): 23-43. doi: 10.3934/bioeng.2016.1.23

    Related Papers:

    [1] M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, A. H. Mansi, M. O. Mohamed . Inference and other aspects for $ q- $Weibull distribution via generalized order statistics with applications to medical datasets. AIMS Mathematics, 2024, 9(4): 8311-8338. doi: 10.3934/math.2024404
    [2] G. M. Mansour, M. A. Abd Elgawad, A. S. Al-Moisheer, H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. O. Mohamed . Bivariate Epanechnikov-Weibull distribution based on Sarmanov copula: properties, simulation, and uncertainty measures with applications. AIMS Mathematics, 2025, 10(5): 12689-12725. doi: 10.3934/math.2025572
    [3] H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550
    [4] Jumanah Ahmed Darwish, Saman Hanif Shahbaz, Lutfiah Ismail Al-Turk, Muhammad Qaiser Shahbaz . Some bivariate and multivariate families of distributions: Theory, inference and application. AIMS Mathematics, 2022, 7(8): 15584-15611. doi: 10.3934/math.2022854
    [5] Aisha Fayomi, Ehab M. Almetwally, Maha E. Qura . A novel bivariate Lomax-G family of distributions: Properties, inference, and applications to environmental, medical, and computer science data. AIMS Mathematics, 2023, 8(8): 17539-17584. doi: 10.3934/math.2023896
    [6] I. A. Husseiny, M. Nagy, A. H. Mansi, M. A. Alawady . Some Tsallis entropy measures in concomitants of generalized order statistics under iterated FGM bivariate distribution. AIMS Mathematics, 2024, 9(9): 23268-23290. doi: 10.3934/math.20241131
    [7] Ammar M. Sarhan, Rabab S. Gomaa, Alia M. Magar, Najwan Alsadat . Bivariate exponentiated generalized inverted exponential distribution with applications on dependent competing risks data. AIMS Mathematics, 2024, 9(10): 29439-29473. doi: 10.3934/math.20241427
    [8] Nora Nader, Dina A. Ramadan, Hanan Haj Ahmad, M. A. El-Damcese, B. S. El-Desouky . Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Fréchet-inverted Weibull distribution. AIMS Mathematics, 2023, 8(12): 31217-31245. doi: 10.3934/math.20231598
    [9] A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310
    [10] Yichen Lv, Xinping Xiao . Grey parameter estimation method for extreme value distribution of short-term wind speed data. AIMS Mathematics, 2024, 9(3): 6238-6265. doi: 10.3934/math.2024304
  • The field of biomaterials has turn into an electrifying area because these materials improve the quality and longevity of human life. The first and foremost necessity for the selection of the biomaterial is the acceptability by human body. However, the materials used in hip implants are designed to sustain the load bearing function of human bones for the start of the patient’s life. The most common classes of biomaterials used are metals, polymers, ceramics, composites and apatite. These five classes are used individually or in combination with other materials to form most of the implantation devices in recent years. Numerous current and promising new biomaterials i.e. metallic, ceramic, polymeric and composite are discussed to highlight their merits and their frailties in terms of mechanical and metallurgical properties in this review. It is concluded that current materials have their confines and there is a need for more refined multi-functional materials to be developed in order to match the biocompatibility, metallurgical and mechanical complexity of the hip prosthesis.


    In 1995, Kamps presented the notion of generalized order statistics (GOS), which is the unification of different models of ascendingly ordered random variables (RVs). The GOS incorporates significant and well-known concepts that have been discussed individually in the statistical literature. Many models of ascendingly ordered RVs, such as sequential order statistics, progressive Type-Ⅱ (PT-Ⅱ) censored order statistics, ordinary order statistics (OOS), record values, and Pfeifer's record model, are theoretically contained in the GOS model.

    Assume $ F(.) $ to be an arbitrary continuous cumulative distribution function (CDF) with probability density function (PDF) $ f(.) $. Assume also $ k > 0, $ $ n\in N $, and $ \tilde{m} = (m_{1}, m_{2}, \cdots, m_{n-1})\in \Re^{n-1} $ to be the parameters such that $ \gamma_{n} = k $ and $ \gamma_{i} = k+n-i+M_{i} $, for $ i = 1, \cdots, n-1 $, where $ M_{i} = \sum_{\iota = i}^{n-1}m_{\iota} $. Then, the RVs $ X_{i:n, \tilde{m}, k}, i = 1, \cdots, n $, are said to be GOS, if their joint PDF is given by

    $ f1,2,,n:n,˜m,k(x1,x2,,xn)=k(n1ν=1γν)(n1ν=1[ˉF(xν)]mνf(xν))[ˉF(xn)]k1f(xn), $ (1.1)

    where $ \bar {F}(.) = 1-F(.) $ and $ F^{-1}(0) < x_{1}\leq\cdots\leq x_{n} < F^{-1}(1). $

    Several models of arranged RVs can be considered special instances of GOS. $ m_{1} = m_{2} = \cdots = m_{n-1} = m $; $ \gamma_{i} = k+(n-i)(m+1) $, $ i = 1, \cdots, n $ corresponds to m-generalized order statistics (m-GOS), $ \gamma_{i} = n-i+1 $ $ (m_{i} = 0, k = 1) $ corresponds to OOS, and $ m_{i} = -1; \gamma_{i} = k $, $ i = 1, \cdots, n, $ $ k\in N $ corresponds to k-recored values. Also, for $ m_{i} = R_{i}, $ $ n = m_{0}+\sum_{\nu = 1}^{m_{0}}R_{\nu} $, $ R_{\nu}\in N, $ and $ \gamma_{i} = n-\sum_{\nu = 1}^{i-1}R_{\nu}-i+1, $ $ 1\leq i\leq m_{0}, $ where $ m_{0} $ denotes the fixed number of failure of units to be observed, the model reduces to PT-Ⅱ censored order statistics.

    Under the condition $ \gamma_{i}\neq\gamma_{j}, $ $ i, j = 1, \cdots, n-1, \, i\neq j $, Kamps and Cramer [23] derived the PDF of $ X_{r:n, \tilde{m}, k} $, $ 1\leq r \leq n $ as

    $ fr:n,˜m,k(x)=Cr1f(x)ri=1ai,r[ˉF(x)]γi1, $ (1.2)

    and the joint PDF of $ X_{r:n, \tilde{m}, k} $ and $ X_{s:n, \tilde{m}, k} $, $ r, s = 1, \cdots, n, \, r < s $ as

    $ fr,s:n,˜m,k(x,y)=Cs1[ri=1ai,r[ˉF(x)]γi][sj=r+1a(r)j,s[ˉF(y)ˉF(x)]γj]×f(x)ˉF(x)f(y)ˉF(y),x<y, $ (1.3)

    where $ C_{r-1} = \prod_{i = 1}^{r}\gamma_{i}, $ $ a_{i, r} = \prod_{\stackrel{\imath = 1}{\imath\neq i}}^{r} \frac{1}{\gamma_{\imath}-\gamma_{i}}, \, 1\leq i\leq r\leq n $, and $ a_{j, s}^{(r)} = \prod_{\stackrel{\jmath = r+1}{\jmath\neq j}}^{s} \frac{1}{\gamma_{\jmath}-\gamma_{j}}, $ $ r+1\leq j\leq s\leq n. $

    It can be shown that for $ m_{1} = m_{2} = \cdots = m_{n-1} = m\neq-1 $ (Khan and Khan [24]),

    $ a_{i, r} = \frac{(-1)^{r-i}}{(m+1)^{r-1}(r-1)!}\binom{r-1}{r-i}, $

    and

    $ a_{j, s}^{(r)} = \frac{(-1)^{s-j}}{(m+1)^{s-r-1}(s-r-1)!}\binom{s-r-1}{s-j}. $

    Therefore, the PDF of $ X_{r:n, \tilde{m}, k} $ given in (1.2) reduces to

    $ fr:n,m,k(x)=Cr1(r1)![ˉF(x)]γr1f(x)gr1m(F(x)), $ (1.4)

    and the joint PDF of $ X_{r:n, \tilde{m}, k} $ and $ X_{s:n, \tilde{m}, k} $ given in (1.3) reduces to

    $ fr,s:n,m,k(x,y)=Cs1(r1)!(sr1)![ˉF(x)]mgr1m(F(x))[hm(F(y))hm(F(x))]sr1×[ˉF(y)]γs1f(x)f(y),x<y, $ (1.5)

    where $ C_{r-1} = \prod_{i = 1}^{r}\gamma_{i}, $ $ \gamma_{i} = k+(n-i)(m+1), $ $ h_{m}(x) = {1m+1(1x)m+1,m1,ln(1x),m=1, $ and $ g_{m}(x) = h_{m}(x)-h_{m}(0), $ $ x\in[0, 1) $ (see Kamps [22]).

    David [8] introduced the concept of concomitants of order statistics (COS), but Yang [47] described the general theory of COS. Concomitants are important in selection and prediction issues, ranked set sampling, parameter estimation, and the characterization of parent bivariate distributions. For a brief overview of the uses of the concomitants of ordered RVs, see Veena and Thomas [46] and the references therein. For a review of fundamental findings on COS, see Daivd and Nagaraja [9]. Furthermore, for some of the recent works on COS, we refer to Philip and Thomas [36,37,38], Kumar et al. [29], Barakat et al. [3], and Koshti and Kamalja [28].

    Several authors have investigated the concomitants of GOS (CGOS), including Ahsanullah and Nevzorov [1], Beg and Ahsanullah [4], El-Din et al. [13], Domma and Giordano [11], Hanif and Shahbaz [15], Shahbaz and Shahbaz [40], Tahmasebi et al. [44], Alawady et al. [2], and Kamal et al. [20]. Let $ (X_{i}, Y_{i}) $, $ i = 1, \cdots, n $ be a random sample from a bivariate distribution function $ F_{X, Y}(x, y) $. When the $ X $-variates are ordered in ascending order as $ X_{1:n, \tilde{m}, k}\leq X_{2:n, \tilde{m}, k}\leq X_{3:n, \tilde{m}, k}\leq\cdots\leq X_{n:n, \tilde{m}, k} $, then $ Y $-variates paired (not necessarily in ascending order) with these GOS are called the CGOS and are indicated by $ Y_{[r:n, \tilde{m}, k]}, $ $ r = 1, \cdots, n $. The PDF of $ Y_{[r:n, \tilde{m}, k]} $ is given by (Ahsanullah and Nevzorov, [1])

    $ h[r:n,˜m,k](y)=f(y|x)fr:n,˜m,k(x)dx, $ (1.6)

    where $ f(y|x) $ is the conditional PDF of $ Y $ given $ X $ and $ f_{r:n, \tilde{m}, k}(x) $ is defined in (1.2).

    Moreover, the joint PDF of $ Y_{[r:n, \tilde{m}, k]} $ and $ Y_{[s:n, \tilde{m}, k]}, $ $ r, s = 1, \cdots, n, \, r < s $ is given by

    $ h[r,s:n,˜m,k](y1,y2)=x1f(y1|x1)f(y2|x2)fr,s:n,˜m,k(x1,x2)dx2dx1, $ (1.7)

    where $ f_{r, s:n, \tilde{m}, k}(x_{1}, x_{2}) $ is given in (1.3).

    One of the most notable applications of COS is in ranked set sampling (RSS). RSS is considered a beneficial sampling strategy for improving estimation efficiency and precision if the variable under study is expensive to measure or difficult to get, yet inexpensive and simple to rank. RSS was proposed by McIntyre [31] and then supported by Takahasi and Wakimoto [45] through mathematical theory. The procedure for RSS is described as follows:

    $ 1) $ Randomly choose $ n^{2} $ units from the population under study, then divide them into $ n $ sets of $ n $ units.

    $ 2) $ Order the elements of each set without making actual measurements.

    $ 3) $ Choose and quantify the $ i^{th} $ minimum from the $ i^{th} $ set, $ i = 1, \cdots, n $, to create a new set of size $ n $, known as the RSS.

    $ 4) $ If a large sample size is required, repeat the above three steps $ d $ times (cycles) until a sample of size $ n d $ is obtained.

    For a comprehensive review of the theory and applications of RSS, see Chen et al. [7]. In some practical applications, the study variable, say, $ Y $, is more difficult to measure, whereas an auxiliary variable $ X $ associated with $ Y $ is easily quantifiable and may be precisely arranged. In this situation, Stokes [42] created another RSS technique, which is as follows:

    $ 1) $ At random, choose $ n $ independent bivariate sets of size $ n $.

    $ 2) $ Take note of the value of the auxiliary variable on each of these units.

    $ 3) $ From the $ i^{th} $ set of size $ n $, choose the variable $ Y $ associated with the $ i^{th} $ smallest $ X $, $ i = 1, \cdots, n. $

    The resulting set of $ n $ units is known as the RSS. Consider $ (X_{(i:n)_{i}}, Y_{[i:n]_{i}}) $, $ i = 1, \cdots, n $ to be the pair chosen from the $ i^{th} $ set, where $ X_{(i:n)_{i}} $ is the $ i^{th} $ order statistics of the auxiliary variate in the $ i^{th} $ set and $ Y_{[i:n]_{i}} $ is the measurement made on the $ Y $ variate associated with $ X_{(i:n)_{i}} $. $ Y_{[i:n]_{i}} $ is obviously the concomitant of the $ i^{th} $ order statistics resulting from the $ i^{th} $ sample. Numerous authors in the literature have considered the estimation of parameters of the various bivariate distributions using RSS and its modifications. Some work in this area is by Chacko and Thomas [5], Philip and Thomas [36,37], Koshti and Kamalja [26], Irshad et al. [16,17], and Dong et al. [12].

    COS and higher moments of multivariate distributions have received a lot of attention in recent years. Most of the literature on concomitants is concentrated on symmetric distributions such as multivariate normal (Sheikhi et al., [41]; Chaumette and Vincent, [6]) or multivariate elliptical (Jamalizadeh and Balakrishnan, [18]). Skewed distributions have gained a lot of interest recently in the literature since many datasets encountered in reality have some degree of skewness. In this regard, the distribution theory of COS from skew distributions has been investigated by several authors, including Hanif and Shahbaz [15], Shahbaz and Shahbaz [40], Tahmasebi et al. [44], Shahbaz et al. [39], and Kamal et al. [20]. In this article, we consider the bivariate generalized Weibull (BGW) distribution and the CGOS arising from it. There are numerous reasons for considering this particular bivariate distribution. Due to the presence of four parameters, the joint PDF of the BGW distribution is quite flexible and can take on various shapes depending on the shape parameter. The joint PDF, joint CDF, and conditional PDF for the BGW distribution are all in closed forms, making them appropriate for usage in practice. The univariate marginals of this distribution are able to analyze various types of hazard rates. In addition, it can be utilized for modeling bivariate lifetime data in a variety of scenarios. So far, no results on CGOS arising from the BGW distribution have been found in the literature. Thus, the current study aims to develop the distribution theory of CGOS originating from the BGW distribution and apply it to associated inference problems.

    The article is structured as follows: In Section 2, we provide a brief overview of the BGW distribution and some of its properties. In Section 3, we present the marginal PDF as well as the explicit expressions for the single moments of CGOS from the BGW distribution. The joint PDF of CGOS from the BGW distribution is also obtained in Section 3. Furthermore, the explicit expressions for the product moments of CGOS are derived. Section 4 presents the best linear unbiased (BLU) estimator of the parameter of the study variable contained in the BGW distribution using Stokes's RSS and some of the other modified RSS schemes. In Section 5, we apply the results to a real dataset. In Section 6, conclusions are provided.

    A bivariate RV $ (X, Y) $ is said to follow a BGW distribution if its PDF is given by (Pathak et al. [34])

    $ f(x,y)=θα2(β1β2)1xα1yα1eω(x,y;ϕ)(1eω(x,y;ϕ))θ2(1θeω(x,y;ϕ)), $ (2.1)

    where $ x, y\geq 0, \, \alpha, \beta_{1}, \beta_{2} > 0 $, $ 0 < \theta\leq 1 $, $ \omega(x, y; \phi) = \frac{x^{\alpha}}{\beta_{1}}+\frac{y^{\alpha}}{\beta_{2}}, $ and $ \phi = (\alpha, \beta_{1}, \beta_{2}) $. The BGW distribution includes the bivariate generalized exponential distribution (refer to Mirhosseini et al. [32]) and the bivariate generalized Rayleigh distribution (refer to Pathak and Vellaisamy [35]) as sub-models. The conditional PDF of $ Y $ given $ X = x $ is (Pathak et al. [34])

    $ f(yx)=α(β2)1yα1eyαβ2(1eω(x,y;ϕ))θ2(1θeω(x,y;ϕ))(1exαβ1)1θ. $ (2.2)

    The RV $ X\sim EW(\alpha, \beta_{1}, \theta) $ is a member of the exponentiated Weibull (EW) distribution with PDF

    $ f(x)=θα(β1)1xα1exαβ1(1exαβ1)θ1,x0, $ (2.3)

    and CDF

    $ F(x)=(1exαβ1)θ,x0. $ (2.4)

    Similarly, $ Y\sim EW(\alpha, \beta_{2}, \theta) $. A series expansion of the PDF of the BGW distribution is given by

    $ f(x,y)=α2(β1β2)1xα1yα1j=1(θj)(1)j+1j2ejω(x,y;ϕ). $ (2.5)

    Pathak et al. [34] showed that the product moments of the BGW distribution are

    $ E(xpyq)=Γ(1+pα)Γ(1+qα)βpα1βqα2j=1(θj)(1)j+11j(p+q)/α. $ (2.6)

    If we make the transformation, $ U = \frac{X}{\beta_{1}^{\star}} $ and $ V = \frac{Y}{\beta_{2}^{\star}} $, $ \beta_{i}^{\star} = \beta_{i}^{1/\alpha}, i = 1, 2 $, the standard BGW distribution has the joint PDF as

    $ f(u,v)=α2uα1vα1j=1(θj)(1)j+1j2ej(uα+vα). $ (2.7)

    It is clear that the variables $ U $ and $ V $ have the standard EW distribution as marginal functions with PDFs are, respectively, given by

    $ f(u)=θαuα1euα(1euα)θ1,u0, $ (2.8)
    $ f(v)=θαvα1evα(1evα)θ1,v0. $ (2.9)

    In this part, we obtain the distributions and moments of CGOS arising from the BGW distribution.

    Suppose $ (X_{i}, Y_{i}) $ and $ (U_{i}, V_{i}) $ are random samples of size $ n $ each originating from the BGW distribution and the standard BGW distribution, with PDFs provided by (2.1) and (2.7), respectively. Let $ V_{[r:n, \tilde{m}, k]} $ be the concomitant of the $ r^{th} $ GOS $ U_{r:n, \tilde{m}, k} $. Then, the PDF and the $ p^{th} $ moments of $ V_{[r:n, \tilde{m}, k]}, $ $ r = 1, \cdots, n $ are given by the following two theorems:

    Theorem 1 If $ V_{[r:n, \tilde{m}, k]} $ is the concomitant of the $ r^{th} $ GOS from the standard BGW distribution, then the PDF of $ V_{[r:n, \tilde{m}, k]} $, for $ r = 1, \cdots, n, $ is given by

    $ h[r:n,˜m,k](v)=αCr1ri=1j=1ai,rj2δθ(j,γi)vα1ejvα,v0, $ (3.1)

    where $ \delta_{\theta}(j, \gamma_{i}) = \binom{\theta}{j}\sum_{\tau = 0}^{\gamma_{i}-1}(-1)^{j+\tau +1}\binom{\gamma_{i}-1}{\tau} B(j, \theta \tau +1) $ and $ B(., .) $ is the complete beta function.

    Proof. Using the PDF of $ U_{r:n, \tilde{m}, k} $ (1.2) in (1.6), the PDF of the $ r^{th} $ CGOS $ V_{[r:n, \tilde{m}, k]} $ is given as

    $ h[r:n,˜m,k](v)=Cr1ri=1ai,r0f(v|u)[ˉF(u)]γi1f(u)du. $ (3.2)

    In view of (2.7) and (2.8), we get

    $ h[r:n,˜m,k](v)=αCr1ri=1j=1γi1τ=0ai,r(1)j+τ+1j2(θj)×(γi1τ)vα1ejvα0ejz(1ez)θτdz [provided that γiis an integer], $ (3.3)

    where $ z = u^{\alpha} $. Now, by using Eq (3.3121) in Gradshteyn and Ryzhik [14] to compute the integral in (3.3), we obtain the result given in (3.1).

    Corollary 1. Taking $ m_{1} = m_{2} = \cdots = m_{n-1} = m\neq-1 $ in (3.1), the PDF of the $ r^{th} $ concomitant of m-GOS from the standard BGW distribution is given by

    $ h[r:n,m,k](v)=αCr1(r1)!ri=1j=1(1)rij2(m+1)r1(r1ri)δθ(j,γi)vα1ejvα,v0, $ (3.4)

    where $ \gamma_{i} = k+(n-i)(m+1). $

    Remark 1. When $ m = 0 $ and $ k = 1 $ in (3.4), we get the PDF of the $ r^{th} $ COS from the standard BGW distribution as

    $ h[r:n](v)=αCr:nri=1j=1(1)rij2(r1ri)δθ(j,ni+1)vα1ejvα, $ (3.5)

    where $ C_{r:n} = \frac{n!}{(r-1)!(n-r)!} $.

    Theorem 2. Under the conditions of Theorem 1, the $ p^{th} $ moment of $ V_{[r:n, \tilde{m}, k]} $ is

    $ μ(p)[r:n,˜m,k]=Cr1ri=1j=1ai,rδθ(j,γi)Γ(pα+1)jpα1. $ (3.6)

    Proof. Using (3.1), the $ p^{th} $ moment of $ V_{[r:n, \tilde{m}, k]} $ is given as

    $ μ(p)[r:n,˜m,k]=E[Vp[r:n,˜m,k]]=0vph[r:n,˜m,k](v)dv=Cr1ri=1j=1ai,rj2δθ(j,γi)0zpαejzdz, $ (3.7)

    where $ z = v^{\alpha} $. Then, after integration, we get (3.6).

    Corollary 2. Taking $ m_{1} = m_{2} = \cdots = m_{n-1} = m\neq-1 $ in (3.6), the $ p^{th} $ moment of the concomitant of m-GOS is given by

    $ μ(p)[r:n,m,k]=Cr1(r1)!ri=1j=1(1)ri(m+1)r1(r1ri)δθ(j,γi)Γ(pα+1)jpα1. $ (3.8)

    Remark 2. Let $ m = 0 $ and $ k = 1 $ in (3.8), then the $ p^{th} $ moment of COS is

    $ μ(p)[r:n]=E[Vp[r:n]]=Cr:nri=1j=1(1)ri(r1ri)δθ(j,ni+1)Γ(pα+1)jpα1. $ (3.9)

    Let $ V_{[r:n, \tilde{m}, k]} $ and $ V_{[s:n, \tilde{m}, k]} $, $ r, s = 1, \cdots, n, r < s $ be the concomitants of the $ r^{th} $ and $ s^{th} $ GOS from the standard BGW distribution. Then, the joint PDF and the product moments of $ V_{[r:n, \tilde{m}, k]} $ and $ V_{[s:n, \tilde{m}, k]} $ are given by the following two theorems:

    Theorem 3. The joint PDF of concomitants $ V_{[r:n, \tilde{m}, k]} $ and $ V_{[s:n, \tilde{m}, k]} $, $ r, s = 1, \cdots, n, r < s $ is given by

    $ h[r,s:n,˜m,k](v1,v2)=α2Cs1ri=1sj=r+1κ1=1κ2=1ai,ra(r)j,sκ21κ2δθ(κ1,κ2,γi,γj)×vα11vα12e(κ1vα1+κ2vα2),v1,v2>0, $ (3.10)

    where

    $ \delta_{\theta}(\kappa_{1}, \kappa_{2}, \gamma_{i}, \gamma_{j}) = \binom{\theta}{\kappa_{1}}\binom{\theta}{\kappa_{2}}\sum\limits_{\tau_{1} = 0}^{\gamma_{j}-1} \sum\limits_{\tau_{2} = 0}^{\gamma_{i}-\gamma_{j}-1}(-1)^{\kappa_{1}+\kappa_{2}+\tau_{1} +\tau_{2}+2}\binom{\gamma_{j}-1}{\tau_{1}} \binom{\gamma_{i}-\gamma_{j}-1}{\tau_{2}} $
    $ \times B(\kappa_{1}+\kappa_{2}, \theta \tau_{2} +1){}_3 F_{2}\left(\kappa_{2}, -\theta \tau_{1}, \kappa_{1}+\kappa_{2};\kappa_{2}+1, \kappa_{1}+\kappa_{2}+\theta \tau_{2}+1;1\right), $

    where $ {}_3 F_{2}(a_{1}, \, a_{2}, \, a_{3};\, b_{1}, \, b_{2};\, x) $ denotes the hypergeometric function defined by

    $ {}_3 F_{2}(a_{1}, \, a_{2}, \, a_{3};\, b_{1}, \, b_{2};\, x) = \sum\limits_{\ell = 0}^{\infty} \frac{(a_{1})_{\ell}(a_{2})_{\ell}(a_{3})_{\ell}}{(b_{1})_{\ell}(b_{2})_{\ell}} \frac{x^{\ell}}{\ell!}, $

    and $ (c)_{\ell} = c (c+1)\cdots (c+\ell-1) $ is the ascending factorial.

    Proof. Using (1.3) in (1.7), the joint PDF of the $ r^{th} $ and $ s^{th} $ CGOS $ V_{[r:n, \tilde{m}, k]} $ and $ V_{[s:n, \tilde{m}, k]} $ is given as

    $ h[r,s:n,˜m,k](v1,v2)=Cs1ri=1sj=r+1ai,ra(r)j,s0u1f(v1|u1)f(v2|u2)×[ˉF(u1)]γiγj1[ˉF(u2)]γj1f(u1)f(u2)du2du1. $ (3.11)

    In view of (2.7) and (2.8), we get

    $ h[r,s:n,˜m,k](v1,v2)=α4Cs1ri=1sj=r+1κ1=1κ2=1ai,ra(r)j,s(1)κ1+κ2+2×κ21κ22(θκ1)(θκ2)vα11vα12eκ1vα1eκ2vα2×0uα11eκ1uα1[1(1euα1)θ]γiγj1I(u1)du1, $ (3.12)

    where

    $ I(u1)=γj1τ1=0(1)τ1(γj1τ1)u1uα12eκ2uα2(1euα2)τ1θdu2=α1γj1τ1=0(1)τ1(γj1τ1)Bw(κ2,τ1θ+1), $ (3.13)

    where $ w = e^{-u_{1}^{\alpha}} $ and $ B_{w}(., .) $ denotes the incomplete beta function defined by $ B_{w}(a_{1}, a_{2}) = \int_{0}^{w} x^{a_{1}-1} (1-x)^{a_{2}-1}dx. $

    Now, putting the value of $ I(u_{1}) $ in (3.12), we get

    $ h[r,s:n,˜m,k](v1,v2)=α2Cs1ri=1sj=r+1κ1=1κ2=1γj1τ1=0γiγj1τ2=0ai,ra(r)j,s(1)κ1+κ2+τ1+τ2+2×κ21κ22(θκ1)(θκ2)(γj1τ1)(γiγj1τ2)vα11vα12eκ1vα1eκ2vα2×0eκ1z(1ez)τ2θBez(κ2,τ1θ+1)dz [provided thatγiγjis an integer] , $ (3.14)

    where $ z = u_{1}^{\alpha} $. We know that $ B_{w}(a_{1}, a_{2}) = \frac{w^{a_{1}}}{a_{1}}{}_2 F_{1}(a_{1}, \, 1-a_{2};\, a_{1}+1;\, w) $ (see Mathai and Saxena, [30]), and

    $ 10xa1(1x)b12F1(c,d;e;x)dx=B(a,b)3F2(c,d,a;e,a+b;1). $ (3.15)

    Therefore,

    $ h[r,s:n,˜m,k](v1,v2)=α2Cs1ri=1sj=r+1κ1=1κ2=1γj1τ1=0γiγj1τ2=0ai,ra(r)j,s(1)κ1+κ2+τ1+τ2+2×κ21κ2(θκ1)(θκ2)(γj1τ1)(γiγj1τ2)vα11vα12eκ1vα1eκ2vα2×10tκ1+κ21(1t)τ2θ2F1(κ2,τ1θ;κ2+1;t)dt, $

    where $ t = e^{-z} $. Now, using (3.15), we get the result of (3.10).

    Corollary 3. At $ m_{1} = m_{2} = \cdots = m_{n-1} = m\neq-1 $ in (3.10), the joint PDF of concomitants $ V_{[r:n, m, k]} $ and $ V_{[s:n, m, k]} $ of the $ r^{th} $ and $ s^{th} $ m-GOS for the standard BGW distribution is given by

    $ h[r,s:n,m,k](v1,v2)=α2Cs1(r1)!(sr1)!ri=1sj=r+1κ1=1κ2=1(1)ri+sj(m+1)s2(r1ri)(sr1sj)κ21κ2×δθ(κ1,κ2,γi,γj) vα11vα12e(κ1vα1+κ2vα2),v1,v2>0, $ (3.16)

    where $ \gamma_{i} = k+(n-i)(m+1). $

    Remark 3. For $ m = 0 $ and $ k = 1 $ in (3.16), we obtain the joint PDF of the $ r^{th} $ and $ s^{th} $ COS from the standard BGW distribution as

    $ h[r,s:n](v1,v2)=α2Cr,s:nri=1sj=r+1κ1=1κ2=1(1)ri+sj(r1ri)(sr1sj)κ21κ2×δθ(κ1,κ2,ni+1,nj+1) vα11vα12e(κ1vα1+κ2vα2),v1,v2>0, $ (3.17)

    where $ C_{r, s:n} = \frac{n!}{(r-1)!(s-r-1)!(n-s)!}. $

    Theorem 4. The product moments of two concomitants $ V_{[r:n, \tilde{m}, k]} $ and $ V_{[s:n, \tilde{m}, k]} $ are given by

    $ μ(p,q)[r,s:n,˜m,k]=Cs1ri=1sj=r+1κ1=1κ2=1ai,ra(r)j,sδθ(κ1,κ2,γi,γj)×Γ(pα+1)κpα11Γ(qα+1)κqα2. $ (3.18)

    Proof. Using (3.10), the $ p^{th} $ and $ q^{th} $ moments of $ V_{[r:n, \tilde{m}, k]} $ and $ V_{[s:n, \tilde{m}, k]} $ are given as

    $ μ(p,q)[r,s:n,˜m,k]=E[Vp[r:n,˜m,k]Vq[s:n,˜m,k]]=00vp1vq2h[r,s:n,˜m,k](v1,v2)dv1dv2=Cs1ri=1sj=r+1κ1=1κ2=1ai,ra(r)j,sκ21κ2δθ(κ1,κ2,γi,γj)×00zpα1zqα2e(κ1z1+κ2z2)dz1dz2, $ (3.19)

    where $ z_{i} = v_{i}^{\alpha}, i = 1, 2 $. Then, after integration, we get (3.18).

    Corollary 4. Setting $ m_{1} = m_{2} = \cdots = m_{n-1} = m\neq-1 $ in (3.18), we can get the product moments of two concomitants of m-GOS of the standard BGW distribution.

    Remark 4. When $ m = 0 $ and $ k = 1 $ in (3.18), we get the product moments of COS as

    $ μ(p,q)[r,s:n]=E[Vp[r:n]Vq[s:n]]=Cr,s:nri=1sj=r+1κ1=1κ2=1(1)ri+sj(r1ri)(sr1sj)×δθ(κ1,κ2,ni+1,nj+1)Γ(pα+1)κpα11Γ(qα+1)κqα2. $ (3.20)

    Remark 5. At $ m_{i} = R_{i}, \, n = m_{0}+\sum_{i = 1}^{m_{0}}R_{i}, $ and $ \gamma_{i} = n-\sum_{\nu = 1}^{i-1}R_{\nu}-i+1, $ $ 1\leq i\leq m_{0} $ in Theorems 1–4, the results for PT-Ⅱ censored order statistics can be obtained.

    Remark 6. From (3.9), the expressions of means and variances of the COS $ Y_{[i:n]}, \, i = 1, \cdots, n, $ arising from the BGW distribution, are obtained as follows:

    $ E[Y_{[i:n]}] = \beta_{2}^{\star}E[V_{[i:n]}] $
    $ = \beta_{2}^{\star} \mu_{[i:n]}, $
    $ Var[Y_{[i:n]}] = {\beta_{2}^{\star}}^{2} Var[V_{[i:n]}] $
    $ = {\beta_{2}^{\star}}^{2} \delta_{i, i:n}, $

    where $ Var[V_{[i:n]}] = \mu_{[i:n]}^{(2)}-(\mu_{[i:n]})^{2} $. The expression of the covariances between $ Y_{[i:n]} $ and $ Y_{[j:n]} $ is given, using (3.9) and (3.20), by

    $ Cov[Y_{[i:n]}, Y_{[j:n]}] = {\beta_{2}^{\star}}^{2} Cov[V_{[i:n]}, V_{[j:n]}] $
    $ = {\beta_{2}^{\star}}^{2} \delta_{i, j:n}, $

    where $ Cov(V_{[i:n]}, V_{[j:n]}) = \mu_{[i, j:n]}- \mu_{[i:n]} \mu_{[j:n]}, 1\leq i < j\leq n. $

    The means and variances of the COS of the standard BGW distribution for $ n = 1, \cdots, 5 $ and different values of the parameters $ \alpha $ and $ \theta $ are calculated in Tables 1 and 2. It can be noted that the condition $ \sum_{r = 1}^{n}\mu_{[r:n]}^{j} = n \, \mu_{1:1}^{j}, j = 1, 2 $ is satisfied (see David and Nagaraja, [10]). In Tables 36, we have computed the means and variances of the concomitants of PT-Ⅱ censored order statistics. From Tables 16, one can observe that the variances are decreasing with respect to $ \alpha $.

    Table 1.  Means and variances of the COS for the standard BGW distribution with $ \theta = 0.50 $.
    Mean Variance
    $ n $ $ r $ $ \alpha=1 $ $ \alpha=2 $ $ \alpha=1 $ $ \alpha=2 $
    1 1 0.613519 0.626050 0.710359 0.221580
    2 1 0.454473 0.503844 0.546719 0.200615
    2 0.772564 0.748256 0.823408 0.212676
    3 1 0.363977 0.427653 0.445089 0.181090
    2 0.635465 0.656226 0.700844 0.204833
    3 0.841114 0.794272 0.870593 0.210246
    4 1 0.304634 0.374043 0.375757 0.164726
    2 0.542006 0.588481 0.610825 0.195696
    3 0.728923 0.723970 0.773394 0.204791
    4 0.878510 0.817706 0.897399 0.209868
    5 1 0.262399 0.333637 0.325339 0.151085
    2 0.473577 0.535668 0.541753 0.186636
    3 0.644650 0.667700 0.696872 0.198827
    4 0.785106 0.761484 0.816517 0.205248
    5 0.901861 0.831761 0.914894 0.210035

     | Show Table
    DownLoad: CSV
    Table 2.  Means and variances of the COS for the standard BGW distribution with $ \theta = 0.90 $.
    Mean Variance
    $ n $ $ r $ $ \alpha=1 $ $ \alpha=2 $ $ \alpha=1 $ $ \alpha=2 $
    1 1 0.933392 0.846157 0.956977 0.217410
    2 1 0.898058 0.823580 0.935961 0.219775
    2 0.968725 0.868735 0.975495 0.214025
    3 1 0.873819 0.807493 0.922204 0.221774
    2 0.946537 0.855752 0.959950 0.214226
    3 0.979820 0.875226 0.982898 0.213799
    4 1 0.855345 0.794891 0.912004 0.223493
    2 0.929241 0.845300 0.948711 0.214709
    3 0.963834 0.866204 0.970591 0.213524
    4 0.985148 0.878234 0.986887 0.213854
    5 1 0.840423 0.784489 0.903900 0.224999
    2 0.915036 0.836498 0.939966 0.215307
    3 0.950548 0.858502 0.961071 0.213522
    4 0.972691 0.871339 0.976741 0.213459
    5 0.988263 0.879957 0.989375 0.213938

     | Show Table
    DownLoad: CSV
    Table 3.  Means of the concomitants of PT-Ⅱ censored order statistics for the standard BGW distribution with $ \theta = 0.50 $.
    $ \alpha $ $ m_{0}, n $ Scheme Mean
    1 2, 10 $ 8, 0 $ 0.155927 0.664362
    1 2, 10 $ 0, 8 $ 0.155927 0.292953
    1 3, 10 $ 7, 0, 0 $ 0.155927 0.52911 0.799614
    1 3, 10 $ 0, 0, 7 $ 0.155927 0.292953 0.412797
    1 4, 10 $ 6, 0, 0, 0 $ 0.155927 0.453142 0.681045 0.858899
    1 4, 10 $ 0, 0, 0, 6 $ 0.155927 0.292953 0.412797 0.51814
    1 5, 10 $ 5, 0, 0, 0, 0 $ 0.155927 0.403773 0.601249 0.760842 0.891585
    1 5, 10 $ 0, 0, 0, 0, 5 $ 0.155927 0.292953 0.412797 0.51814 0.61135
    2 2, 10 $ 8, 0 $ 0.220176 0.671147
    2 2, 10 $ 0, 8 $ 0.220176 0.377969
    2 3, 10 $ 7, 0, 0 $ 0.220176 0.574761 0.767534
    2 3, 10 $ 0, 0, 7 $ 0.220176 0.377969 0.492427
    2 4, 10 $ 6, 0, 0, 0 $ 0.220176 0.516571 0.691139 0.805731
    2 4, 10 $ 0, 0, 0, 6 $ 0.220176 0.377969 0.492427 0.579475
    2 5, 10 $ 5, 0, 0, 0, 0 $ 0.220176 0.476621 0.636421 0.745858 0.825689
    2 5, 10 $ 0, 0, 0, 0, 5 $ 0.220176 0.377969 0.492427 0.579475 0.648751

     | Show Table
    DownLoad: CSV
    Table 4.  Means of the concomitants of PT-Ⅱ censored order statistics for the standard BGW distribution with $ \theta = 0.90 $.
    $ \alpha $ $ m_{0}, n $ Scheme Mean
    1 2, 10 $ 8, 0 $ 0.791751 0.94913
    1 2, 10 $ 0, 8 $ 0.791751 0.867371
    1 3, 10 $ 7, 0, 0 $ 0.791751 0.924635 0.973624
    1 3, 10 $ 0, 0, 7 $ 0.791751 0.867371 0.905027
    1 4, 10 $ 6, 0, 0, 0 $ 0.791751 0.908991 0.955924 0.982475
    1 4, 10 $ 0, 0, 0, 6 $ 0.791751 0.867371 0.905027 0.929301
    1 5, 10 $ 5, 0, 0, 0, 0 $ 0.791751 0.897741 0.94274 0.969107 0.986931
    1 5, 10 $ 0, 0, 0, 0, 5 $ 0.791751 0.867371 0.905027 0.929301 0.946824
    2 2, 10 $ 8, 0 $ 0.749137 0.856937
    2 2, 10 $ 0, 8 $ 0.749137 0.805526
    2 3, 10 $ 7, 0, 0 $ 0.749137 0.84219 0.871684
    2 3, 10 $ 0, 0, 7 $ 0.749137 0.805526 0.830734
    2 4, 10 $ 6, 0, 0, 0 $ 0.749137 0.832503 0.861564 0.876744
    2 4, 10 $ 0, 0, 0, 6 $ 0.749137 0.805526 0.830734 0.846014
    2 5, 10 $ 5, 0, 0, 0, 0 $ 0.749137 0.825394 0.853831 0.869298 0.879226
    2 5, 10 $ 0, 0, 0, 0, 5 $ 0.749137 0.805526 0.830734 0.846014 0.85658

     | Show Table
    DownLoad: CSV
    Table 5.  Variances of the concomitants of PT-Ⅱ censored order statistics for the standard BGW distribution with $ \theta = 0.50 $.
    $ \alpha $ $ m_{0}, n $ Scheme Variance
    1 2, 10 $ 8, 0 $ 0.195285 0.741739
    1 2, 10 $ 0, 8 $ 0.195285 0.347562
    1 3, 10 $ 7, 0, 0 $ 0.195285 0.606725 0.840167
    1 3, 10 $ 0, 0, 7 $ 0.195285 0.347562 0.469548
    1 4, 10 $ 6, 0, 0, 0 $ 0.195285 0.525646 0.734255 0.882579
    1 4, 10 $ 0, 0, 0, 6 $ 0.195285 0.347562 0.469548 0.570046
    1 5, 10 $ 5, 0, 0, 0, 0 $ 0.195285 0.47150 0.658836 0.796939 0.906852
    1 5, 10 $ 0, 0, 0, 0, 5 $ 0.195285 0.347562 0.469548 0.570046 0.654972
    2 2, 10 $ 8, 0 $ 0.107449 0.213924
    2 2, 10 $ 0, 8 $ 0.107449 0.150092
    2 3, 10 $ 7, 0, 0 $ 0.107449 0.19876 0.210507
    2 3, 10 $ 0, 0, 7 $ 0.107449 0.150092 0.170312
    2 4, 10 $ 6, 0, 0, 0 $ 0.107449 0.186296 0.203372 0.209697
    2 4, 10 $ 0, 0, 0, 6 $ 0.107449 0.150092 0.170312 0.182349
    2 5, 10 $ 5, 0, 0, 0, 0 $ 0.107449 0.176605 0.196217 0.204539 0.209823
    2 5, 10 $ 0, 0, 0, 0, 5 $ 0.107449 0.150092 0.170312 0.182349 0.190473

     | Show Table
    DownLoad: CSV
    Table 6.  Variances of the concomitants of PT-Ⅱ censored order statistics for the standard BGW distribution with $ \theta = 0.90 $.
    $ \alpha $ $ m_{0}, n $ Scheme Variance
    1 2, 10 $ 8, 0 $ 0.877894 0.963287
    1 2, 10 $ 0, 8 $ 0.877894 0.913014
    1 3, 10 $ 7, 0, 0 $ 0.877894 0.946946 0.978427
    1 3, 10 $ 0, 0, 7 $ 0.877894 0.913014 0.932212
    1 4, 10 $ 6, 0, 0, 0 $ 0.877894 0.937071 0.965229 0.984791
    1 4, 10 $ 0, 0, 0, 6 $ 0.877894 0.913014 0.932212 0.946122
    1 5, 10 $ 5, 0, 0, 0, 0 $ 0.877894 0.93025 0.956015 0.974096 0.988277
    1 5, 10 $ 0, 0, 0, 0, 5 $ 0.877894 0.913014 0.932212 0.946122 0.957275
    2 2, 10 $ 8, 0 $ 0.230545 0.214788
    2 2, 10 $ 0, 8 $ 0.230545 0.218499
    2 3, 10 $ 7, 0, 0 $ 0.230545 , 0.215351 0.213791
    2 3, 10 $ 0, 0, 7 $ 0.230545 0.218499 0.214908
    2 4, 10 $ 6, 0, 0, 0 $ 0.230545 0.21593 0.213631 0.213794
    2 4, 10 $ 0, 0, 0, 6 $ 0.230545 0.218499 0.214908 0.213561
    2 5, 10 $ 5, 0, 0, 0, 0 $ 0.230545 0.216466 0.213713 0.213429 0.213892
    2 5, 10 $ 0, 0, 0, 0, 5 $ 0.230545 0.218499 0.214908 0.213561 0.213094

     | Show Table
    DownLoad: CSV

    In this part, we obtain the BLU estimator of $ \beta_{2}^{\star} $ involved in the BGW distribution using Stoke's RSS. Assume that $ n $ sets of units, each of size $ n $, are taken from the BGW distribution with the PDF given in (2.1). Let $ X_{(i:n)_{i}} $, $ i = 1, \cdots, n $ represent the observation made on the auxiliary variable $ X $ in the $ i^{th} $ unit of the RSS, and $ Y_{[i:n]_{i}} $ represent the measurement performed on the $ Y $ variable in the same unit. It is obvious that $ Y_{[i:n]_{i}} $ has the same distribution as $ Y_{[i:n]} $, the concomitant of the $ i^{th} $ order statistics (see David and Nagraja, [10], p. 145). From Remark 6, the mean and the variance of $ Y_{[i:n]_{i}} $ are given as $ E[Y_{[i:n]_{i}}] = \beta_{2}^{\star} \mu_{[i:n]}, $ and $ Var[Y_{[i:n]_{i}}] = {\beta_{2}^{\star}}^{2} \delta_{i, i:n}, \, 1\leq i \leq n. $ Because the two measurements $ Y_{[i:n]_{i}} $ and $ Y_{[j:n]_{j}} $ $ (i\neq j) $ of $ Y $ are based on two independent samples, we have $ Cov[Y_{[i:n]_{i}}, Y_{[j:n]_{j}}] = 0. $

    Let $ \textbf{Y}_{[n]} = (Y_{[1:n]_{1}}, Y_{[2:n]_{2}}, \cdots, Y_{[n:n]_{n}})^{'} $ denote the column vector of COS. Then, the mean vector and the variance-covariance matrix of $ \textbf{Y}_{[n]} $ can be written as

    $ E[Y[n]]=β2μ, $ (4.1)

    and

    $ D[Y[n]]=β22Λ, $ (4.2)

    where $ \boldsymbol{\mu} = (\mu_{[1:n]}, \cdots, \mu_{[n:n]})^{'} $ and $ \Lambda = diag(\delta_{1, 1:n}, \delta_{2, 2:n}, \cdots, \delta_{n, n:n}). $ If the parameters $ \alpha $ and $ \theta $ are known, then the combination of (4.1) and (4.2) allow us to apply the generalized Gauss-Markov theorem (see David and Nagraja, [10], p. 185). Hence, the BLU estimator $ \hat{\beta_{2}^{\star}} $ of $ \beta_{2}^{\star} $ is given as

    $ ^β2=(μΛ1μ)1μΛ1Y[n]=ni=1aiY[i:n]i, $ (4.3)

    where $ a_{i} = \frac{ \mu_{[i:n]}/\delta_{i, i:n}}{\sum_{i = 1}^{n}\mu_{[i:n]}^2/\delta_{i, i:n}} $, and the variance of $ \hat{\beta_{2}^{\star}} $ is given by

    $ Var[^β2]=(μΛ1μ)1β22=(ni=1μ2[i:n]/δi,i:n)1β22. $ (4.4)

    We have calculated the coefficients $ a_{i} $ of $ Y_{[i:n]_{i}}, i = 1, \cdots, n $ in $ \hat{\beta_{2}^{\star}} $ and $ Var[\hat{\beta_{2}^{\star}}]/{\beta_{2}^{\star}}^{2} $ for $ n = 1, \cdots, 5 $, and different values of the parameters $ \alpha $ and $ \theta $ are presented in Tables 7 and 8.

    Table 7.  The coefficients $ a_{i} $ in the BLUE $ \hat{\beta_{2}^{\star}} $ and $ Var[\hat{\beta_{2}^{\star}}]/{\beta_{2}^{\star}}^{2} $ for $ \theta = 0.50 $.
    $ \alpha $ $ n $ Coefficients $ (a_i) $ $ Var[\hat{\beta_{2}^{\star}}]/{\beta_{2}^{\star}}^{2} $
    1 1 1.62994 1.88722
    2 0.75389 0.85091 0.90691
    3 0.48490 0.53764 0.57288 0.59296
    4 0.35637 0.39005 0.41430 0.43032 0.43957
    5 0.28143 0.30502 0.32279 0.33551 0.34396 0.34893
    2 1 1.59732 0.56534
    2 0.64431 0.90259 0.25654
    3 0.38632 0.52409 0.61801 0.16359
    4 0.27147 0.35952 0.42265 0.46582 0.11956
    5 0.20763 0.26986 0.31575 0.34884 0.37235 0.09402

     | Show Table
    DownLoad: CSV
    Table 8.  The coefficients $ a_{i} $ in the BLUE $ \hat{\beta_{2}^{\star}} $ and $ Var[\hat{\beta_{2}^{\star}}]/{\beta_{2}^{\star}}^{2} $ for $ \theta = 0.90 $.
    $ \alpha $ $ n $ Coefficients $ (a_i) $ $ Var[\hat{\beta_{2}^{\star}}]/{\beta_{2}^{\star}}^{2} $
    1 1 1.07136 1.09843
    2 0.52613 0.54453 0.54834
    3 0.34606 0.36012 0.36408 0.36523
    4 0.25675 0.26814 0.27185 0.27327 0.27375
    5 0.20354 0.21310 0.21651 0.21800 0.21866 0.21891
    2 1 1.18181 0.30365
    2 0.56671 0.61384 0.15123
    3 0.36625 0.40182 0.41178 0.10059
    4 0.26791 0.29656 0.30558 0.30934 0.07533
    5 0.20987 0.23386 0.24202 0.24571 0.24758 0.06019

     | Show Table
    DownLoad: CSV

    A modified RSS approach is presented by Stokes [43], wherein only the largest or smallest judgment ranked unit is selected for quantification. Let $ n $ random samples each of size $ n $ be drawn from the BGW distribution. From each of the $ n $ samples, choose the unit for which the measurement on the auxiliary variable $ X $ is the smallest (largest) and measure the $ Y $ variable associated with it. Then, we call the collection of observations $ Y_{[1:n]_{1}}, Y_{[1:n]_{2}}, \cdots, Y_{[1:n]_{n}} $ ($ Y_{[n:n]_{1}}, Y_{[n:n]_{2}}, \cdots, Y_{[n:n]_{n}} $) as the lower RSS (LRSS) (upper RSS (URSS)).

    Based on LRSS and URSS, the BLU estimators $ \tilde{\beta}_{2, LRSS}^{\star} $ and $ \tilde{\beta}_{2, URSS}^{\star} $ of $ \beta_{2}^{\star} $ are

    $ ˜β2,LRSS=1nμ[1:n]ni=1Y[1:n]i, $ (4.5)
    $ ˜β2,URSS=1nμ[n:n]ni=1Y[n:n]i, $ (4.6)

    and their variances are

    $ Var[˜β2,LRSS]=(nμ2[1:n]/δ1,1:n)1β22, $ (4.7)
    $ Var[˜β2,URSS]=(nμ2[n:n]/δn,n:n)1β22. $ (4.8)

    The efficiencies $ e_{1} $ of $ \tilde{\beta}_{2, LRSS}^{\star} $ and $ e_{2} $ of $ \tilde{\beta}_{2, URSS}^{\star} $ relative to $ \hat{\beta_{2}^{\star}} $ are given by

    $ e_{1} = \dfrac{Var[\hat{\beta_{2}^{\star}}]}{Var[\tilde{\beta}_{2, LRSS}^{\star}]}, \, \, \, \, e_{2} = \dfrac{Var[\hat{\beta_{2}^{\star}}]}{Var[\tilde{\beta}_{2, URSS}^{\star}]}, $

    see, for example, Koshti and Kamalja [27] and Philip and Thomas [37]. We have computed the efficiencies $ e_{1} $ and $ e_{2} $ for $ n = 2, \cdots, 5 $, $ \alpha = 1, 2 $, and $ \theta = 0.50, 0.90 $, which are presented in Table 9. From Table 9, it can be observed that:

    Table 9.  Efficiencies of the estimators $ \tilde{\beta}_{2, LRSS}^{\star} $ and $ \tilde{\beta}_{2, URSS}^{\star} $ relative to $ \hat{\beta_{2}^{\star}} $.
    $ e_{1} $ $ e_{2} $
    $ n $ $ \theta $ $ \alpha=1 $ $ \alpha=2 $ $ \alpha=1 $ $ \alpha=2 $
    2 0.50 0.68524 0.64926 1.31476 1.35074
    3 0.50 0.52948 0.49563 1.44557 1.47260
    4 0.50 0.43425 0.40617 1.51216 1.52362
    5 0.50 0.36923 0.34637 1.55104 1.54852
    2 0.90 0.94500 0.93347 1.05501 1.06654
    3 0.90 0.90719 0.88724 1.07020 1.08120
    4 0.90 0.87843 0.85183 1.07685 1.08669
    5 0.90 0.85528 0.82321 1.08048 1.08932

     | Show Table
    DownLoad: CSV

    ● The efficiency $ e_{1} $ is less than one for all selected values of $ \alpha, \theta $, and $ n $. So, $ \hat{\beta_{2}^{\star}} $ is relatively more efficient than $ \tilde{\beta}_{2, LRSS}^{\star} $.

    ● The efficiency $ e_{1} $ decreases as $ \alpha $ increases, and for a fixed pair $ (n, \alpha) $, $ e_{1} $ increases as $ \theta $ increases.

    ● The efficiency $ e_{2} $ is greater than one for all selected values of $ \alpha, \theta $, and $ n $. Thus, $ \tilde{\beta}_{2, URSS}^{\star} $ is relatively more efficient than $ \hat{\beta_{2}^{\star}} $.

    ● The efficiency $ e_{2} $ increases as $ \alpha $ increases, and for a fixed pair $ (n, \alpha) $, $ e_{2} $ decreases as $ \theta $ increases.

    For illustration purposes, we have considered the American Football League dataset given in Jamalizadeh and Kundu [19]. The bivariate dataset represents the game time to the first points scored by kicking the ball between goal posts $ (X) $ and the 'game time' by moving the ball into the end zone $ (Y) $. Pathak et al. [34] demonstrated that the BGW distribution fits this data better than other real-life time models. Here, we generate random samples of size five using forty-two pairs of observations. The samples under RSS schemes are displayed in Table 10.

    Table 10.  Samples of size $ n = 5 $ under various RSS schemes.
    Scheme Sample values for Y-variable
    RSS 0.75 7.78 38.07 49.75 20.57
    LRSS 0.75 2.9 2.9 6.42 3.98
    URSS 49.88 15.53 49.75 42.35 20.57

     | Show Table
    DownLoad: CSV

    The estimator of $ \beta_{2}^{\star} $ under various RSS schemes is a function of $ \alpha $ and $ \theta $, which are unknown in this case. Thus, the method of moment estimation can be taken (see Kamalja and Koshti [21], for example). To obtain the moment estimators of $ \alpha $ and $ \theta $, we use the moment equations based on the moments of $ Y $-observations and the moment equation based on the correlation between $ (X, Y) $. These give $ \hat{\alpha} = 3.39821 $ and $ \hat{\theta} = 0.24259 $. Table 11 shows the estimates of $ \beta_{2}^{\star} $ under the RSS, LRSS, and URSS schemes. The results show that $ \tilde{\beta}_{2, URSS}^{\star} $ has the smallest variance. This is consistent with the findings of the efficiency performance study in Section 4.

    Table 11.  The estimates of $ \beta_{2}^{\star} $ under various RSS schemes.
    Scheme Estimator of $ \beta_{2}^{\star} $ Estimate of $ \beta_{2}^{\star} $ $ Variance/{\beta_{2}^{\star}}^{2} $
    RSS $ \hat{\beta_{2}^{\star}} $ 48.4195 0.07167
    LRSS $ \tilde{\beta}_{2, LRSS}^{\star} $ 33.1903 0.89618
    URSS $ \tilde{\beta}_{2, URSS}^{\star} $ 45.0528 0.03010

     | Show Table
    DownLoad: CSV

    In this paper, we have considered the CGOS from the BGW distribution. We have derived the PDFs and moments of CGOS from the BGW distribution. Similar results for order statistics and PT-Ⅱ censored order statistics are presented as special instances. Finally, we have obtained the BLU estimator of the parameter associated with the study variable based on Stoke's RSS. Moreover, a real dataset is used for illustration purposes. The results for higher joint moments can be used to create skewness or kurtosis matrices (Kollo, [25]), which have important applications in both independent component analysis and invariant coordinate selection. This could be an interesting topic for future research. It will also be interesting to discuss the problem of predicting intervals for future order statistics and record values using concomitants of order statistics and record values arising from BGW distribution; see, for example, Muraleedharan and Chacko [33]. In addition, some information measures, such as the Shannon entropy and extropy, for CGOS can also be investigated.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author would like to acknowledge the Deanship of Graduate Studies and Scientific Research, Taif University for funding this work.

    The author declares that no conflict of interest exist.

    [1] Ramakrishna S, Mayer J, Wintermantel E, et al. (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61: 1189–1224. doi: 10.1016/S0266-3538(00)00241-4
    [2] Wise D (2000) Biomaterials engineering and devices. Berlin: Humana Press, 205–319.
    [3] Park JB, Bronzino JD (2003) Biomaterials: principles and applications. Boca Rator, FL: CRC Press, 1–241.
    [4] Available from: http: //www.datamonitor.com/healthcare.html.
    [5] Ma W, Ruys A, Mason R, et al. (2007) DLC coatings: Effects of physical and chemical properties on biological response. Biomaterials 28: 1620–1628. doi: 10.1016/j.biomaterials.2006.12.010
    [6] Baker D (2001) Macro-and Microscopic Evaluation of Fatigue in Medical Grade Ultrahigh Molecular Weight Polyethylene. [PhD Theses] University of California: Berkeley: 1–223.
    [7] Zinger O, Anselme K, Denzer A, et al. (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25: 2695–2711. doi: 10.1016/j.biomaterials.2003.09.111
    [8] Jayaraman M, Meyer U, Buhner M, et al. (2004) Influence of titanium surfaces on attachment of osteoblast-like cells in vitro Biomaterials 25: 625–631.
    [9] Wiles P (1958) The surgery of the osteoarthritic hip. Br J Surg 45: 488–497. doi: 10.1002/bjs.18004519315
    [10] Haboush EJ (1953) A new operation for arthroplasty of the hip based on biomechanics, photoelasticity, fast-setting dental acrylic, and other considerations. Bull Hosp Joint Disease 14: 242–277.
    [11] Robert S, Derkash MD (1997) History of the Association of Bone and Joint Surgeons. Clin Orthop Relat Res 337: 306–309. doi: 10.1097/00003086-199704000-00035
    [12] Walker PS, Gold BL (1971) The tribology (friction, lubrication and wear) of all-metal artificial hip joints. Wear 17: 285–299. doi: 10.1016/0043-1648(71)90032-9
    [13] Charnley J (1961) Arthroplasty of the hip. A new operation. Lancet 1: 1129–1132.
    [14] Charnley J (1982) Long-term results of low-friction arthroplasty. Hip: 42–49.
    [15] Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29: 2941–2953. doi: 10.1016/j.biomaterials.2008.04.023
    [16] Chevalier J (2006) What future for zirconia as a biomaterial. Biomaterials 27: 535–543. doi: 10.1016/j.biomaterials.2005.07.034
    [17] Bizot P, Nizard R, Lerouge S, et al. (2000) Ceramic/ceramic total hip arthroplasty. J Orthop Sci 5: 622–627. doi: 10.1007/s007760070017
    [18] Cales B (2000) Zirconia as a sliding material-Histologic, laboratory, and clinical data. Clin Orthop Relat Res 94–112.
    [19] Long M, Rack H (1998) Titanium alloys in total joint replacement-a materials science perspective. Biomaterials 19: 1621–1639. doi: 10.1016/S0142-9612(97)00146-4
    [20] Holzwarth U, Cotogno G (2012) Total Hip Arthroplasty: State of the art, prospects and challenges JRC Scientific and policy reports.
    [21] Katz J (1980) Anisotropy of Young’s modulus of bone. Nature: 283: 106–107. doi: 10.1038/283106a0
    [22] Gutwein L, Webster T (2004) Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials 25: 4175–4183. doi: 10.1016/j.biomaterials.2003.10.090
    [23] Williams DF (1987) Review: Tissue-biomaterial interactions. J Mat Sci 22: 3421–3445. doi: 10.1007/BF01161439
    [24] Geetha M, Singh AK, Asokamani R, et al. (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci 54: 397–425. doi: 10.1016/j.pmatsci.2008.06.004
    [25] Hallab NJ, Anderson S, Stafford T, et al. (2005) Lymphocyte responses in patients with total hip arthroplasty. Orthop Res 23: 384–391. doi: 10.1016/j.orthres.2004.09.001
    [26] Sargeant A, Goswami T (2006) Mater Des 27: 287–307.
    [27] Viceconti M, Muccini R, Bernakiewicz M, et al. (2000) Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J Biomech 33: 1611–1618. doi: 10.1016/S0021-9290(00)00140-8
    [28] Nasab M, Hassan M (2010) Metallic biomaterials of knee and hip - a review, Trends Biomater Artif Organs 24: 69–82.
    [29] Niinomi M (2002) Recent metallic materials for biomedical applications. Metal Mater Transac A. 33 A: 477–486.
    [30] Pilliar R (2009) Metallic biomaterials, in Biomedical Materials (R. Narayan, ed.), Springer US: 41–81.
    [31] Kshang D, Lu J, Yao C, et al. (2008) The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29: 970–983. doi: 10.1016/j.biomaterials.2007.11.009
    [32] Budzynski P, Youssef A, Sielanko J (2006) Surface modification of Ti–6Al–4V alloy by nitrogen ion implantation. Wear 261: 1271–1276. doi: 10.1016/j.wear.2006.03.008
    [33] Viceconti M, Muccini R, Bernakiewicz M, et al. (2000) Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J Biomech 33: 1611–1618. doi: 10.1016/S0021-9290(00)00140-8
    [34] Cigada A, Rondelli G, Vicentini B, et al. (1989) Duplex stainless steels for osteosynthesis devices. J Biomed Mater Res 462: 1087–1095.
    [35] Thomann U, Uggowitzer P (2000) Wear-corrosion behavior of biocompatible austenitic stainless steels. Wear 239: 48–58. doi: 10.1016/S0043-1648(99)00372-5
    [36] Mirhosseini N, Crouse P, Schmidth M, et al. (2007) Laser surface micro-texturing of Ti–6Al–4V substrates for improved cell integration. Appl Surf Sci 253: 7738–7743. doi: 10.1016/j.apsusc.2007.02.168
    [37] Fini M, Giavaresi G, Torricelli P, et al. (2004) Osteoporosis and biomaterial osteointegration. Biomed Pharmacother 58: 487–493. doi: 10.1016/S0753-3322(04)00126-X
    [38] Davis JR (2003) Metallic Materials, Chapter 3, Handbook of Materials for Medical Devices, Ohio: ASM International.
    [39] Alvarado J, Maldonado R, Marxuach J, et al. (2003) Biomechanics of Hip and Knee Prostheses. Applications of Engineering Mechanics in Medicine, GED – University of Puerto Rico Mayaguez: 6–22.
    [40] Yildiz H, Chang FK, Goodman S (1998) Composite hip prosthesis design II. Simulation. J Biomed Mater Res 39: 102–119
    [41] Ramsden J, David A, Stephenson D, et al, (2007) The Design and Manufacture of Biomedical Surfaces. CIRP Ann-Manuf Techn 56: p. 687–711.
    [42] Available from: http: //users.ox.ac.uk/~exet0249/biomaterials.html#biomat
    [43] Chevalier J, Gremillard L (2009) Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc 29: 1245–1255. doi: 10.1016/j.jeurceramsoc.2008.08.025
    [44] Hench L (1998) Bioceramics. Am Ceram Soc 81: 1705–1728.
    [45] Lee B, Lee C, Kim D, et al. (2008) Effect of surface structure on biomechanical properties and osseointegration. Mater Sci Eng C 28: 1448–1461. doi: 10.1016/j.msec.2008.03.015
    [46] Imam M, Fraker A, Harris J, et al. (1983) Influence of heat treatment on the fatigue lives of Ti-6Al-4V and Ti-4.5Al-5Mo-1.5CR. Titanium Alloys is surgical implants, luckey, H.A. and Kubli, F.E. Eds Philadelphia, PA: ASTM special technical publication 796: 105–119.
    [47] Navarro M, Michiardi A, Castano O, et al. (2008) Biomaterials in orthopaedics. J R Soc Interface 5: 1137–1158. doi: 10.1098/rsif.2008.0151
    [48] Noiri F, Hoshi H, Murakami K, et al. (2002) Fol Ophthalmol Jpn 53: 476–480.
    [49] Oonishi H (1992) Bioceramic in orthopaedic surgery–our clinical experiences. In: Bioceramic, J.E. Hulbert and S.F. Hulbert (Eds.) 3: 31–42.
    [50] Yamada K, Nakamura S, Suchiya T, et al. (2002) Key Engineering Materials. 216: 149–152.
    [51] Hentrich R, Graves G, Stein H, et al. (1971) An evaluation of inert and resorabable ceramics for future clinical applications. J Biomed Mater Res 5: 25–51. doi: 10.1002/jbm.820050104
    [52] Brook R (1991) Concise Encyclopedia of Advanced Ceramic Materials. Oxford: Pergamon Press. 525–528.
    [53] Bokras J, LaGrange L, Schoen F (1992) Control of structure of carbon for use in bioengineering, Chem Phys Carbon 9: 103–107.
    [54] Lewandow-Szumiei M, Komender J, Gorecki A, et al. (1997) Fixation of carbon fibre-reinforced carbon composite implanted into bone. J Mater Sci-Mater M 8: 485–488. doi: 10.1023/A:1018526226382
    [55] Shi H, Shimizu K (1998) On-line metabolic pathway analysis based on metabolic signal flow diagram.Biotechnol Bioeng 58: 139–148.
    [56] Hoeland W, Vogel W, Waumann K, et al. (1985) Interface reactions between machinable bioactive glass-ceramics and bone. J Biomed Mater Res 19: 303–312. doi: 10.1002/jbm.820190311
    [57] Yamamuro T, Hench L L, Wilson J (1990) Handbook of Bioactive Ceramics I and II. Boca Raton: CRC Press.
    [58] Wilson J, Pigott G, Schoen F, et al. (1982) Toxicology and biocompatibility of bioglass. J Biomed Mater Res 15: 805–817.
    [59] lrie K, Oohashi N (1995) Japan Kokai Tokkyo Koho; JP 7 41, 459.
    [60] Rodrigues C, Serricella P, Linhares A, et al. (2003) Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 24: 4987–4997. doi: 10.1016/S0142-9612(03)00410-1
    [61] Ruan J, Grant M (2001) Biocompatibility evaluation in vitro. Part I: Morphology expression and proliferation of human and rat osteoblasts on the biomaterials J. J Cent South Univ T 8: 1–8.
    [62] Thian E, Loh N, Khor K (2002) In vitro behavior of sintered powder injection molded Ti-6Al-4V/HA. J Biomed Mater Res 63(2): 79–87.
    [63] Piattelli A, Trisi P (1994) A light and laser scanning microscopy study of bone/hydroxyapatite-coated titanium implants interface: histochemical evidence of un-mineralized material in humans. J Biomed Mater Res 28: 529–536. doi: 10.1002/jbm.820280502
    [64] Bajpai P, Fuchs C (1985) Development of a hydroxyapatite bone grout. Proceedings of the first annual scientific session of the academy of surgical research. San Antonio, Texas. C.W. Hall (Ed.). New York: Pergamon press. 50–54,
    [65] Ramakrishna S, Mayer J, Wintermantel E, et al. (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol61: 1189–1224.
    [66] Davidson J, Georgette F (1987) State-of-the-art materials for orthopaedic prosthetic devices: On implant manufacturing and material technology. P Soc Manufact Eng EM87–122: 122–126.
    [67] Costa L, Brach de Prever E (2000) UHMWPE for arthroplasty. Torino: Edizioni Minerva Medica.
    [68] Kelly J (2002) Ultra-high molecular weight polyethylene, J Macromol Sci-Pol R 42: 355–371.
    [69] Endo M, Barbour P, Barton D, et al. (2001) Comparative wear and wear debris under three different counterface conditions of crosslinked and non-crosslinked ultra high molecular weight polyethylene, Biomed Mater Eng 11: 23–35.
    [70] Baker D, Bellare A, Pruitt L (2003) The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J Biomed Mater Res A 66: 146–154.
    [71] Gomoll A, Wanich T, Bellare A (2002) J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE. J Orthop Res 20: 1152–1156. doi: 10.1016/S0736-0266(02)00073-6
    [72] Champion A, Li S, Saum K, et al. (1994) The effect of crystallinity on the physical properties of UHMWPE. Transact Orthop Res Soc 19: 585–589.
    [73] Simis K, Bistolfi A, Bellare A, et al. (2006) The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene. Biomaterials, 27: 1688–1694. doi: 10.1016/j.biomaterials.2005.09.033
    [74] Hermawan H, Ramdan D, Djuansjah J (2011) Biomedical Engineering — From Theory to Applications. Reza Fazel-Rezai, editor. Metals for Biomedical Applications. Rijeka: InTech. 411–430.
    [75] Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical Implants: Corrosion and its Prevention - A Review. Recent Pat Corros Sci 2: 40–54. doi: 10.2174/1877610801002010040
    [76] Zhang L, Feng X, Liu H, et al. (2004) Hydroxyapatite/collagen composite materials formation in simulated body fluid environment. Mater Lett 58: 719–722. doi: 10.1016/j.matlet.2003.07.009
    [77] Au A, James Raso V, Liggins AB, et al. (2007) Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements. J Biomech 40(6): 1410–1416.
    [78] Skinner HB (1998) Composite technology for total hip anthroplasty. Clinothop 235: 224–36.
    [79] De Santis R, Ambrosio L, Nicolais L (2000) Polymer-based composites hip prostheses. J Inorg Biochem 79: 97–102 doi: 10.1016/S0162-0134(99)00228-7
    [80] Kaddick C, Ascherl R, Siebels W, et al. (1996) Mechanical stability of hip joint endoprosthesis shafts of carbon fiber composite materials. Z Ortho Ihre Grenzgeb 134: 111–6. doi: 10.1055/s-2008-1039781
    [81] Yildiz H, Ha SK, Chang F (1998) Composite hip prosthesis design I. Analysis. J Biomed Mater Res 39: 92–101.
    [82] Simoes JA, Marques AT, Jeronimidis G. (2000) Design of a controlled-stiffness composite proximal femoral prosthesis. Compos Sci T echnol 60: 559–567. doi: 10.1016/S0266-3538(99)00155-4
    [83] Srinivasan S, de Andrade JR, Biggers SB Jr, et al. (2000) Structural response and relative strength of a laminated composite hip prosthesis: effect of functional activity. Biomaterials 21: 1929–40. doi: 10.1016/S0142-9612(00)00053-3
    [84] Available from: http: //imeulia.blogspot.com/2011/08/classes-and-characteristics-of.html
    [85] Chang M, Ikonama T, Kikuchi M, et al. (2001) The cross linkage effect of hydroxyapatite/collagen nanocompositess on a self organization phenomenon. J Mater Sci Mater Med 13: 993
    [86] Lewis G (1990) Selection of Engineering Materials, Adapted by permission of Prentice Hall: 189
    [87] American society for testing and materials. (1992) Annual Book of ASTM standards, Medical Devices and Services, American Society for testing and materials, Philadelphia, PA: 13.
    [88] Vallet-Regí M (2001) Ceramics for medical applications. J Chem Soc Dalton 2: 97–108.
    [89] Jong S, Tsai Y, Hsieh Y (2014) Polysiloxane resin composition, US8637603 B2, 2014 Jan 28.
    [90] Swab J, Halbig M, Mathur S (2012) Advances in Ceramic Armor VIII: Ceramic Engineering and Science Proceedings 33: 246.
    [91] Du C, Cui F, Zhang W (2000) Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 50: 518–527.
    [92] Wahl D, Czernuszka J (2006) Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 11: 43–56.
    [93] Galego N, Rozsa C, Sanchez R, et al. (2000) Characterization and application of poly(β-hydroxyalkanoates) family ascomposite biomaterials. Polym Test 19: 485–492. doi: 10.1016/S0142-9418(99)00011-2
    [94] Katti K, Turlapati P, Verma D, et al. (2008) Static and dynamic mechanical behavior of hydroxyapatite-polyacrylicacidcomposites under simulated body fluid. Am J Biochem Biotechnol 2: 73–79.
    [95] Roy Chowdhury S, Kulkarni A, Basak A, et al. (2007) Wear characteristic and biocompatibility of some hydroxyapatite-collagen composite acetabular cups. Wear 262: 1387–1398. doi: 10.1016/j.wear.2007.01.023
    [96] Verma D, Katti K, Katti D, et al. (2007) Mechanical response and multi-level structure of biomimetic hydroxyapatite/polygalacturonic/chitosannano-composites. Mat Sci Eng C-Mater 28: 399–405.
    [97] Zhang L, Li Y, Zhou G, et al. (2007) Preparation and characterization of chitosan/nanohydroxyapatite composite used as bone substitute material. High Technol Lett 13: 31–35.
    [98] Lu X, Zheng B, Chen N, et al. (2007) Preparation and evaluation of self-hardening bone-rehabilitative composite with natural hydroxyapatite/chitosan. Key Eng Mater 334–335 II: 1197–1200.
    [99] Wang M, Bonfield W (2001) Chemically coupled hydroxyapatite-polyethylene composites: structure and properties. Biomaterials 22: 1311–1320. doi: 10.1016/S0142-9612(00)00283-0
    [100] Bleach N, Nazhat S, Tanner K, et al. (2002) Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials 23: 1579–1585. doi: 10.1016/S0142-9612(01)00283-6
    [101] Ignjatovic N, Plavsic M, Miljkovic M, et al. (1999a) Microstructural characteristic of Ca-hydroxyapatite/poly-L-lactide based composites. J Microsc 196: 23.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(16426) PDF downloads(2166) Cited by(76)

Figures and Tables

Figures(1)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog