Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

The Role of Short-term Consolidation in Memory Persistence

The Memory and Decision Making Laboratory, Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, United States of America

Topical Section: Advances in Memory Theories

Short-term memory, often described as working memory, is one of the most fundamental information processing systems of the human brain. Short-term memory function is necessary for language, spatial navigation, problem solving, and many other daily activities. Given its importance to cognitive function, understanding the architecture of short-term memory is of crucial importance to understanding human behavior. Recent work from several laboratories investigating the entry of information into short-term memory has uncovered a dissociation between encoding processes, those that register information into short-term memory, and consolidation processes, those that solidify the representation within short-term memory. Here I describe the key differences between short-term encoding and consolidation and briefly review what is known about the short-term consolidation process itself. Cognitive function, plausible neural instantiation, and open questions are addressed.
  Figure/Table
  Supplementary
  Article Metrics

Keywords short-term memory; working memory; consolidation; encoding; forgetting

Citation: Timothy J. Ricker. The Role of Short-term Consolidation in Memory Persistence. AIMS Neuroscience, 2015, 2(4): 259-279. doi: 10.3934/Neuroscience.2015.4.259

References

  • 1. Cowan N (1995) Attention and memory: An integrated framework. Oxford, England: Oxford University Press.
  • 2. Jonides J, Lacey SC, Nee DE (2005) Processes of working memory in mind and brain. Curr Dir Psychol 14: 2-5.    
  • 3. Lewis-Peacock JA, Postle BR (2008) Temporary activation of long-term memory supports working memory. J Neurosci 28: 8765-8771.    
  • 4. Ruchkin DS, Grafman J, Cameron K, et al. (2003) Working memory retention systems: A state of activated long-term memory. Behav Brain Sci 26: 709-728.
  • 5. Zimmer HD (2008) Visual and spatial working memory: from boxes to networks. Neurosci Biobehav Rev 32: 1373-1395.    
  • 6. Cowan N (1984) On short and long auditory stores. Psychol Bull 96: 341-370.    
  • 7. Massaro DW (1975) Backward recognition masking. J Acoust Soc Am 58: 1059-1065.    
  • 8. Sperling G (1960) The information available in brief visual presentations. Psychol Monogr 74: 1-29.
  • 9. Massaro DW (1972) Preperceptual images, processing time, and perceptual units in auditory perception. Psychol Rev 79: 124-145.    
  • 10. Turvey MT (1973) On peripheral and central processes in vision: inferences from an information processing analysis of masking with patterned stimuli. Psychol Rev 80: 1-52.    
  • 11. Vogel EK, Woodman GF, Luck SJ (2006) The time course of consolidation in visual working memory. J Exp Psychol-Hum Percept Perform 32: 1436-1451.    
  • 12. Woodman GF, Vogel EK (2005) Fractionating working memory consolidation and maintenance are independent processes. Psychol Sci 16: 106-113.    
  • 13. Woodman GF, Vogel EK (2008) Selective storage and maintenance of an object's features in visual working memory. Psychon Bull Rev 15: 223-229.    
  • 14. Bradshaw GL, Anderson JR (1982) Elaborative encoding as an explanation of levels of processing. J Verb Learn Verb Beh 21: 165-174. 15. Craik FIM, Lockhart RS (1972) Levels of processing: A framework for memory research. J Verb Learn Verb Beh 11: 671-684.    
  • 16. Craik FI, Tulving E (1975) Depth of processing and the retention of words in episodic memory. J Exp Psychol Gen 104: 268-294.
  • 17. Nieuwenstein M, Wyble B (2014) Beyond a mask and against the bottleneck: Retroactive dual-task interference during working memory consolidation of a masked visual target. J Exp Psychol Gen 143: 1409-1427.
  • 18. Ricker TJ, Cowan N (2014) Differences in presentation methods in working memory procedures: A matter of working memory consolidation. J Exp Psychol Learn Mem Cogn 40: 417-428.
  • 19. Jolicoeur P, Dell'Acqua R (1998) The demonstration of short-term consolidation. Cogn Psychol 36: 138-202.    
  • 20. Baddeley AD (1986) Working memory. New York, NY: Oxford University Press.
  • 21. Barrouillet P, Camos V (2012) As time goes by: Temporal constraints in working memory. Curr Dir Psychol 21: 413-419.    
  • 22. Davelaar EJ, Goshen-Gottstein Y, Ashkenazi A, et al. (2005) The demise of short-term memory revisited: empirical and computational investigations of recency effects. Psychol Rev 112: 3-42.    
  • 23. Unsworth N, Engle RW (2007) The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychol Rev 114: 104-132.    
  • 24. Brown GDA, Neath I, Chater N (2007) A temporal ratio model of memory. Psychol Rev 114: 539-576.    
  • 25. Farrell S (2012) Temporal clustering and sequencing in short-term memory and episodic memory. Psychol Rev 119: 223-271.    
  • 26. Nairne JS (2002) Remembering over the short term: The case against the standard model. Annu Rev Psychol 53: 53-81.    
  • 27. Tiitinen H, Reinikainen PMK, Näätänen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372: 90-92.    
  • 28. Cowan N (1988) Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychol Bull 104: 163-191.
  • 29. Khader P, Burke M, Bien S, et al. (2005) Content-specific activation during associative long-term memory retrieval. Neuroimage 27: 805-816.    
  • 30. Craik FI, Govoni R, Naveh-Benjamin M, et al. (1996) The effects of divided attention on encoding and retrieval processes in human memory. J Exp Psychol Gen 125: 159-180.    
  • 31. Naveh-Benjamin M, Craik FIM, Gavrilescu D, et al. (2000) Asymmetry between encoding and retrieval processes: Evidence from divided attention and a calibration analysis. Mem Cognit 28: 965-976.
  • 32. Massaro DW (1975) Experimental psychology and information processing. Chicago, IL: Rand McNally.
  • 33. Baddeley AD (2000) The episodic buffer: A new component of working memory? Trends Cogn Sci 4: 417-423.    
  • 34. Logie RH (2009) Working memory, In: Bayne T, Cleeremans T, Wilken P, The Oxford companion to consciousness, Oxford, UK: Oxford University Press, 667-670.
  • 35. Massaro DW (1970) Perceptual processes and forgetting in memory tasks. Psychol Rev 77: 557-567.
  • 36. Saults JS, Cowan N (2007) A central capacity limit to the simultaneous storage of visual and auditory arrays in working memory. J Exp Psychol Gen 136: 663-684.
  • 37. Sligte IG, Scholte HS, Lamme VA (2008) Are there multiple visual short-term memory stores? PLoS One 3: e1699.    
  • 38. Pinto Y, Sligte IG, Shapiro KL, et al. (2013) Fragile visual short-term memory is an object-based and location-specific store. Psychon Bull Rev 20: 732-739.    
  • 39. Cowan N, Ricker TJ, Clark KM, et al. (2015) Knowledge cannot explain the developmental growth of working memory capacity. Dev Sci 18: 132-145.    
  • 40. McKeown D, Mercer T (2012) Short-term forgetting without interference. J Exp Psychol Learn Mem Cogn 38: 1057-1068.
  • 41. Morey CC, Bieler M (2013) Visual short-term memory always requires general attention. Psychon Bull Rev 20: 163-170.    
  • 42. Ricker TJ, Cowan N (2010) Loss of visual working memory within seconds: The combined use of refreshable and non-refreshable features. J Exp Psychol Learn Mem Cogn 36: 1355-1368.
  • 43. Ricker TJ, Spiegel LR, Cowan N (2014) Time-based loss in visual short-term memory is from trace decay, not temporal distinctiveness. J Exp Psychol Learn Mem Cogn 40: 1510-1523.    
  • 44. Ricker TJ, Vergauwe E, Hinrichs GA, et al. (2015) No recovery of memory when cognitive load is decreased. J Exp Psychol Learn Mem Cogn 41: 872-880.    
  • 45. Vergauwe E, Camos V, Barrouillet P (2014) The impact of storage on processing: How is information maintained in working memory? J Exp Psychol Learn Mem Cogn 40: 1072-1095.    
  • 46. Woodman GF, Vogel EK, Luck SJ (2012) Flexibility in visual working memory: Accurate change detection in the face of irrelevant variations in position. Vis Cogn 20: 1-28.    
  • 47. Zhang W, Luck SJ (2009) Sudden death and gradual decay in visual working memory. Psychol Sci 20: 423-428.    
  • 48. Lewandowsky S, Geiger SM, Oberauer K (2008) Interference-based forgetting in verbal short-term memory. J Mem Lang 59: 200-222.    
  • 49. Oberauer K, Lewandowsky S, Farrell S, et al. (2012) Modeling working memory: An interference model of complex span. Psychon Bull Rev 19: 779-819.    
  • 50. Barrouillet P, Bernardin S, Camos V (2004) Time constraints and resource sharing in adults' working memory spans. J Exp Psychol Gen 133: 83-100.    
  • 51. Vergauwe E, Barrouillet P, Camos V (2010) Do mental processes share a domain-general resource? Psychol Sci 21: 384-390.    
  • 52. Oberauer K, Lewandowsky S (2011) Modeling working memory: a computational implementation of the Time-Based Resource-Sharing theory. Psychon Bull Rev 18: 10-45.    
  • 53. Oberauer K, Lewandowsky S (2013) Evidence against decay in verbal working memory. J Exp Psychol Gen 142: 380-411.    
  • 54. Crowder RG (1976) Principles of learning and memory. Hillsdale, NJ: Erlbaum.
  • 55. Naveh-Benjamin M, Jonides J (1984) Maintenance rehearsal: A two component analysis. J Exp Psychol Learn Mem Cogn 10: 369-385.
  • 56. Johnson MK, Reeder JA, Raye CL, et al. (2002) Second thoughts versus second looks: An age-related deficit in reflectively refreshing just-activated information. Psychol Sci 13: 64-67.    
  • 57. Raye CL, Johnson MK, Mitchell KJ, Greene EJ, Johnson MR (2007) Refreshing: A minimal executive function. Cortex 43: 135-145.    
  • 58. Portrat S, Lemaire B (2015) Is attentional refreshing in working memory sequential? A computational modeling approach. Cognitive Computation 7: 333-345.
  • 59. Vergauwe E, Cowan N (2014) A common short-term memory retrieval rate may describe many cognitive procedures. Front Hum Neurosci 8.
  • 60. Bayliss DM, Bogdanovs J, Jarrold C (2015) Consolidating working memory: Distinguishing the effects of consolidation, rehearsal and attentional refreshing in a working memory span task. J Mem Lang 81: 34-50.    
  • 61. Stevanovski B, Jolicoeur P (2007) Visual short-term memory: Central capacity limitations in short-term consolidation. Vis Cogn 15: 532-563.    
  • 62. Eichenbaum H (2000) A cortical–hippocampal system for declarative memory. Nat Rev Neurosci 1: 41-50.    
  • 63. Remondes M, Schuman EM (2004) Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431: 699-703.    
  • 64. Squire LR, Alvarez P (1995) Retrograde amnesia and memory consolidation: A neurobiological perspective. Curr Opin Neurobiol 5: 169-177.
  • 65. Bliss TV, Collingridge GL (1993) A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361: 31-39.    
  • 66. Teyler TJ, DiScenna P (1987) Long-term potentiation. Annu Rev Neurosci 10: 131-161.    
  • 67. Hampson RE, Deadwyler SA (2000) Cannabinoids reveal the necessity of hippocampal neural encoding for short-term memory in rats. J Neurosci 20: 8932-8942.
  • 68. Mitchell KJ, Johnson MK, Raye CL, et al. (2000) fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cogn Brain Res 10: 197-206.    
  • 69. Nichols EA, KaoYC, Verfaellie M, et al. (2006) Working memory and long‐term memory for faces: Evidence from fMRI and global amnesia for involvement of the medial temporal lobes. Hippocampus 16: 604-616.    
  • 70. Vertes RP (2005) Hippocampal theta rhythm: A tag for short‐term memory. Hippocampus 15: 923-935.    
  • 71. Cowan N, Li D, Moffitt A, Becker TM, et al. (2011) A neural region of abstract working memory. J Cogn Neurosci 23: 2852-2863.    
  • 72. Emrich SM, Riggall AC, LaRocque JJ, et al. (2013) Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. J Neurosci 33: 6516-6523.    
  • 73. Xu Y, Chun MM (2006) Dissociable neural mechanisms supporting visual short-term memory for objects. Nature 440: 91-95.
  • 74. Todd JJ, Marois R (2004) Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428: 751-754.
  • 75. Crick F, Koch C (1990) Toward a neurobiological theory of consciousness. Semin Neurosci 2: 263-275.
  • 76. Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5: 16-25.    
  • 77. Lisman JE, Idiart MA (1995) Storage of 7+/-2 short-term memories in oscillatory subcycles. Science 267: 1512-1515.
  • 78. Lisman JE, Jensen O (2013) The theta-gamma neural code. Neuron 77: 1002-1016.    
  • 79. Shipstead Z, Lindsey DR, Marshall RL, et al. (2014) The mechanisms of working memory capacity: Primary memory, secondary memory, and attention control. J Mem Lang 72: 116-141.    

 

This article has been cited by

  • 1. Sébastien De Schrijver, Pierre Barrouillet, Consolidation and restoration of memory traces in working memory, Psychonomic Bulletin & Review, 2017, 10.3758/s13423-017-1226-7
  • 2. Amy V. Smith, Denis McKeown, David Bunce, Time manages interference in visual short-term memory, Memory, 2017, 1, 10.1080/09658211.2016.1270967
  • 3. Alessandra S. Souza, Zuzanna Skóra, The interplay of language and visual perception in working memory, Cognition, 2017, 166, 277, 10.1016/j.cognition.2017.05.038
  • 4. Alessandra S. Souza, Klaus Oberauer, Time to process information in working memory improves episodic memory, Journal of Memory and Language, 2017, 96, 155, 10.1016/j.jml.2017.07.002
  • 5. Benoît Lemaire, Sophie Portrat, A Computational Model of Working Memory Integrating Time-Based Decay and Interference, Frontiers in Psychology, 2018, 9, 10.3389/fpsyg.2018.00416
  • 6. Timothy J. Ricker, Joshua Sandry, The relationship between masking and short-term consolidation during recall from visual working memory, Annals of the New York Academy of Sciences, 2018, 10.1111/nyas.13641
  • 7. Timothy J. Ricker, Mark R. Nieuwenstein, Donna M. Bayliss, Pierre Barrouillet, Working memory consolidation: insights from studies on attention and working memory, Annals of the New York Academy of Sciences, 2018, 10.1111/nyas.13633
  • 8. Alessandra S. Souza, Evie Vergauwe, Klaus Oberauer, Where to attend next: guiding refreshing of visual, spatial, and verbal representations in working memory, Annals of the New York Academy of Sciences, 2018, 10.1111/nyas.13621
  • 9. Gabriel Jarjat, Violette Hoareau, Gaën Plancher, Pascal Hot, Benoît Lemaire, Sophie Portrat, What makes working memory traces stable over time?, Annals of the New York Academy of Sciences, 2018, 10.1111/nyas.13668
  • 10. Eryn J. Adams, Anh T. Nguyen, Nelson Cowan, Theories of Working Memory: Differences in Definition, Degree of Modularity, Role of Attention, and Purpose, Language Speech and Hearing Services in Schools, 2018, 49, 3, 340, 10.1044/2018_LSHSS-17-0114
  • 11. Candice C. Morey, Nelson Cowan, Can we distinguish three maintenance processes in working memory?, Annals of the New York Academy of Sciences, 2018, 1424, 1, 45, 10.1111/nyas.13925
  • 12. Alessandra S. Souza, Evie Vergauwe, Unravelling the intersections between consolidation, refreshing, and removal, Annals of the New York Academy of Sciences, 2018, 1424, 1, 5, 10.1111/nyas.13943
  • 13. Hiroyuki Tsuda, Jun Saiki, Gradual formation of visual working memory representations of motion directions, Attention, Perception, & Psychophysics, 2018, 10.3758/s13414-018-1593-9
  • 14. Maylin Wong-Guerra, Javier Jiménez-Martin, Luis Arturo Fonseca-Fonseca, Jeney Ramírez-Sánchez, Yanay Montano-Peguero, Joao Batista Rocha, Fernanda D´Avila, Adriano M. de Assis, Diogo Onofre Souza, Gilberto L. Pardo-Andreu, Roberto Menéndez-Soto del Valle, Guillermo Aparicio Lopez, Odalys Valdés Martínez, Nelson Merino García, Abel Mondelo-Rodríguez, Alejandro Saúl Padrón-Yaquis, Yanier Nuñez-Figueredo, JM-20 protects memory acquisition and consolidation on scopolamine model of cognitive impairment, Neurological Research, 2019, 1, 10.1080/01616412.2019.1573285

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Timothy J. Ricker, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved