
AIMS Mathematics, 2018, 3(3): 409425. doi: 10.3934/Math.2018.3.409.
Research article Topical Section
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Dynamic boundary conditions in the interface modeling of binary alloys
^{1} Donetsk Institute for Physics and Engineering, Donetsk, 83114, Ukraine
^{2} Institute of Applied Mathematics and Mechanics of the NASU, Sloviansk, 84100, Ukraine
^{3} Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA, 91711, USA
Received: , Accepted: , Published:
Topical Section: Mathematical Analysis in Fluid Dynamics
Keywords: phasefield equations; di erence equations; preturbulent; turbulent; global attractor
Citation: Igor B. Krasnyuk, Roman M. Taranets, Marina Chugunova. Dynamic boundary conditions in the interface modeling of binary alloys. AIMS Mathematics, 2018, 3(3): 409425. doi: 10.3934/Math.2018.3.409
References:
 1. R. Beikler, E. Taglauer, Surface segregation at the binary alloy Cu Au (100) studied by lowenergy ion scattering, Surface Science, 643 (2016), 138–141.
 2. K. Binder, S. Puri and H. L. Frisch, Surfacedirected spinodal decomposition versus wetting phenomena: Computer simulations, Faraday Discuss, 112 (1999), 103–117.
 3. A. Brandenburg, P. J. Käpylä and A. Mohammed, NonFickian diffusion and tau approximation for numerical turbulence, Phys. Fluids, 16 (2004), 1020–1028.
 4. H. H. Brongersma, M. Draxler, M. de Ridder, et al. Surface composition analysis by lowenergy ion scattering, Surface Science Reports, 62 (2007), 63–109.
 5. T. M. Buck, G. H. Wheatley, L. Marchut, Orderdisorder and segregation behavior at the Cu3Au(001) surface, Phys. Rev. Lett., 51 (1983), 43–46.
 6. G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Ration. Mech. An., 92 (1986), 205–245.
 7. C. Charach, P. C. Fife, On thermodynamically consistent schemes for phase field equations, Open Syst. Inf. Dyn., 5 (1998), 99–123.
 8. C. Ern,W. Donner, A. Rühm, et al. Surface density oscillations in disordered binary alloys: Xray reflectivity study of Cu3Au(001), Appl. Phys. A, 64 (1997), 383–390.
 9. J. Gao, V. Bojarevics, K. A. Pericleous, et al. Modeling of convection, temperature distribution and dendritic growth in glassfluxed nickel melts, Journal Crystall Growth, 471 (2017), 66–72.
 10. M. J. Harrison, D. P. Woodruff, J. Robinson, Surface alloys, surface rumpling and surface stress, Surface Science, 572 (2004), 309–317.
 11. I. B. Krasnyuk, Spatialtemporal oscillations of order parameter in confined diblock copolymer mixtures, International Journal of Computational Materials, Science and Engineering, 2 (2013), 1350006.
 12. I. B. Krasnyuk, R. M. Taranets, M. Chugunova, Longtime oscillating properties of confined disordered binary alloys, Journal of Advanced Research in Applied Mathematics, 7 (2015), 1–16.
 13. I. B. Krasnyuk, Surfacedirected multidimensional wave structures in confined binary mixture, International Journal of Computational Materials Science and Engineering, 4 (2015), 1550023.
 14. I. B. Krasnyuk, Impulse SpatialTemporal Domains in Semiconductor Laser with Feedback, Journal of Applied Mathematics and Physics, 4 (2016), 1714–1730.
 15. I. B. Krasnyuk, R. M. Taranets, M. Chugunova, Stationary Solutions for the CahnHilliard equation coupled with Neumann boundary conditiona, Bulletin of the South Ural State University. Ser., Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 9 (2016), 60–74.
 16. N. Lecoq, H. Zapolsky and P. Galenko, Evolution of the Structure Factor in a Hyperbolic Model of Spinodal Decomposition, European Physical Journal Special Topics, 179 (2009), 165–175.
 17. T. Y. Li, J. A. Yorke, Period Three Implies Chaos, The American Mathematical Monthly, 82 (1975), 985–992.
 18. Y. L. Maistrenko, E. Y. Romanenko, About qualitative behaviour of solutions of quasilinear differentialdifference equations, The research of differentialdifference equations, Kiev, Institute Mathematics, 1980.
 19. J. C. Maxwell, On the dynamical theory of gases, Philos. T. R. Soc. A, 157 (1867), 49–88.
 20. H. Niehus, W. Heiland, E. Taglauer, Lowenergy ion scattering at surfaces, Surface Science Reports, 17 (1993), 213–303.
 21. H. O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals, New Frontiers of Science, SpringerVerlag, New York, 2004.
 22. O. Penrose, P. C. Fife, Thermodynamically consistent models of phasefield type for the kinetics of phase transitions, Physica D, 43 (1990), 44–62.
 23. J. du Plessis, Surface Segregation, Series Solid State Phenomena, volume 11, Sci.Tech. Pub., Vaduz, 1990.
 24. M. Polak, R. Rabinovich, The interplay of surface segregation and atomic order in alloys, Surface Science Reports, 38 (2000), 127–194.
 25. S. Puri, K. Binder, Surface effects on spinodal decomposition in binary mixtures and the interplay with wetting phenomena, Phys. Rev. E, 49 (1994), 5359–5377.
 26. E. Y. Romanenko, A. N. Sharkovsky, Ideal turbulence: attractors of deterministic systems may lie in the space of random fields, Int. J. Bifurcat. Chaos, 2 (1992), 31–36.
 27. E. Y. Romanenko, A. N. Sharkovsky, From onedimensional to infinitedimensional dynamical systems: Ideal turbulence, Ukrainian Math. J., 48 (1996), 1817–1842.
 28. E. Yu. Romanenko, A. N. Sharkovsky, M. B. Vereikina, Selfstochasticity in deterministic boundary value problems, Nonlinear Boundary Value Problems, Institute of Applied Mathematiccs and Mechanics of the NAS of Ukraine, 9 (1999), 174–184.
 29. A. N. Sharkovsky, Yu. L. Maistrenko, E. Yu. Romanenko, Difference equations and their applications, Ser. Mathematics and Its Applications, 250, Klüwer Academic, Dordrecht, The Netherlands, 1993.
 30. A. Sharkovsky, A. Sivak, Universal Phenomena in Solution Bifurcations of Some Boundary Value Problems, J. Nonlinear Math. Phy., 1 (1994), 147–157.
 31. E. Taglauer, Lowenergy ion scattering and Rutherford backscattering, Surface Analysis – The Principal Techniques, 2nd ed., eds. by J.C. Vickerman and I.S. Gilmore, JohnWiley & Sons, Ltd., 269–331, 2009.
 32. J. Tersoff, Oscillatory segregation at a metal alloy surface: Relation to ordered bulk phases, Phys. Rev. B, 42 (1990), 10965–10968.
Reader Comments
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *