Citation: Jean Luc Dimi, Texance Mbaya. Dynamics analysis of stochastic tuberculosis model transmission withimmune response[J]. AIMS Mathematics, 2018, 3(3): 391-408. doi: 10.3934/Math.2018.3.391
[1] | Zhengwen Yin, Yuanshun Tan . Threshold dynamics of stochastic SIRSW infectious disease model with multiparameter perturbation. AIMS Mathematics, 2024, 9(12): 33467-33492. doi: 10.3934/math.20241597 |
[2] | Roshan Ara, Saeed Ahmad, Zareen A. Khan, Mostafa Zahri . Threshold dynamics of stochastic cholera epidemic model with direct transmission. AIMS Mathematics, 2023, 8(11): 26863-26881. doi: 10.3934/math.20231375 |
[3] | Ishtiaq Ali, Sami Ullah Khan . Dynamics and simulations of stochastic COVID-19 epidemic model using Legendre spectral collocation method. AIMS Mathematics, 2023, 8(2): 4220-4236. doi: 10.3934/math.2023210 |
[4] | Jinji Du, Chuangliang Qin, Yuanxian Hui . Optimal control and analysis of a stochastic SEIR epidemic model with nonlinear incidence and treatment. AIMS Mathematics, 2024, 9(12): 33532-33550. doi: 10.3934/math.20241600 |
[5] | Yue Wu, Shenglong Chen, Ge Zhang, Zhiming Li . Dynamic analysis of a stochastic vector-borne model with direct transmission and media coverage. AIMS Mathematics, 2024, 9(4): 9128-9151. doi: 10.3934/math.2024444 |
[6] | Tahir Khan, Fathalla A. Rihan, Muhammad Bilal Riaz, Mohamed Altanji, Abdullah A. Zaagan, Hijaz Ahmad . Stochastic epidemic model for the dynamics of novel coronavirus transmission. AIMS Mathematics, 2024, 9(5): 12433-12457. doi: 10.3934/math.2024608 |
[7] | Xiaodong Wang, Kai Wang, Zhidong Teng . Global dynamics and density function in a class of stochastic SVI epidemic models with Lévy jumps and nonlinear incidence. AIMS Mathematics, 2023, 8(2): 2829-2855. doi: 10.3934/math.2023148 |
[8] | R. Sriraman, R. Samidurai, V. C. Amritha, G. Rachakit, Prasanalakshmi Balaji . System decomposition-based stability criteria for Takagi-Sugeno fuzzy uncertain stochastic delayed neural networks in quaternion field. AIMS Mathematics, 2023, 8(5): 11589-11616. doi: 10.3934/math.2023587 |
[9] | Shah Hussain, Naveed Iqbal, Elissa Nadia Madi, Thoraya N. Alharthi, Ilyas Khan . Vaccination strategies in a stochastic SIVR epidemic model. AIMS Mathematics, 2025, 10(2): 4441-4456. doi: 10.3934/math.2025204 |
[10] | Tingting Wang, Shulin Sun . Dynamics of a stochastic epidemic model with quarantine and non-monotone incidence. AIMS Mathematics, 2023, 8(6): 13241-13256. doi: 10.3934/math.2023669 |
We consider the following model of tuberculosis transmission:
{˙S=Λ−βSIN−μS˙E=β(1−p)SIN+r2I−(μ+k(1−r1))E˙I=βpSIN+k(1−r1)E−(μ+d+δ+r2)I | (1) |
where S(t), E(t) and I(t) denote the numbers of susceptible, exposed and infected individuals at time t, respectively, with the following parameters:
Λ is the recruitment into the population; β, the probability that a susceptible individual will be infected by infectious; μ is the probability that an individual in the population died from reasons not related to the disease; d is the probability that an infectious individual dies because of the disease.An individual leaves his region to another for a new treatment with the probability δ, thus this individual goes missing of model. New infected individual may develop the disease directly with probability p. To account for treatment, we define r1E as the fraction of population receiving effective chemoprophylaxis and r2 as the rate of effective per capita therapy. We assume that chemoprophylaxis of latently infected individuals E reduces their reactivation rate r1 and that the initiation of of therapeutics immediately removes individuals from active status I and places them into state E, the time before latently infected individuals who does not received effective chemoprophylaxis become infectious is assumed to satisfy an exponential distribution, with time 1k. Thus, individuals leave the class E to I at rate k(1−r1). Also, after receiving a therapeutic treatment, individuals leave the class I to E at rate r2 I.
In [6], we have study dynamical and stochastic models of tuberculosis desease. In this paper we extend the model (1) by introducing, in two times, the effects of immune response and also of environmental fluctuations. This paper is organized as follows.In sections 2 and 3 we introduce tthe dynamical model with immune response and notations and give conditions of stability of these different equilibria. in section 4, we give we study stability of stochastic tuberculosis model.
The transmission of tuberculosis is mainly by air, but occasionally by the oral or digestive route. This is mainly the case of pulmonary tuberculosis where the individual gets the disease by inhalation of particles (nuclei) that are in the air. Thus, the fact of the presence of these particles in the body triggers a network of immune cells, antibodies and other components of the immune response. The effectors are these organs can activate or inhibit an activity.The immune system of an organism provides an extraordinary defense against foreign attacks.Once it recongnize matter as non-self, it actives multiple chemical and physiological processes to control and eliminate the pathogen.
The immune reaction is represented by the term P representing the immune effectors and is subject to the following constraints:
1-The immune system responds to the presence of parasites by producing more immune effectors,
2-Immune effectors reduce the number of parasites. Thus the model of tuberculosis, defined below, is the SEI model augmented by the part that expresses the immune response. The new model for transmitting TB from one human to another will have two components: the first components are (S, E, I), writting with taking account of cholerae bacillus:
{˙S=Λ−βSIN−β1BSK+B−μS˙E=(1−p)(βSIN+β1BSK+B)+r2I−(μ+k(1−r1))E˙I=p(βSIN+β1BSK+B)+k(1−r1)E−(μ+d+δ+r2)I | (2) |
And second components are B and P. Where B is the amount of bacilli of Koch and P the rate of effectors of immunity..
We assume that the bacillus population is suitable for logistic growth with a carrying capacity equal to K. Then, the model on immune response can be writting as follows:
{˙B=rB(1−BK)−εBP˙P=αB−γP | (3) |
where
Proposition 3.1. Let (S(t), E(t), I(t), B(t), P(t)) be the solution of system (2)–(3) with initial conditions (S0), E(0), I(0), B(0), P(0)) and the compact set:
Δθ={(S,E,I,B,P)∈R5+,0≤(S+E+I)≤Λμ+θ;θ>0;B≤K,P≤αKγ} | (4) |
Then, under the flow described by system (2)–(3) , Δ is positively set that attracts all solutions of R5+
Proof: Let be W(t)=(W1(t),W2(t)) with W1(t)=S(t)+E(t)+I(t) and W2(t)=P
Its time derivative satisfies:
dW(t)dt=(Λ−μW1(t)−(d+δ)I;αB−γP) | (5) |
One has B≤K which gives following inequalities:
{dW1(t)dt=(Λ−μW1(t)−(d+δ)I≤Λ−μW1(t)≤0forW1(t)≥ΛμdW2(t)dt≤αK−γPforW2(t)≥αKγ | (6) |
which implies that Δθ is positively invariant set.
Solving this differential equation one has:
0≤(W1(t),W2(t))≤{Λμ+W1(0)e−μt,αKγ+W2(0)e−γt} |
where W(0) is the initial condition of W(t). Then one can conclude that Δθ is an attractive set. θ≥0.
System (3) have an extinction equilibrium E0=(0,0), an immune response free equilibrium E1=(K,0) and an unique infection equilibrium E2=(rKγrγ+αK,αrKrγ+αK)
The jacobian matrix of immune response model at E0 is:
J=(r0α−γ) |
and has its trace trace(J)=r−γ<0 and its determinant det(J)=−rγ>0, this means that there is always an eigenvalue which is positive.hence equilibrium E0 is unstable.
System (3) has the following jacobian at immune response free equilibrium:
J=(−rKεα−γ) |
We see that Trace(J)=−r−γ<0 and det(J)=rγ−Kαε>0 for Kαεrγ<1.In this case, by Routh-Hurwitz all eingenvalues are negative or have negative real parts. We can deduce that:
ˆR0=Kαεrγ |
and when ˆR0≤1, this equilibrium is locally stable.
The jacobian matrix of immune response model (3) at E2 is:
J=(r−r(2γr+εαK)¢rγ+αK−rεγK¢rγ+αKα−γ) |
This jacobian has its Trace(J(E2)=r−r(2γr+εαK)¢rγ+αK−γ<0 and its determinant det(J(E2))=r2γ2−γ2rK+2εγrγ+αKr>0. From Routh Hurwitz criterion all eingenvalues are negative or have negative real parts. Hence this equilibrium is always stable, for ˆR0≥1
system (2)–(3) two equilibria points:
the desease free equilibrium (Λμ,0,0,K,0) and the endemic equilibrium
S∗=D(1−p)+pQΛμ(1−p)D+pQI∗=(1−p)(Λ−μˉS)r2−(μ+k(1−r1))AE∗=p(μ+d+δ+2r2)ˉIpμ+k(1−r1)B∗=Krr+εKP∗=αKrγ(r+εK) |
The stability of the desease free equilibrium will be investigated using the next generator operator [11] Let be X = (E, I, S), system (2)-(3) an be writting as follows: dXdt=F−V, where :
F=((1−p)(βSIN+β1BSK+B)p(βSIN+β1BSK+B)0)etV=(−r2I+(μ+k(1−r1)E−k(1−r1)E+(μ+d+δ+r2)I−Λ+βSIN+β1BSK+B+μS) |
Jacobian matrices F and V on X0 are respectively:
DF(X0)=(F000)etDV(X0)=(V0J1J2) |
o
F=(00β(1−p)βp)etV=(μ+k(1−r1)−k(1−r1)−r2μ+d+δ+r2) |
FV−1(00β(1−p)k(1−r1)+βp(μ+d+δ+r2)(μ+d+δ)(μ+k(1−r1))+μr2β[μp+k(1−r1)](μ+d+δ)(μ+k(1−r1))+μr2) |
is the next generation matrix of system (2)-(3). The radius of FV−1 is
ρ(FV−1)=β(μp+k(1−r1))(μ+d+δ)(μ+k(1−r1))+μr2 |
Hence, the basic reproductive number of system (2)-(3) is:
R0=β(μp+k(1−r1))(μ+d+δ)(μ+k(1−r1))+μr2 |
The following result is etablished (from theorem 2 of [11])
Lemma 3.2. [11] The desease free equilibrium of system (2)-(3) is locally asymptotically stable whenever R0<1 , and unstable if R0>1
It means that in this case, tuberculosis can be eliminated from community.
Theorem 3.3. If R0>1 et ˆR0>1 endemic equilibrium is globally asymptotically stable in Δθ
Preuve : Consider the Lyapounov function V:Δ→R defined as:
V(S,E,I,B,P)=W1[S−SlnS∗S∗]+W2[I−I∗lnII∗]+W3[B−B∗lnBB∗]+W4[P−P∗lnPP∗] |
where W1, W2, W3 and W4 are positive constants to be choosen latter.
Set: V1(S;E,I,B,P)=W1[S−S∗lnSS∗]+W2[I−I∗lnII∗]
V2(S;E,I,B,P)=W3[B−B∗lnBB∗]+W4[P−P∗lnPP∗]
one has:
dV1dt=W1S−S∗S(Λ−βSIN−β1BSK+B−μS)+W2I−I∗I(βpSIN+β1BSK+B+k(1−r1)E−(μ+d+δ+r2)I) |
=W1S−S∗S(βS∗I∗N+β1B∗S∗K+B∗−β1BSK+B+μS∗−βSIN−μS)+W2I−I∗I(βpSIN+pβ1BSK+B+k(1−r1)E |
−(μ+d+δ+r2)I−βpS∗I∗N−k(1−r1)E∗+(μ+d+δ+r2)I∗)−pβ1B∗S∗K+B∗ |
=W1S−S∗S[β(S∗I∗N−SIN)+μ(S∗−S)+β1(B∗S∗K+B∗−BSK+B)]+W2I−I∗I[βp(SIN−S∗I∗N) |
+k(1−r1)(E−E∗)−(μ+d+δ+r2)(I−I∗)−pβ1(B∗S∗K+B∗−BSK+B)] |
=W1S−S∗S[β(S∗I∗N−S∗IN+S∗IN−SIN)+μ(S∗−S)+β1(B∗S∗K+B∗−B∗SK+B∗ |
+B∗SK+B∗−BSK+B)]+W2I−I∗I[βp(SIN−SI∗N+SI∗N−S∗I∗N) |
+β1p(−B∗S∗K+B∗−B∗SK+B∗+B∗SK+B∗+BSK+B)]+k(1−r1)(E−E∗)−(μ+d+δ+r2)(I−I∗)] |
≤W1S−S∗S[β[S∗N(I∗−I)+IN(S∗−S)]+μ(S∗−S)+B∗K+B∗(S∗−S)] |
+W2I−I∗I[βp[SN(I−I∗)+I∗N(S−S∗)]+k(1−r1)(E−E∗)−(μ+d+δ+r2)(I−I∗) |
+β1pB∗K+B∗(S−S∗)]≤−W1βIN(S−S∗)2S−W1βS∗N(S−S∗)S(I−I∗)−W1(μ+ |
B∗S∗K+B∗)(S−S∗)2S]+W2βpSN(I−I∗)2I+W2βpI∗IN(S−S∗)(I−I∗)+W2(1Ik(1−r1)(E−E∗) |
+β1pB∗K+B∗(S−S∗))(I−I∗)−W2(μ+d+δ+r2)I(I−I∗)2] |
=−W1β(IN+μ)(S−S∗)2S−W2(μ+d+δ+r2)I(I−I∗)2+(W2βpI∗IN |
−W1βS∗SN)(S−S∗)(I−I∗)+W2Ik(1−r1)(E−E∗)(I−I∗) |
which gives the following inequality:
≤−W1β(IN+μ)(S−S∗)2S−W1(μ+B∗S∗K+B∗)(S−S∗)2S−W2(μ+d+δ+r2)I(I−I∗)2 |
+βINS(W2−W1)[S∗(S−S∗)(I−I∗)2+I∗(S−S∗)2(I−I∗)]+W2Ik(1−r1)(E−E∗)(I−I∗) |
For W1=W2 and take W2 and for the fact that W2Ik(1−r1) will be very small we deduce that:
dV1dt≤0 |
In the same way one has:
dV2=−W3(B−B∗)2B(rk(B+B∗)−r−εP))−W3B−B∗B(εB∗(P−P∗)−W4γ(P−P∗)2P+W4αP−P∗P(B−B∗)=−W3(B−B∗)2B(rk(B+B∗)−r−εp))−W4γ(P−P∗)2P−(εPB∗W3−αBW4)P−P∗BP(B−B∗)≤0 |
and: dVdt=0 for S=S∗, I=I∗, B=B∗ and P=P∗
Hence by the LaSalle's principe [8], endemic equilibrium is globally asymptotically stable in Δθ.
Some authors take stochastic perturbations into account when they investigate the epidemic system [6,12,13,14].We assume that the perturbation is of white noise type, that is β→β+σ1dW1(t)dt, β1→β1+σ2dW2dt, then we get the following stochastic system:
{˙S=Λ−βSIN−β1BSK+B−μS−σ1SIdW1dt−σ2BSK+BdW2dt˙E=(1−p)(βSIN+β1BSK+B)+r2I−(μ+k(1−r1))E+(1−p)σ1SIdW1dt+(1−p)σ2BSK+BdW2dt˙I=p(βSIN+β1BSK+B)+k(1−r1)E−(μ+d+δ+r2)I+pσ1SIdW1dt+pσ2BSK+BdW2dt˙B=rB(1−BK)−εBP˙P=αB−γP | (7) |
where w1(t) and w2(t) are standard one dimensional Brownian motion, σi>0, i = 1..3 are the intensity of the white noise.
Through this paper, unless otherwise specified, we let (Ω,F,{F}i≥0,P) be a complete space with filtration {Fi} satisfying the usual conditions (i.e. it is right continuous and increasing while F0 contains all null sets).
The following Itô's formula will be used in the sequel of this paper.
Lemma 4.1. [14] Assume that X(t)∈R+ is an Itô's process of the form
dx(t)=f(x,t)dt+ϕ(x,t)dB(t) | (8) |
where f:Rn×[0,+∞)→Rn and ϕ(x,t):Rn×[0,+∞)→Rn are measurable functions.
Given V (x, t) is a Lyapounov function, we define the operator LV by:
LV(x,t)=Vt(x,t)+Vx(x,t)f(x,t)+12trace[ϕTVxx(x,t)ϕ(x,t)]. |
Where Vt(x,t)=dV(x,t)¢dt; Vx(x,t)=dV(x,t)dx1,…,dV(x,t)dxn), Vxx(x,t)=(∂2V(x,t)∂xi∂xj)n×n
Then the general Itô's formula is given by:
dV(x,t)=LV(x,t)+Vx(x,t)G(x,t)dW(t) |
For the sequel we need the following definitions :
Definition 4.2. The solution of system (7) is stochastically ultimately bounded a.s. if for any ϵ∈(0,1) , there exists a positive constant ϱ=ϱ(ϵ) such that for any initial value (S(0), E(0), I(0)) ∈R3+ , the solution of system (7) has the property :
lim sup | (9) |
Definition 4.3. The trivial solution x(t) = 0 of (7) is said to be stable in probability if for all \varepsilon >0 ,
\lim\limits_{x_0\rightarrow 0} \mathbb{P}(\sup\limits_{t\geq 0}\vert x(t, x_0)\vert \geq \varepsilon) = 0 |
Definition 4.4. The trivial solution x(t) = 0 of (7) is said to be asymptotically stable if it is stable in probability and moreover
\lim\limits_{x_0\rightarrow 0} \mathbb{P}(\lim\limits_{t\rightarrow \infty} x(t, x_0) = 0) = 1 |
Definition 4.5. The trivial solution x(t) = 0 of (7) is said to be globally asymptotically stable if it is stable in probability and moreover
\mathbb{P}(\lim\limits_{t\rightarrow \infty} x(t, x_0) = 0) = 1 |
Definition 4.6. The trivial solution x(t) = 0 of (7) is said to be almost surely exponentially stable if for all x_0 \in \mathbb{R}^n,
\lim\limits_{t\rightarrow \infty} \frac{1}{t}\ln\vert x(t, x_0)\vert <0 \qquad a.s. |
Definition 4.7. The trivial solution x(t) = 0 of (7) is said to be exponentially p stable if there is a pair of positive constants C_1 and C_2 such that for all x_0 \in \mathbb{R}^n, \mathbb{E}(\vert x(t, x_0)\vert ^p\leq C_1\vert x(t, x_0)\vert ^pe^{-C_2t} on t\geq 0
Lemma 4.8. For any given (S(0), E(0), I(0), B(0), P(0)) \in \mathbb{R}^5_+ , there is a unique solution (S(t), E(t); I(t), B(t), P(t)) \in \Delta_\theta , on t \ge 0 and will remain in R^5_+ with probability one.
Proof Since the coefficients of model (7) satisfy the local Lipchitz condition, then there exists a unique local solution on [0, \tau_{\varepsilon}), where \tau_{\varepsilon} is the explosion time. Proposition (3.1) shows us that 0\leq S(t)+E(t)+I(t)\leq \frac{\Lambda}{\mu}, B\leq K et P(t) < \frac{\alpha K}{\gamma } for t\in [0, \tau_{\varepsilon})
We, now, want to show that this solution is global, i.e. \tau_{\varepsilon} = +\infty a.s. Let n_0>0 be sufficiently large for for any (S(0), E(0), I(0), B(0), P(0))) remaining in the interval [\frac{1}{n_0}, n_0]. For each integer n>n_0, we define the stopping time:
\tau_n = \inf\{t\in [0, \tau_{\varepsilon}); S(t)\not \in(\frac{1}{n}, n), E(t)\not \in(\frac{1}{n}, n), I(t)\not \in(\frac{1}{n}, n), B(t)\not \in(\frac{1}{n}, n)\frac{}{} or P(t)\not \in(\frac{1}{n}, n)\}
By reduction to absurdity, we suppose that \tau_{\varepsilon} = +\infty is false, there is a pair of constant T>0 and for any \varepsilon \in (0, 1) such that P\{\tau_{\infty}\leq T\}>\varepsilon. Consequently, there is an integer n_1\geq n_0 such that
P\{\tau_n\leq T\}\geq \varepsilon, n\geq n_1 | (10) |
Define C^3 V:\mathbb{R}^4_+\rightarrow \mathbb{R}, lake this:
V(S, I, B, R) = (S-\ln S)+(E-\ln E)+(I-\ln I)+(B-\ln B)+(P-\ln P) |
for (S(t), E(t), I(t), B(t), P(t))\in \Delta_{\theta}. One has:
\begin{align*} LV& = (1-\frac{1}{S})(\Lambda-\beta SI -\beta_1S \frac{B}{K+B} - \mu S -\sigma_1 SIdW_1-\sigma_2S \frac{B}{K+B}dW_2 )\\ &+(1-\frac{1}{E})((1-p)(\beta SI+\beta_{e}S \frac{B}{K+B})+r_2I-(\mu+k(1-r_2)E+(1-p)\sigma_1 SIdW_1 \\ &+(1-p)\sigma_2S \frac{B}{K+B}dW_2 )+(1-\frac{1}{I})(p(\beta SI+\beta_{e}S \frac{B}{K+B})+k(1-r_2)E - (\mu+\delta + d+r_2)I \\ &+p\sigma_1 SIdW_1 +p\sigma_2S \frac{B}{K+B}dW_2 )+(1-\frac{1}{B})(rB(1-\frac{B}{K} - \varepsilon BP)+(1-\frac{1}{P})(\alpha B-\gamma P)\\ &+\frac{1}{2}(\sigma_1^2I^2+\sigma_2^2\frac{B^2}{(B+K)^2}+ (1-p)^2\sigma_1^2\frac{S^2I^2}{E^2}+(1-p)^2\sigma_2^2p^2\frac{S^2B^2}{E^2(B+K)^2})+p^2\sigma_1^2S^2\\ &+\sigma_2^2p^2\frac{S^2B^2}{I^2(B+K)^2}) \end{align*} |
\begin{align*} LV& = \Lambda+3\mu+\delta+\gamma+\beta_{e} \frac{B}{K+B}+(\beta_h+\xi )I-\mu (S+I+R)-\beta_hS-\beta_{e} \frac{B}{K+B}\frac{S}{I} -\delta B\\ &-\frac{1}{B}\xi I +\frac{1}{2}(\sigma_1^2I^2+\sigma_2^2\frac{B^2}{(B+K)^2}+(1-p)^2\sigma_1^2\frac{S^2I^2}{E^2}\\ &+(1-p)^2\sigma_2^2p^2\frac{S^2B^2}{E^2(B+K)^2})+p^2\sigma_1^2S^2+\sigma_2^2p^2\frac{S^2B^2}{I^2(B+K)^2}) \end{align*} |
from (7) we have:
LV\leq \Lambda+3\mu+k(1-r_1)+r_2+\delta+\gamma+\beta_{e} +(\beta_h+\xi )\frac{\lambda}{\mu}+\sigma_1^2(\frac{\Lambda}{\mu})^2+p\sigma_2^2 = C |
Therefore, we obtain:
dV\leq Cdt -((1-p)(\frac{SI}{E}-p)\sigma_1 dW_1(t)-(1-(1-p)\frac{S}{E}-p\frac{S}{I})\sigma_2\frac{B}{K+B}dW_2(t) | (11) |
By integrating both sides of (18) from 0 to \tau _k \wedge T yields that:
\begin{align*} \int_0^{t\wedge T}dV(S(t), E(t), I(t), B(t), P(t))&\leq \int_0^{t\wedge T} Cdt-(1-p)\int_0^{t\wedge T}\sigma_1 (\frac{SI}{E}-p)\sigma_1 dW_1dW_1(t)\\ &-\int_0^{t\wedge T}(1-(1-p)\frac{S}{E}-p\frac{S}{I})\sigma_2\frac{B}{K+B}dW_2(t) \end{align*} |
where \tau_n\wedge T = min \{\tau_n, T\}. Whence taking the expectative of the above inequality leads to
EV(S(\tau_n\wedge T), E(\tau_n\wedge T), I(\tau_n\wedge T), B(\tau_n\wedge T), P(\tau_n\wedge T)))\leq V(S(0), E(0), I(0), B(0), P(0))+CT | (12) |
Set \Omega_n = \{\tau_n\leq T\} for n>n_1 by inequality (18), we have P(\Omega_n)\geq \varepsilon. Note that every \omega \in \Omega_n, there exists at least one of S(\tau_n, \omega), I(\tau_n, \omega), B(\tau_n, \omega) and P(\tau_n, \omega) equals either à n or \frac{1}{n}, hence
V(S(\tau_n, \omega), E(\tau_n, \omega), I(\tau_n\omega))\geq (n-1-\ln n)\wedge (\frac{1}{n}-1-\ln\frac{1}{n}) |
as consequence from (22) one has:
\begin{align*} V(S(0), E(0), I(0), B(0), P(0))+CT &\geq E[1_{\Omega_n(\omega)}V(S\tau_n, \omega), E(\tau_n, \omega), I(\tau_n, \omega), B(\tau_n, \omega), \\ &P(\tau_n, \omega)]\geq \varepsilon (n-1-lnn)\wedge (\frac{1}{n}-1-ln\frac{1}{n}) \end{align*} |
where 1_{\Omega_n} is indicator function of \Omega_n. Let n\rightarrow +\infty leads to the following contradiction:
+\infty> V(S(0), E(O), I(0), B(0), P(0))+CT = +\infty | (13) |
So we must have \tau_{\infty} = \infty. Therefore, the solution (S(t), E(t), I(t), B(t), P(t)) of model will not explode at a finite time with probability one. This completes the proof of lemma (4.8).
Theorem 4.9. The solutions of System (7) are stochastically ultimately bounded for any initial value (S(0), I(0), B(0), R(0))\in \Delta_{\theta}
Proof From lemma (4.1) we know that the solution (S(t), E(t), I(t), B(t), P(t)) will remains in \mathbb{R}^5_+ for all t\geq 0 with probability 1. defines functions:
V_1 = e^tS^{\theta};\, \, \, V_2 = e^tE^{\theta}\, \, et \, \, V_3 = e^tI^{\theta}\, \, pour 0<\theta <1. |
By Ito's formula, one has :
\begin{array}{l} dV_1 = LV_1dt +\theta e^t S^{\theta}(\sigma_1SIdW_1+\sigma_2\frac{BS}{K+B}dW_2)\\ dV_2 = LV_2dt +(1-p)\theta e^t E^{\theta}(\sigma_1SIdW_1+\sigma_2\frac{BS}{K+B}dW_2)\\ dV_3 = LV_3dt +p\theta e^t I^{\theta}(\sigma_1SIdW_1+\sigma_2\frac{BS}{K+B}dW_2) \end{array} | (14) |
where
\begin{array}{l} LV_1 = e^tS^{\theta}[1+\theta (\frac{\Lambda}{S} -\beta \frac{I}{N}-\beta_{1} \frac{B}{K+B}-\mu )+\frac{\theta (\theta -1)}{2}(\sigma_1^2I^2+\sigma_2^2(\frac{B}{K+B})^2)e^{-t}]\\ LV_2 = e^tE^{\theta}[1+\theta(\beta (1-p)(\frac{SI}{NE}+\beta_{1}S \frac{B}{(K+B)E})+r_{2}\frac{I}{E}-(\mu +k(1-r_{1})) \\ +\frac{\theta (\theta -1)}{2}(\sigma_1^2\frac{S^2I^2}{E^2}+\sigma_2^2(\frac{SB}{(K+B)E})^{2})e^{-t}]\\ LV_3 = e^tI^{\theta}[1+\theta(\beta p\frac{S}{N}+\beta_{1}pS \frac{B}{(K+B)I} +k(1-r_1)\frac{E}{I}-(\mu +d+\delta+r_{2}))\\ +\frac{\theta (\theta -1)}{2}(\sigma_1^2S^2+\sigma_2^2(\frac{SB}{(K+B)I})^2)e^{-t}] \end{array} | (15) |
Thus, there exists C_1, C_2 and C_3 such that:
LV_1<C_1e^t, LV_2<C_2e^t \, \, et\, \, LV_3<C_3e^t |
It follows that:
\begin{align*} e^tE(S^{\theta}(t))-E(S^{\theta}(0))&\leq C_1e^t\\ e^tE(E^{\theta}(t))-E(E^{\theta}(0))&\leq C_2e^t, \, \, et\, \, \\ e^tE(I^{\theta}(t))-E(I^{\theta}(0))&\leq C_3e^t \end{align*} |
We get now:
\begin{array}{l} \limsup\limits_{t\rightarrow \infty}ES^{\theta}(t)\leq C_1<\infty\\ \limsup\limits_{t\rightarrow \infty}E(E)^{\theta}(t)\leq C_2<\infty\\ \limsup\limits_{t\rightarrow \infty}EI^{\theta}(t)\leq C_3<\infty \end{array} | (16) |
for X(t) = (S(t), E(t), I(t))\in \mathbb{R}^3_+, note that
\begin{array}{l} \vert X(t)\vert^{\theta} = (S^2(t)+E^2(t)+I^2(t))^{\frac{\theta}{2}}\leq 3^{\frac{\theta}{2}}max\{S^{\theta}(t), E^{\theta}(t), I^{\theta}(t)\}\\ \leq 3^{\frac{\theta}{2}}(S^{\theta}(t)+E^{\theta}(t)+I^{\theta}(t)) \end{array} | (17) |
consequently:
\limsup\limits_{t\rightarrow \infty}E\vert X(t)\vert \leq 3^{\frac{\theta}{2}}(C_1+C_2+C_3) |
as result, there exists a positive \delta_1 sutch that
\limsup\limits_{t\rightarrow \infty}E\vert \sqrt{X(t)}\vert <\delta_1 | (18) |
now for \varepsilon >0, let \delta = \frac{\delta_1^2}{\varepsilon^2}, by Chebychev'inequality,
P\{\vert X(t)\vert\}\leq \frac{E\vert \sqrt{X(t)}\vert }{\sqrt{\delta}} = \varepsilon | (19) |
wich gives the desired assertion.
In this section we study the p^{th} moment exponentially stability of the desease free equilibrium::
Theorem 5.1. Set p\geq 2, if \mathcal{R}_0 < 1, the disease free equilibrium is p^{th} moment exponentially stable in \Delta_\theta
The proof of this theorem needs the two next results:
Theorem 5.2. (Afanas'ev et Komanowski, [2]) Suppose that there exists a function V(t, x) \in C^{1, 2}(R_+, R^n), satisfying the following inequalities:
K_1\vert x\vert\leq V(t, x)\leq K_2\vert x\vert ^p |
and
LV(t, x)\leq -K_3\vert x\vert ^p, t\geq 0 |
where p, K_1, K_2 and K_3 are positive constants.Then the equilibrium of (7) is pth moment exponentially stable.When p = 2, it is usually said to be exponentially stable in mean square and the disease free equilibrium is globally asymptotically stable.
Lemma 5.3. If p\geq 2 and \varepsilon, x, y>0. then
x^{p-1}y\leq \frac{(p-1)\varepsilon}{p}x^p+\frac{1}{p}\varepsilon^{1-p}y^p |
and
x^{p-2}y^2\leq \frac{(p-2)\varepsilon}{p}x^p+\frac{2}{p}\varepsilon^{(2-p)/2}y^p |
Proof of theorem (5.1): Set p\geq 2 and (S(0), I(0), B(0), P(0)) \in \Delta_{\theta}, from lemma (4.1), the solution of the system remains in \Delta_{\theta}. Let be the following Lyapounov function
V = c_1(\frac{\Lambda}{\mu}-S)^p+\frac{1}{p}I^p+c_2B^p |
One gets by Itô's formula
\begin{align*} LV& = -c_1p(\frac{\Lambda}{\mu}-S)^{p-1}(\Lambda -\beta_1 S \frac{B}{K+B}-\beta \frac{SI}{N} - \mu S )+\frac{1}{2}c_1p(p-1)(\frac{\Lambda}{\mu}-S)^{p-2}[\sigma_1 ^2S^2I^2\\ &+\sigma_2^2S^2\frac{B^2}{(K+B)^2}]+I^{p-1}(\beta_1 pS \frac{B}{K+B}+\beta p\frac{SI}{N} +k(1-r_1)E - (\mu +d+ \delta+r_2)I ]\\ &+\frac{1}{2}(p-1)[\sigma_1^2I^pS^2+\sigma_2^2I^{p-2}S^2\frac{B^2}{(K+B)^2}] +c_2pB^{p-1}( rB(1-\frac{B}{K}) -\varepsilon Bp] \\ & = -c_1p\mu(\frac{\Lambda}{\mu}-S)^p+c_1p(\frac{\Lambda}{\mu}-S)^{p-1}(\beta_{1}S \frac{B}{K+B}+\beta SI)\\ &+\frac{1}{2}C_1p(p-1)(\frac{\Lambda}{\mu}-S)^{p-2}[\sigma_1 ^2S^2I^2+\sigma_2^2S^2\frac{B^2}{(K+B)^2}] +I^{p-1}[\beta_{1}pS \frac{B}{K+B}+\beta p\frac{SI}{N}\\ & - (\mu+d + \delta+r_2)I ]+\frac{1}{2}(p-1)[\sigma_1^2I^pS^2+\sigma_2^2I^{p-2}S^2\frac{B^2}{(K+B)^2}]+c_2pB^{p}( r -r\frac{B^{2}}{K}- \varepsilon P)\\ \end{align*} |
of (4) gives us S\leq \frac{\Lambda}{\mu} and the fact that \frac{B}{K+B} < 1, we obtain:
\begin{align*} LV&\leq -c_1p\mu(\frac{\Lambda}{\mu}-S)^p+c_1p(\frac{\Lambda}{\mu}-S)^{p-1}(\beta\frac{\Lambda}{\mu} +\beta_{1} \frac{\Lambda}{\mu}I)+c_1\mu p(\frac{\Lambda}{\mu}-S)^{p-1}S\\ &-\frac{1}{2}c_1p(p-1)(\frac{\Lambda}{\mu}-S)^{p-2}[\sigma_1^2\frac{\Lambda}{\mu}^2I^2+\sigma_2\frac{\Lambda}{\mu}^2] +I^{p-1}(\beta_{1}p\frac{\Lambda}{\mu}+\beta p\frac{\Lambda}{\mu}I - (\mu+r + \delta+r_2)I )\\ &+\frac{1}{2}(p-1)[\sigma_1^{2}\frac{\Lambda}{\mu}^2I^P +\frac{1}{2}(p-1)\sigma_2^{2}\frac{\Lambda}{\mu}^2]\\ &\leq -c_1p\mu(\frac{\Lambda}{\mu}-S)^p+c_1p\beta\frac{\Lambda}{\mu}(\frac{\Lambda}{\mu}-S)^{p-1} +c_1p\beta_{1} \frac{\Lambda}{\mu}(\frac{\Lambda}{\mu}-S)^{p-1}I-\frac{1}{2}c_1p(p-1)(\frac{\Lambda}{\mu}-S)^{p-2}[\sigma_1^2\frac{\Lambda}{\mu}^2I^2\\ &+\sigma_2\frac{\Lambda}{\mu}^2] (\beta\frac{\Lambda}{\mu} - (\mu+d + \delta+r_2))I^p+\beta_{1}\frac{\Lambda}{\mu}I^{p-1}+\frac{1}{2}(p-1)\{\sigma_1\frac{\Lambda}{\mu}^2I^P+\sigma_2\frac{\Lambda}{\mu}^2\}+c_2pr B^{p-1} I\\ & - c_2p\delta B^p\\ \end{align*} |
and by application of lemma (4.1), one gets now :
\begin{align*} LV&\leq -c_1(p\mu-(p-1)\varepsilon (\beta \frac{\Lambda}{\mu} +\frac{1}{2}(p-1)(p-2)\sigma ^2(\frac{\Lambda}{\mu})^2))(\frac{\Lambda}{\mu}-S)^p+pc_1\beta_{1} \frac{\Lambda}{\mu} (\frac{\Lambda}{\mu}-S)^{p-1}\\ &-((\mu+d+\delta+r_2 )-(\beta\frac{\Lambda}{\mu}(1+c_1\varepsilon^{1-p})+c_1(p-1)\sigma ^2\varepsilon^{(2-p)/2}+c_2r \varepsilon^{1-p}\\ &+\frac{1}{2}(p-1)\sigma^2\frac{\Lambda}{\mu}^2)+c_3(d+\delta+r_2)\varepsilon^{1-p})I^p - (c_2p\delta -c_2r \varepsilon)B^p\\ &\leq -c_1(p\mu-(p-1)\varepsilon (\beta \frac{\Lambda}{\mu} +\frac{1}{2}(p-1)(p-2)\sigma_1 ^2(\frac{\Lambda}{\mu})^2))(\frac{\Lambda}{\mu}-S)^p\\ &-((\mu+d+\delta+r_2 )-(\beta\frac{\Lambda}{\mu}(1+c_1\varepsilon^{1-p})+c_1(p-1)\sigma_2 ^2\varepsilon^{(2-p)/2}+(c_2r+c_3\gamma) \varepsilon^{1-p}\\ &+\frac{1}{2}(p-1)\sigma^2\frac{\Lambda}{\mu}^2))I^p- c_2(p\delta -r \varepsilon)B^p \end{align*} |
We choose \varepsilon sufficiently small such that the coefficients of (\frac{\Lambda}{\mu}-S)^p and B^p be negative.
We, also, can choose c_1, c_2 and c_3 positive such that the coefficient of I^p be negative. according to theorem (5.1), the proof is complete.
In this subsection, we investigate stochastic stability of the desease free equilibrium, E_0 = (\frac{\Lambda}{\mu}, 0, 0, K, 0). the following result gives the suffucient condition for almost surely exponential stability.
Theorem 5.4. If \mathcal{R}_0\leq 1 and \beta^2\leq 2\sigma_1 ^2\mu then the disease free equilibrium is almost surely exponential stable in \Delta_{\theta}
Proof: Define
V = \ln( (\frac{\Lambda}{\mu}-S)+E+I+B+P) |
Using Itô's formula:
\begin{align*} LV& = \frac{1}{\frac{\Lambda}{\mu}-S+E+I+B+P}(-dS+dE+dI+dB+dP)+\frac{1}{(\frac{\Lambda}{\mu}-S+E+I+B+P)^2}(dSdS\\ &+dEdE+dIdI+dBdB+dPdP)+\frac{1}{(\frac{\Lambda}{\mu}-S+E+I+B+P)^2}(dSdI +dSdB+dSdP+dIdB\\ &+dIdP+dBdP) \end{align*} |
one has:
\begin{align*} LV& = \frac{1}{(\frac{\Lambda}{\mu}-S)+E+I+B+P}(-\Lambda +2(\beta_1S \frac{B}{K+B}+\beta SI)+\mu S-\mu (E+ I)-(d+\delta)I\\ &+(r+\alpha)B -r\frac{B^2}{K}-\varepsilon BP-\gamma P ] -\frac{1}{\frac{\Lambda}{\mu}-S+E+I+B+R)^2}(2\sigma_1 ^2S^2I^2+\sigma_2^2S^2 \frac{B^2}{(K+B)^2)})\\ &\leq\frac{1}{\frac{\Lambda}{\mu}-S+E+I+B+P}[-\Lambda +\beta SI+\mu S-\mu (E+I)] -\frac{2\sigma_1 ^2S^2I^2}{(\frac{\Lambda}{\mu}-S+E+I+B+P)^2}\\ &-\frac{1}{\frac{\Lambda}{\mu}-S+E+I+B+P}( 2\beta_1S \frac{B}{K+B}+(r+\alpha)B)\\ \end{align*} |
define U = \frac{2\sigma_1 SI}{\frac{\Lambda}{\mu}-S+E+I+B+P},
2\beta_1U-2\sigma_1 ^2U^{2}-\mu = -2\sigma ^2(U-\frac{\beta_1}{2\sigma_1 })^{2}+(\beta_1^2-2\sigma_1 ^2\mu)/{2\sigma_1 ^2} |
one has:
\begin{align*} dV&\leq [-2\sigma ^2(U-\frac{\beta_1}{2\sigma_1 })^{2}+(\beta_1^2-2\sigma_1 ^2\mu)/{2\sigma_1 ^2}]dt+2\sigma_1 UdW(t)\\ &\leq (\beta_1^2-2\sigma_1 ^2\mu)/{2\sigma_1 ^2})dt+2\sigma_1 UdW_1(t)\\ \end{align*} |
By integrating from 0 to t, we cheek:
\ln( \frac{\Lambda}{\mu}-S+E+I+B+P)\leq \ln( \frac{\Lambda}{\mu}-S(0)+E(0)+I(0)+B(0)+P(0))+(\beta_1^2-2\sigma_1 ^2\mu)/{2\sigma_1 ^2})t+G(t) | (20) |
with G(t)a martingale defined by :G(t) = \sigma_1\int_0^tZ dW_1(t), and in vertue of lemma (5.3) the solution of model(7) remains in \Delta, it exists a positive constatnt C sutch that
<G, G>_t = \sigma_1^2\int_0^tZ^2ds\leq Ct |
finally by th strong law of large numbers for local martingales, we have:
\limsup\limits_{t\rightarrow +\infty}\ln( \frac{\Lambda}{\mu}-S+E+I+B+P)\leq (\beta_1^2-2\sigma_1 ^2\mu)/{2\sigma_1 ^2})\leq 0 \qquad a.s. |
The following result gives conditions for extinction of tuberculosis desease, it means that the desease dies out with probability 1.:
Theorem 5.5. If \left[(\beta+\beta_1)-(\mu +d+\delta)-\frac{1}{2}\sigma_1^2(\frac{\Lambda}{\mu})^2\right]\leq 0 et \mathcal{R}_0 < 1, then I(t) converge almost surely exponentially to 0.
Mathematicaly, we have to show that:
\limsup\limits_{t\rightarrow \infty}\frac{\ln I(t)}{t}\leq 0 |
Proof: One has
\dot{E}+\dot{I} = \left(\beta\displaystyle\frac{SI}{N}+\beta_1\displaystyle\frac{BS}{K+B}\right)-\mu E-(\mu +d+\delta)I+\sigma_1SIdW_1+\sigma_2\frac{BS}{K+B}dW_2 |
which gives
\dot{I}\leq \left(\beta\displaystyle\frac{SI}{N}+\beta_1\displaystyle\frac{BS}{K+B}\right)-\mu E-(\mu +d+\delta)I+\sigma_1SIdW_1+\sigma_2\frac{BS}{K+B}dW_2 |
Let be a Lyapounov function V(I(t)) = \ln I(t), By Itô's calculus:
dV(I(t)) = \frac{1}{I}dI(t)-\frac{1}{2I^2}(dI(t))^2 |
and then
dV(I(t))\leq \left(\beta\displaystyle\frac{S}{N}+\beta_1\displaystyle\frac{BS}{I(K+B)}\right)-(\mu +d+\delta)-\frac{1}{2}[\sigma_1^2S^2+\sigma_2^2\frac{B^2S^2}{I^2(K+B)^2}]+\sigma_1SIdW_1+\sigma_2\frac{BS}{K+B}dW_2 |
\leq \left(\beta+\beta_1\right)-(\mu +d+\delta)-\frac{1}{2}\sigma_1^2(\frac{\Lambda}{\mu})^2+\sigma_1SIdW_1+\sigma_2\frac{BS}{K+B}dW_2 |
gives the following equation:
\ln I(t) = \ln I_0+\left(\beta+\beta_1\right)-(\mu +d+\delta)-\frac{1}{2}\sigma_1^2(\frac{\Lambda}{\mu})^2dt +\int_0^T\sigma_1SIdW_1(t)+\int_0^t\sigma_2\frac{BS}{K+B}dW_2 |
\ln I(t)\leq \ln I_0+\left[\beta+\beta_1)-(\mu +d+\delta)-\frac{1}{2}\sigma_1^2(\frac{\Lambda}{\mu})^2\right]t +G(t) | (21) |
wher G(t) is a martingale defined by:
G(t) = \int_0^T\sigma_1(\frac{\Lambda}{\mu})^2dW_1(t)+\int_0^t\sigma_2dW_2 |
THis calculus implies that:
<G, G>_t\leq (\sigma_1^2(\frac{\Lambda}{\mu})^2+\sigma_2^2)t. |
And by the strong law of large numbers for local martingales [12,14] we have:
\limsup\limits_{t\rightarrow \infty} \frac{G(t)}{t} = 0 \qquad almost \qquad surely. |
and then:
\limsup\limits_{t\rightarrow \infty}\frac{I(t)}{t}\leq \left[\beta+\beta_1)-(\mu +d+\delta)-\frac{1}{2}\sigma_1^2(\frac{\Lambda}{\mu})^2\right]\leq 0 \qquad a.s. | (22) |
this completes the proof.
Definition 6.1. System (7) is said to be persistent in the mean, if
\lim\limits_{t\rightarrow +\infty}\inf \frac{1}{t}\int _0^tI(s)ds>0 |
Theorem 6.2. If \frac{\beta\Lambda}{\mu(\mu+d+\delta+r_2)}>1 then (7) is persistent in the mean, moreover we have:
\begin{align*} \lim\limits_{t\rightarrow +\infty}\inf \frac{1}{t}\int _0^tI(s)ds&>\frac{(\mu+d+\delta+r_2)(\beta\frac{\Lambda}{\mu(\mu+d+\delta+r_2)}-1)}{(\beta\frac{\Lambda}{\mu}+(\mu+d+\delta))}\\ \lim\limits_{t\rightarrow +\infty}\inf \frac{1}{t}\int _0^tE(s)ds&\geq \frac{r_2}{\mu+k(1+r_1)} \frac{(\mu+d+\delta+r_2)(\beta\frac{\Lambda}{\mu(\mu+d+\delta+r_2)}-1)}{(\beta\frac{\Lambda}{\mu}+(\mu+d+\delta))} \\ \lim\limits_{t\rightarrow +\infty}\inf \frac{1}{t}\int _0^t(\frac{\Lambda}{\mu}-S(s))ds&>\mu \frac{(\mu+d+\delta+r_2)(\beta\frac{\Lambda}{\mu(\mu+d+\delta+r_2)}-1)}{(\beta\frac{\Lambda}{\mu}+(\mu+d+\delta))}\\ \end{align*} |
The proof is based on the following lemma:
Lemma 6.3. [1] Let g\in C([0, \infty)\times\Omega, [0, \infty)) and G\in C([0, \infty)\times\Omega, [0, \infty)). If there exists positive constants \lambda _0 and \lambda such that:
\ln g(t)\geq \lambda _0 t-\lambda \int_0^tg(s)ds+G(t)\qquad a.s. |
for all t\geq 0, and \lim_{t\rightarrow +\infty}\frac{G(t)}{t} = 0 a.s., then
\lim\limits_{t\rightarrow +\infty}\inf \frac{1}{t}\int _0^tg(t)dt\geq\frac{\lambda_0}{\lambda} \qquad a.s. |
Proof of theorem (6.2): Consider the following Lyapounov function:
V(S, E, I) = \alpha_1(S+E+I)+\alpha_2 S+\ln I |
where \alpha_1 and \alpha_2 are defined below. By Ito's formula we have:
\begin{align*} dV& = \alpha_1[\Lambda -\mu ( S+E+I)-(d+\delta)I]+\alpha_2[\Lambda -\beta \displaystyle\frac{SI}{N}-\beta_1\displaystyle\frac{BS}{K+B}-\mu S-\sigma_1SIdW_1\\ &-\sigma_2\frac{BS}{K+B}dW_2 ] +p\left(\beta\displaystyle\frac{S}{N}+\beta_1\displaystyle\frac{BS}{I(K+B)}\right)+k(1-r_1)\frac{E}{I}-(\mu +d+\delta+r_{2})+p\sigma_1SdW_1\\ &+p\sigma_2\frac{BS}{I(K+B)}dW_2 +(2p^2-2p+2)(\sigma_1^2S^2I^2+\frac{S^2B^2}{(K+B)^2})\\ &\geq \alpha_1[(\Lambda -\mu (S+E+I)-(d+\delta)I]+\alpha_2[(\Lambda -\mu S)-\beta_1S \frac{B}{K+B}-\beta \frac{\Lambda}{\mu}I )dt-\sigma_1 SIdW_1\\ &-\sigma_2S \frac{B}{K+B}dW_2 ] +p(\beta_1S \frac{B}{I(K+B)}+\beta\frac{\Lambda}{\mu} - (\mu+d+\delta+r_2) +\sigma_1^2 S^2)dt+p\sigma_1 SdW_1 \\ &+p\sigma_2S \frac{B}{I(K+B)}dW_2\\ &\geq p(\mu+d+\delta+r_2)(\beta\frac{\Lambda}{\mu(\mu+d+\delta+r_2)}-1)+[(\alpha_1+\alpha_2)\mu-\beta] ( \frac{\Lambda}{\mu}-S)\\ &-(\alpha_2-\frac{\mu}{\Lambda})\beta_1S \frac{B}{K+B} +(\alpha_1-\beta_{h} \frac{\Lambda}{\mu})I+(1-\alpha_2I)S\sigma_1SdW_1+(\frac{1}{I}-\alpha_2)\sigma_2S \frac{B}{K+B}dW_2\\ \end{align*} |
with \alpha_2 = \frac{\mu}{\Lambda} and \beta = (\alpha_1+\alpha_2)\mu one has:
\begin{align*} dV&\geq (\mu+d+\delta+r_2)(\beta\frac{\Lambda}{\mu(\mu+d+\delta+r_2)}-1)dt -(\beta(\frac{\Lambda}{\mu}+(\mu+d+\delta))Idt\\ &+(1-\alpha_2I)S\sigma_1SdW_1+(\frac{1}{I}-\alpha_2)\sigma_2S \frac{B}{K+B}dW_2\\ \end{align*} |
and integrating both sides, one obtains:
V(S, E, I)\geq V(S_0, E_0, I_0)+(\mu+d+\delta+r_2)(\beta\frac{\Lambda}{\mu(\mu+d+\delta+r_2)}-1)t-(\beta(\frac{\Lambda}{\mu}+(\mu+d+\delta))\int_0^tIdt |
+(1-\alpha_2I)\sigma_1\int_0^tSdW_1+(\frac{1}{I}-\alpha_2)\sigma_2\int_0^tS \frac{B}{K+B}dW_2 |
hence
\ln I\geq (\mu+d+\delta+r_2)(\beta\frac{\Lambda}{\mu(\mu+d+\delta+r_2)}-1)t-(\beta\frac{\Lambda}{\mu}+(\mu+d+\delta))\int_0^tIdt+D(t) |
with
D(t) = V(S_0, E_0, I_0)-(\alpha_1+\alpha_2)S-\alpha_1 E-\alpha_1 I+ (1-\alpha_2I)\sigma_1\int_0^tSdW_1+(\frac{1}{I}-\alpha_2)\sigma_2\int_0^tS \frac{B}{K+B}dW_2 |
by the the strong low of martingale, one deduces that:
\lim\limits_{t\rightarrow +\infty}\frac{D(t)}{t} = 0 |
By the lemma (4.8) one has:
I(t)\geq \frac{(\mu+d+\delta+r_2)(\beta\frac{\Lambda}{\mu(\mu+d+\delta+r_2)}-1)}{(\beta\frac{\Lambda}{\mu}+(\mu+d+\delta))} |
From (4)
\dot{E}\geq r_2 I-(k(1-r_1)+\mu)E |
wich gives
\lim\limits_{t\rightarrow \infty}\inf E(t)\geq \frac{r_2}{\mu+k(1-r_1)}\lim\limits_{t\rightarrow \infty}\inf (I(t))+\lim\limits_{t\rightarrow \infty}\inf \frac{E_0-E}{(\mu+k(1-r_1) t} |
\geq \frac{r_2}{\mu+k(1+r_1)}\frac{(\mu+d+\delta+r_2)(\beta\frac{\Lambda}{\mu(\mu+d+\delta+r_2)}-1)}{(\beta\frac{\Lambda}{\mu}+(\mu+d+\delta))} |
For the last equality, we take account of the following relation::
\begin{align*} dN& = d(S+E+I) = (\mu (\frac{\Lambda}{\mu}-S)-\mu E-(\mu +d+\delta)I)dt\\ &\geq (\mu (\frac{\Lambda}{\mu}-S)-\mu E-\mu I)dt \end{align*} |
hence
\lim\limits_{t\rightarrow \infty}\inf (\frac{\Lambda}{\mu}-S)\geq \lim\limits_{t\rightarrow \infty}\frac{N-N_0}{\mu t}+\mu \lim\limits_{t\rightarrow \infty}\inf I(t)+\mu \lim\limits_{t\rightarrow \infty}\inf E(t) |
\geq \mu \frac{(\mu+d+\delta+r_2)(\beta\frac{\Lambda}{\mu(\mu+d+\delta+r_2)}-1)}{(\beta\frac{\Lambda}{\mu}+(\mu+d+\delta))} |
The authors declare no conflict of interest.
[1] | J. Adnani, K. Hattaf, N. Yousfi, Analysis of a Stochastic SIRS Epidemic Model with Specific functional Response, Applied Mathematical Sciences, 10 (2016), 301-314. |
[2] | V. N. Afanasev, V. B. Kolmanowski and V. R. Nosov, Mathematical Theory of Global Systems Design, Kluwer, Dordrecht, 1996. |
[3] | A. H. Bahar and X. Mao, Stochastic delay Lotka Volterra model, J. Math. Anal. Appl., 292 (2004), 364-380. |
[4] | S. Bhattacharya, M. Martcheva and X. Z. Li, A prey predator desease model with immune response in infected prey, J. Math. Anal. Appl., 411 (2014), 297-313. |
[5] | S. Bowong, Control of the transmission dynamics of tuberculosis, 2010. |
[6] | J. L. Dimi, T. Mbaya, Analysis of stochastic model of tuberculosis transmission, Journal of Progressive Research in Mathematics, 9 (2016), 1137-1140. |
[7] | S. Bowong and J. Jules Tewa, Global analysis of a dynamical model for transmission of tuberculosis with a general contact rate, Commun. Nonlinear Sci., 15 (2010), 3621-3631. |
[8] | J. P. LaSalle, The stability of dynamical systems, Socierty for Industrial and Applied Mathematics, Vol. 25, 1987. |
[9] | D. P. MOUALEU-NGANGUE, Mémoire d'étude appronfondie Université de Yaoundé 1. |
[10] | S. Guo, Z. Liu, H. Xing, Stochastically ultimate boundedness and global attraction of positive soluitin for a stochastic competitive system, J. Appl. Math., 2014 (2014), 1-8. |
[11] | P. Van den Driessche, J.Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartimental models of diseases transmission, Math. Biosci., 180 (2002), 29-48. |
[12] | Q. Wei, Z. Xiong, F. Wang, Dynamic of a stochastic SIR model under regime switching, The Journal of Information and Computational Science, 10 (2013), 2727-2734. |
[13] | Y. Cai, Y. Kang, W.Wang, et al. A stochastic di_erential equation SIRS epidemic model with ratio dependent incidence rate, Abstr. Appl. Anal., 2013 (2013), 1-11. |
[14] | X. Mao, Stochastic differential equations and their applications, Horwood, Chichester, 1997. |
1. | Fangfang Yang, Zizhen Zhang, Dynamics of a nonlinear SIQRS computer virus spreading model with two delays, 2021, 6, 2473-6988, 4083, 10.3934/math.2021242 | |
2. | Yubo Liu, Daipeng Kuang, Jianli Li, Threshold behaviour of a triple-delay SIQR stochastic epidemic model with Lévy noise perturbation, 2022, 7, 2473-6988, 16498, 10.3934/math.2022903 | |
3. | Linji Yang, Qiankun Song, Yurong Liu, Stability and Hopf bifurcation analysis for fractional-order SVEIR computer virus propagation model with nonlinear incident rate and two delays, 2023, 09252312, 126397, 10.1016/j.neucom.2023.126397 |