
AIMS Mathematics, 2016, 1(1): 4363. doi: 10.3934/Math.2016.1.43
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A HighOrder Symmetric Interior Penalty Discontinuous Galerkin Scheme to Simulate Vortex Dominated Incompressible Fluid Flow
1 School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China
2 Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, USA
3 Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL 35487, USA
Received: , Accepted: , Published:
References
1. J. B. Barlow, W. H. Rae, and A. Pope, LowSpeed Wind Tunnel Testing, John Wiley, 1999.
2. A. J. Chorin, On the convergence of discrete approximations to the NavierStokes equations, Math. Comp., 23 (1969), 341353.
3. M. Drela, Flight Vehicle Aerodynamics, MIT Press, Boston, 2014.
4. Y. Epshteyn, B. Rivi`ere, Estimation of penalty parameters for symmetric interior penalty Galerkin methods, J. Comput. Appl. Math., 206 (2007), 843872.
5. C. Foias, O. Manley, R. Rosa and R. Temam, Turbulence and NavierStokes equations, Cambridge University Press, 2001.
6. U. Fey, M. K¨onig, and H. Eckelmann, A new StrouhalReynoldsnumber relationship for the circular cylinder in the range 47 ≤ Re ≤ 2 × 105, Physics of Fluids, 10(7) (1998), 15471549.
7. U.Ghia, K. N. Ghia, C. T. Shin, HighRe solutions for incompressible flow using the NavierStokes equations and a multigrid method. J. Comput. Phys., 48 (1982), 387411.
8. V. Girault, B. Rivi`ere, and M. F. Wheeler, A splitting method using discontinuous Galerkin for the transient incompressible NavierStokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, 39(6) (2005), 11151147.
9. V. Girault, B. Rivi`ere, and M. F. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and NavierStokes problems, Math. Comp.74 (2005), 5384.
10. O. Goyon, HighReynolds number solutions of NavierStokes equations using incremental unknowns, Comput. Method. Appl. M.130 (1996), 319335.
11. J. S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. Numer. Anal., 35(2) (1998), 655676.
12. J. S. Hesthaven, C. H. Teng, Stable spectral methods on tetrahedral elements, SIAM J. Sci. Comput., 21 (2000), 23522380.
13. S. F. Hoerner, FluidDynamic Drag, Hoerner Fluid Dynamics, Bakersfield, 1965.
14. G. Karniadakis, S. J. Sherwin, Spectral/hp element methods for CFD, Oxford University Press, New York, 2005.
15. S. Kaya, B. Rivi`ere, A discontinuous subgrid eddy viscosity method for the timedependent NavierStokes equations, SIAM J. Numer. Anal., 43(4) (2005), 15721595.
16. B. Rivi`ere, M. F. Wheeler, and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I, Comput. Geosci., 3 (1999), 337360.
17. M. Sch¨afer, S. Turek, The benchmark problem ‘flow around a cylinder’, In Flow Simulation with HighPerformance Computers II, Hirschel, E.H.(ed.). Notes on Numerical Fluid Mechanics, vol. 52, Vieweg, Braunschweig, (1996), 547566.
18. J. Shen, Hopf bifurcation of the unsteady regularized driven cavity flow, J. Comput. Phys., 95 (1991), 228245.
19. J. Shen, On error estimates of the projection methods for the NavierStokes equations: Secondorder schemes, Math. Comp., 65(215) (1996), 10391065.
20. L. Song, Z. Zhang, Polynomial preserving recovery of an overpenalized symmetric interior penalty Galerkin method for elliptic problems, Discrete Contin. Dyn. Syst. – Ser. B 20(5) (2015), 14051426.
21. L. Song, Z. Zhang, Superconvergence property of an overpenalized discontinuous Galerkin finite element gradient recovery method, J. Comput. Phys., 299 (2015), 10041020.
22. R. Temam, NavierStokes Equations: Theory and Numerical Analysis, AMS Chelsea publishing, Providence, 2001.
23. R. Temam, NavierStokes Equations and Nonlinear Functional Analysis, Volume 66 of CBMSNSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, second edition, 1995.
24. M. F. Wheeler, An elliptic collocationfinite element method with interior penalties, SIAM J. Numer. Anal., 15 (1978), 152161.
Copyright Info: © 2016, Lunji Song, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)