Loading [MathJax]/jax/output/SVG/jax.js
Research article

On the Caginalp phase-field system based on the Cattaneo law with nonlinear coupling

  • Received: 02 April 2016 Accepted: 15 April 2016 Published: 27 April 2016
  • We focus in this paper on a Caginalp phase-field system based on the Cattaneo law with nonlinear coupling. We start our analysis by establishing existence, uniqueness and regularity based on Moser’s iterations. We finish with the study of the spatial behavior of the solutions in a semi-infinite cylinder, assuming the existence of such solutions.

    Citation: Armel Andami Ovono, Alain Miranville. On the Caginalp phase-field system based on the Cattaneo law with nonlinear coupling[J]. AIMS Mathematics, 2016, 1(1): 24-42. doi: 10.3934/Math.2016.1.24

    Related Papers:

    [1] Sixing Tao . Breathers, resonant multiple waves and complexiton solutions of a (2+1)-dimensional nonlinear evolution equation. AIMS Mathematics, 2023, 8(5): 11651-11665. doi: 10.3934/math.2023590
    [2] Jianhong Zhuang, Yaqing Liu, Ping Zhuang . Variety interaction solutions comprising lump solitons for the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. AIMS Mathematics, 2021, 6(5): 5370-5386. doi: 10.3934/math.2021316
    [3] Ihsan Ullah, Aman Ullah, Shabir Ahmad, Hijaz Ahmad, Taher A. Nofal . A survey of KdV-CDG equations via nonsingular fractional operators. AIMS Mathematics, 2023, 8(8): 18964-18981. doi: 10.3934/math.2023966
    [4] Sixing Tao . Breather wave, resonant multi-soliton and M-breather wave solutions for a (3+1)-dimensional nonlinear evolution equation. AIMS Mathematics, 2022, 7(9): 15795-15811. doi: 10.3934/math.2022864
    [5] Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534
    [6] Jin Hyuk Choi, Hyunsoo Kim . Exact traveling wave solutions of the stochastic Wick-type fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. AIMS Mathematics, 2021, 6(4): 4053-4072. doi: 10.3934/math.2021240
    [7] M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and $ M-W $-shape soliton solutions to $ (2+1) $ complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780
    [8] Ibrahim Alraddadi, Faisal Alsharif, Sandeep Malik, Hijaz Ahmad, Taha Radwan, Karim K. Ahmed . Innovative soliton solutions for a (2+1)-dimensional generalized KdV equation using two effective approaches. AIMS Mathematics, 2024, 9(12): 34966-34980. doi: 10.3934/math.20241664
    [9] Khalid Khan, Amir Ali, Muhammad Irfan, Zareen A. Khan . Solitary wave solutions in time-fractional Korteweg-de Vries equations with power law kernel. AIMS Mathematics, 2023, 8(1): 792-814. doi: 10.3934/math.2023039
    [10] A. K. M. Kazi Sazzad Hossain, M. Ali Akbar . Solitary wave solutions of few nonlinear evolution equations. AIMS Mathematics, 2020, 5(2): 1199-1215. doi: 10.3934/math.2020083
  • We focus in this paper on a Caginalp phase-field system based on the Cattaneo law with nonlinear coupling. We start our analysis by establishing existence, uniqueness and regularity based on Moser’s iterations. We finish with the study of the spatial behavior of the solutions in a semi-infinite cylinder, assuming the existence of such solutions.


    Fractional differential equation models have been founded in a lot of fields of science and engineering, such as physics, chemistry, biology, dynamics, and control [1,2,3,4]. In these models, the fractional wave model plays an important role in many practical application fields including transmission and modeling propagation of electrical signals, neural conduction, weak current propagation in the animal nervous system, wave phenomena, and wave propagation. However, it is often difficult to get the analytic solutions of these complex problems. In view of the importance of this kind of model, more and more scholars have focused on solving them numerically by developing a lot of numerical methods including finite element method [5,6,7,8,9,10,11,12,13,14], wavelet method [15], finite difference method [16,17,18,19,20,21,22,23], meshless method [24], collocation method [25,26], and B-spline method [27,28].

    In this article, we consider the initial-boundary problem of the following nonlinear fractional hyperbolic wave model

    $ {R0Dβtu(x,t)+ut(x,t)R0Dαtuxx(x,t)uxx(x,t)+g(u(x,t))=f(x,t),(x,t)Ω×J,u(x,0)=u0(x),ut(x,0)=u1(x),xˉΩ,u(a,t)=u(b,t)=0,ut(a,t)=ut(b,t)=0,tJ, $ (1.1)

    where $ \Omega = (a, b) $ is the spatial domain and $ J = (0, T] $ with $ 0 < T < \infty $ is the time interval. $ u_0(x) $ and $ u_1(x) $ are given initial functions, $ f(x, t) $ is the given source term and the nonlinear term $ g(u) \in C^2(R) $, fractional parameter $ \beta = \alpha+1 $, and $ _0^RD_t^\gamma w(x, t) $ is the Riemann-Liouville fractional-order derivative defined by

    $ R0Dαtw(x,t)=1Γ(1α)tt0w(x,s)(ts)αds,α(0,1), $ (1.2)

    and

    $ R0Dβtw(x,t)=1Γ(2β)2t2t0w(x,s)(ts)β1ds,β(1,2). $ (1.3)

    The fractional hyperbolic wave model (1.1), which includes both propagation and diffusion of the wave, can be degenerated into the pseudo-hyperbolic equation for $ \beta = 2 $ and diffusion equation for $ \beta = 1 $.

    In the following, for formulating our numerical method we need to introduce numerical techniques including the weighted and shifted Grünwald difference (WSGD) formula, BDF2-$ \theta $, $ H^1 $-Galerkin MFE method, and time two-mesh (TT-M) finite element algorithm. The WSGD formula, which was proposed by Tian et al. in [29], is a useful approximate method for the Riemann-Liouville fractional derivative. Due to its high-order approximation characteristics, many scholars have developed efficient numerical methods based on the WSGD formula; see [30,31,32,33,34,35]. The $ H^1 $-Galerkin MFE method is an important numerical method, which was proposed by Pani [36]. Due to several advantages of this method, many scholars have begun to use it to solve evolution partial differential equation (PDE) models, such as integer PDE models [37,38,39], fractional PDE models [40], and distributed-order PDE models [41]. The TT-M finite element method was proposed by Liu et al. in [42] to quickly solve the fractional water wave model, which can also combine many other numerical methods, such as the finite difference method and the finite volume element method, to solve evolution differential equation models [43,44,45,46].

    In this article, considering the characteristics of the nonlinear fractional hyperbolic wave equation, we introduce an auxiliary function with a fractional derivative, and formulate a fast high-order fully discrete $ H^1 $-Galerkin MFE method, where the time direction is discretized by the BDF2-$ \theta $ with the WSGD operator, the space direction is approximated by the $ H^1 $-Galerkin MFE method, and the fast TT-M algorithm is used to reduce calculation time. The main works and contributions of this article are as follows:

    (Ⅰ) Propose a fast TT-M mixed element method with the WSGD operator to numerically solve the nonlinear pseudo-hyperbolic wave equation with two term fractional derivatives.

    (Ⅱ) Introduce a special auxiliary function, transform the original high-order equation into the coupled system of equations with lower order space-time derivatives, and directly formulate a second-order fully discrete BDF2-$ \theta $ $ H^1 $-Galerkin MFE system, which can avoid difficulties in numerical calculations and theoretical analysis by directly discretizing fractional derivatives. Further, develop the fast fully discrete TT-M MFE system, and derive optimal a priori error estimates for two functions.

    (Ⅲ) Provide the detailed numerical algorithm by taking smooth and weakly regular solutions. Validate the correctness of the theoretical results and the effectiveness of the numerical algorithm, and illustrate that the TT-M MFE method has good computational efficiency by comparing the calculation results with the standard nonlinear MFE method.

    The rest of the article is outlined as follows: In Section 2, the fully discrete scheme based on the combination of an MFE method and the BDF2-$ \theta $ with the WSGD formula is derived. In Section 3, the optimal error estimates in both $ L^2 $-norm and $ H^1 $-norm for the fully discrete TT-M MFE scheme are derived. In Section 4, the numerical algorithm is shown. Some experiments in Section 5 are conducted to further confirm our theoretical results. Finally, in Section 6, conclusions and advancements are provided.

    Letting $ q = _0^R\!\!D_t^\alpha u_{x}(x, t)+u_x(x, t) $, we rewrite equation (1.1) as

    $ {R0Dαtux(x,t)+ux(x,t)=q(x,t),R0Dβtu(x,t)+utqx(x,t)+g(u)=f(x,t). $ (2.1)

    We multiply the first equation of (2.1) by $ v_x $ and the second equation of (2.1) by $ -\omega_x $, respectively, then make the inner product on the spatial domain $ \bar{\Omega} = [a, b] $ to have

    $ {(R0Dαtux,vx)+(ux,vx)=(q,vx),vH10,(R0Dβtu+ut,ωx)+(qx,ωx)+(g(u),ωx)=(f,ωx),ωH1. $ (2.2)

    For the second equation of (2.2), by the integration by part and the boundary condition

    $ _0^RD_t^\beta u(a,t) = _0^R\!D_t^\beta u(b,t) = 0, 1\leq \beta < 2, $

    we obtain

    $ (_0^RD_t^\beta u+u_t,-\omega_x) = (_0^RD_t^{1+\alpha}u_x+u_{tx},\omega) = \big{(}(_0^RD_t^{\alpha}u_x+u_{x})_t,\omega\big{)} = (q_t,\omega). $

    Now, we can get the following mixed weak form

    $ {(R0Dαtux,vx)+(ux,vx)=(q,vx),vH10,(qt,ω)+(qx,ωx)+(g,ωx)=(f,ωx),ωH1. $ (2.3)

    For obtaining the fully discrete TT-M MFE scheme, we introduce the nodes $ t_n = n\tau_c(n = 0, 1, 2, \cdots, N) $ in the time interval $ [0, T] $, where $ t_n $ satisfies $ 0 = t_0 < t_1 < t_2 < \cdots < t_N = T $ with fine mesh length $ \tau = T/NM $ and coarse mesh length $ \tau_c = M\tau $ for some positive integer $ N $. Define $ u^n = u(\cdot, t_n), q^n = q(\cdot, t_n) $ for smooth functions $ u $ and $ q $ on $ [0, T] $. Some useful lemmas will also be introduced as follows.

    Lemma 2.1. ([35]) With $ v(t) \in C^3[0, T] $, at time $ t_{n-\theta} $, the following formula with second-order accuracy for approximating the first-order derivative holds

    $ vt(tnθ)={t[vnθ]+O(τ2),n2,t[v1]+O(τ),n=1, $ (2.4)

    where

    $ t[vnθ](32θ)vn(44θ)vn1+(12θ)vn22τ,t[v1]v1v0τ, $ (2.5)

    for any $ \theta \in [0, \frac{1}{2}] $.

    Lemma 2.2. At time $ t_{n-\theta} $, the following important results hold for any $ \theta \in [0, 1] $ and $ v(t) \in C^2[0, T] $,

    $ v(tnθ)=(1θ)vn+θvn1+O(τ2)vnθ+O(τ2),(1θ)g(vn)+θg(vn1)g[vnθ]. $ (2.6)

    Lemma 2.3. ([29,35]) At time $ t_n $, the second-order approximate formula for the Riemann-Liouville fractional derivative with parameter $ \gamma \in (0, 1) $ holds

    $ R0Dγtu(tn)=τγni=0Aγ(i)vni+O(τ2)Inγ[vn]+O(τ2), $ (2.7)

    with

    $ Aγ(i)={γ+22wγ0,i=0,γ+22wγi+γ2wγi1,i>0, $ (2.8)

    where series $ w_i^\gamma $ are defined as $ w_0^\gamma = 1, \; w_l^\gamma = (-1)^l\big{(}γl\big{)} = \frac{\Gamma(l-\gamma)}{\Gamma(-\gamma)\Gamma(l+1)}, l\geq1, $ which satisfy $ w_l^\gamma < 0, w_l^\gamma = (1-\frac{\gamma+1}{l})w_{l-1}^\gamma, (l = 1, 2, \cdots), \sum\limits_{l = 1}^{\infty}w_l^\gamma = -1. $

    Based on the weak form (2.3) and the numerical approximate formulas above, we can get the following equivalent weak form

    Case $ n = 1 $:

    $ (I1θα[u1θx],vx)+(u1θx,vx)=(q1θ,vx)+(E1θ1,vx),(q1q0τ,ω)+(q1θx,ωx)+(g[u1θ],ωx)=(f1θ,ωx)+(3k=1ˉE1θk,ωx), $ (2.9)

    Case $ n\geq 2 $:

    $ (Inθα[unθx],vx)+(unθx,vx)=(qnθ,vx)+(Enθ1,vx),(t[qnθ],ω)+(qnθx,ωx)+(g[unθ],ωx)=(fnθ,ωx)+(3k=1ˉEnθk,ωx), $ (2.10)

    where

    $ ˉE1θ1=t[q1]qt(t1θ)=O(τ),Enθ1=R0DατunθxInθα[unθx]=O(τ2),ˉEnθ1=nθt[q]qt(tnθ)=O(τ2),ˉEnθ2=g[unθ]g(u(tnθ))=O(τ2),ˉEnθ3=fnθf(tnθ)=O(τ2),Inθα[unθx](1θ)Inα[unx]+θIn1α[un1x]. $ (2.11)

    We now formulate the fully discrete TT-M MFE system at time $ t_{n-\theta} $ for handling the computational time-consuming problems of implicit finite element systems, and we denote $ U_c^n, Q_c^n $ as solutions of the system on the time coarse mesh and $ U_f^m, Q_f^m $ as solutions of the system on the time fine mesh. The TT-M MFE algorithm can be implemented as the following three steps.

    $ \mathbf{STEP 1} $: First, we arrive at the following nonlinear coupled system based on the time coarse mesh $ \tau_c $: Find $ (U_c^n, Q_c^n):[0, T]\times[0, T]\mapsto V_h\times W_h $ such that

    Case $ n = 1 $:

    $ (I1θα[U1θcx],vhx)+(U1θcx,vhx)=(Q1θc,vhx),(Q1cQ0cτc,ωh)+(Q1θcx,ωhx)+(g[U1θc],ωhx)=(f1θ,ωhx), $ (2.12)

    Case $ n\geq 2 $:

    $ (Inθα[Unθcx],vhx)+(Unθcx,vhx)=(Qnθc,vhx),(t[Qnθc],ωh)+(Qnθcx,ωhx)+(g[Unθc],ωhx)=(fnθ,ωhx). $ (2.13)

    $ \mathbf{STEP 2} $: Second, we can get all the interpolated values $ U_I^m (m = 0, 1, \cdots, M, M+1, \cdots, 2M, \cdots, NM) $ by using an interpolation formula

    $ UmI=λmUn1c+(1λm)Unc, $ (2.14)

    where $ \; \lambda_m = n-\frac{m}{M} \in [0, 1) (n = \lceil\frac{m}{M}\rceil) $ and $ U_I^0 = U_c^0 $. Values of $ Q_I^m $ can be obtained similarly.

    $ \mathbf{STEP 3} $: Finally, we establish the following linear system on the time fine mesh $ \tau $ based on the solutions $ U_I^m, Q_I^m $; that is, to find $ (U_f^m, Q_f^m):[0, T]\times[0, T]\mapsto V_h\times W_h $ for any $ (v, \omega)\in V_h\times W_h $ such that

    Case $ m = 1 $:

    $ (I1θα[U1θfx],vhx)+(U1θfx,vhx)=(Q1θf,vhx),(Q1fQ0fτ,ωh)+(Q1θfx,ωhx)+(g[U1θI]+g[U1θI](U1θfU1θI),ωhx)=(f1θ,ωhx), $ (2.15)

    Case $ m\geq 2 $:

    $ (Imθα[Umθfx],vhx)+(Umθfx,vhx)=(Qmθf,vhx),(t[Qmθf],ωh)+(Qmθfx,ωhx)+(g[UmθI]+g[UmθI](UmθfUmθI),ωhx)=(fmθ,ωhx), $ (2.16)

    where finite element spaces are defined as

    $ Vh={vh|vhPk,vh(a)=vh(b)=0,vhxL2,kZ+}H10,Wh={σh|σhPr,σhxL2,rZ+}H1. $

    Remark 2.4. Here, we provide two other equivalent linearized techniques besides the one mentioned in (2.15)-(2.16).

    $ (a)g(Umθf)(1θ)(g(UmI)+g(UmI)(UmfUmI))+θg(Um1f),(b)g(Umθf)g[UmθI]+(1θ)g(UmI)(UmfUmI)+θg(Um1I)(Um1fUm1I). $ (2.17)

    For subsequent analysis, we introduce some useful lemmas.

    Lemma 3.1. ([30,35]) Let $ \mathcal{A}_\gamma(i) $ be defined in $\textrm{(2.8)}$, then for any positive integer $ L $ and real vector $ (v^0, v^1, \cdots, v^L) \in R^{L+1} $, the following inequality holds

    $ Ln=0ni=0Aγ(i)(vni,vn)0. $ (3.1)

    Lemma 3.2. ([23,35]) For series $ {\chi^n} $ $ (n\geq 2) $, the following inequality holds

    $ (t[vnθ],vnθ)14τ(H[vn]H[vn1]),H[vn]=(32θ)vn2(12θ)vn12+(2θ)(12θ)vnvn12, $ (3.2)

    and

    $ H[vn]11θvn2,θ[0,12]. $ (3.3)

    Lemma 3.3. ([47,48]) For any function $ v \in H_0^1(\Omega) $, we have

    $ vL4v12vx12. $ (3.4)

    For considering a priori error estimates for the TT-M MFE system, the projection operator and the inequality should be introduced.

    Lemma 3.4. ([36]) Define an elliptic-projection operator $ \Upsilon_{h}: H^{1}_{0}(\Omega)\rightarrow V_{h} $, for any $ \phi_{h} \in V_{h} $ such that

    $ (uxΥhux,ϕhx)=0 $ (3.5)

    with an estimate inequality

    $ uΥhu+huΥhu1Chk+1uk+1,  uH10(Ω)Hk+1(Ω). $ (3.6)

    Lemma 3.5. ([36]) Define a Ritz-projection operator $ \Pi_{h}:H^{1}(\Omega) \rightarrow W_{h} $ by

    $ A(qΠhq,χh)=0,χhWh, $ (3.7)

    where $ \mathcal{A}(q, \phi)\doteq (q_x, \phi_x)+\lambda(q, \phi) $, $ \mathcal{A}(\phi, \phi) \geq \mu_{0}\|\phi\|^{2}_{1}, \mu_{0} > 0 $ is a constant. Further, the following estimate inequality holds

    $ qtΠhqt+hqΠhq1Chr+1(qr+1+qtr+1),qHr+1(Ω). $ (3.8)

    Theorem 3.6. Let $ u(\cdot, t_n) $, $ q(\cdot, t_n) $ be the solutions of system $ (1.1) $ and suppose $ U_c^n $, $ Q_c^n $ and $ U_f^m $, $ Q_f^m $ are the solutions of TT-M MFE systems $ (2.9) $-$ (2.10) $ and $ (2.15) $-$ (2.16) $, respectively, then there exists a constant $ C > 0 $ that depends only on $ u(\cdot, t_n) $, $ q(\cdot, t_n) $, such that

    $ qnQnc+(τcnl=1ulθUlθc2)12C(τ2c+hmin{k+1,r+1}),(τcnl=1ulθUlθc21)12C(τ2c+hmin{k,r+1}),(τcnl=1qlθQlθc21)12C(τ2c+hmin{k+1,r}), $ (3.9)

    and

    $ qmQmf+(τml=1ulθUlθf2)12C(τ2+τ4c+hmin{k+1,r+1}),(τml=1ulθUlθf21)12C(τ2+τ4c+hmin{k,r+1}),(τml=1qlθQlθf21)12C(τ2+τ4c+hmin{k+1,r}). $ (3.10)

    Proof. For convenience, we write error as

    $ unUnc=unΥhun+ΥhunUnc=ηnc+ξnc,qnQnc=qnΠhqn+ΠhqnQnc=ρnc+σnc,umUmf=umΥhum+ΥhumUmf=ηmf+ξmf,qmQmf=qmΠhqm+ΠhqmQmf=ρmf+σmf. $

    (1) Error estimate on the time coarse mesh.

    Applying the projection operators in Lemmas 3.4 and 3.5, the error equation on the time coarse mesh is as follows:

    Case $ n = 1 $:

    $ (I1θα[ξ1θcx],vhx)+(ξ1θcx,vhx)=(ρ1θc+σ1θc,vhx)+(E1θ1,vx),(σ1cσ0cτc,ωh)+(σ1θcx,ωhx)+(g[u1θ]g[U1θc],ωhx)=(ρ1cρ0cτc,ωh)+λ(ρ1θc,ωh)+(3k=1ˉE1θk,ωhx). $ (3.11)

    Case $ n\geq 2 $:

    $ (Inθα[ξnθcx],vhx)+(ξnθcx,vhx)=(ρnθc+σnθc,vhx)+(Enθ1,vhx),(t[σnθc],ωh)+(σnθcx,ωhx)+(g[unθ]g[Unθc],ωhx)=(t[ρnθc],ωh)+λ(ρnθc,ωh)+(3k=1ˉEnθk,ωhx). $ (3.12)

    Set $ \omega_h = \sigma_c^{n-\theta} $ in (3.12), and use Lemma 3.3, the Cauchy-Schwarz inequality, and the Young inequality to obtain

    $ 14τc(H(σnc)H(σn1c))+(13ε)σnθcx214ε(g[unθ]g[Unθc]2+3k=1ˉEnθk2)+12t[ρnθc]2+1+λ2σnθc2+λ2ρnθc2C(ηnθc2+ξnθc2+σnθc2+τ4c)+12t[ρnθc]2+λ2ρnθc2. $ (3.13)

    Multiply (3.13) by $ 4\tau_c $, replace $ n $ with $ l $, and sum for $ l $ from $ 2 $ to $ n $ to arrive at

    $ H(σnc)+4τc(13ε)nl=2σlθcx2H(σ1c)+Cτcnl=2(ηlθc2+ξlθc2+σlθc2+τ4c)+2τcnl=2t[ρnθc]2+2τcλnl=2ρlθc2H(σ1θc)+Cτcnl=2(ξlθc2+σlθc2)+C(h2k+2+h2r+2+τ4c). $ (3.14)

    Setting $ v_h = \xi_c^{n-\theta} $ in (3.12), summing the resulting equation from 1 to $ n $, and using the Cauchy-Schwarz inequality as well as the Young inequality, we have

    $ nl=1(Ilθα[ξlθcx],ξlθcx)+nl=1(13ε)ξlθcx2=((1θ)ταcnl=1li=0Aα(i)ξlicx+θταcnl=1li=0Aα(i)ξl1icx,ξlθcx)+nl=1(13ε)ξlθcx2nl=1C(ρlθc2+σlθc2)+nl=1Elθ12. $ (3.15)

    Applying Lemma 3.1 and the Poincaré inequality, we obtain, for $ n\geq 1 $,

    $ τcnl=1(13ε)ξlθc2τcnl=1(13ε)ξlθcx2C(h2r+2+τ4c)+τcnl=1σlθc2. $ (3.16)

    For the term $ \mathbb{H}(\sigma_c^1) $, we take $ \omega_h = \sigma_c^{1-\theta} $ in (3.11) and apply the Cauchy-Schwarz inequality as well as the Young inequality to have

    $ σ1c2σ0c2+(12θ)σ1cσ0c2+2τcσ1θcx22τcg[u1θ]g[U1θc]σ1θcx+C3k=1τcˉE1θk2+2τcεσ1θcx2+2ε(1+τc)σ1θc2+C(ρ1cρ0c2+ρ1θc2)C(h2k+2+h2r+2+τ4c)+6τcεσ1θcx2+2ε(1+τc)σ1θc2+Cτc(ξ0c2+ξ1c2). $ (3.17)

    Omitting the nonnegative term on the left hand side of (3.17), we obtain

    $ H(σ1c)+2τc(13ε)σ1θcx2Cσ0c2+C(h2k+2+h2r+2+τ4c)+2ε(1+τc)σ1θc2+Cτc(ξ0c2+ξ1c2). $ (3.18)

    Substitute (3.18) into (3.14), apply (3.16), and use the Gronwall inequality to have

    $ σnc2+2τc(13ε)nl=1σlθcx2Cσ0c2+C(h2k+2+h2r+2+τ4c). $ (3.19)

    Notice that the inequalities (3.6) and (3.8) hold; combine (3.16) and (3.19) with the triangle inequality to finish the proof of the first result of Theorem 3.6.

    (2) Error estimate on the time fine mesh.

    Based on Lemmas 3.4 and 3.5, the error equation on the time fine mesh is as follows:

    Case $ m = 1 $:

    $ (I1θα[ξ1θfx],vhx)+(ξ1θfx,vhx)=(ρ1θf+σ1θf,vhx)+(E1θ1,vhx),(g[u1θ](g[U1θI]+g[U1θI](U1θfU1θI)),ωhx)+(σ1fσ0fτ,ωh)+(σ1θfx,ωhx)=(ρ1fρ0fτ,ωh)+λ(ρ1θf,ωh)+(3k=1ˉE1θk,ωhx), $ (3.20)

    Case $ m\geq 2 $:

    $ (Imθα[ξmθfx],vhx)+(ξmθfx,vhx)=(ρmθf+σmθf,vhx)+(Emθ1,vhx),(g[umθ](g[UmθI]+g[UmθI](UmθfUmθI)),ωhx)+(t[σmθf],ωh)+(σmθfx,ωhx)=(t[ρmθf],ωh)+λ(ρmθf,ωh)+(3k=1ˉEmθk,ωhx). $ (3.21)

    For the nonlinear term on the right hand side of (3.21), we use Taylor's formula to get

    $ g[umθ](g[UmθI]+g[UmθI](UmθfUmθI))=g(umθ)+O(τ2)(g(UmθI)+O(τ2)+(g(UmθI)+O(τ2))(UmθfUmθI))=g(UmθI)(ηmθf+ξmθf)+g(ˉUmθI)(umθUmθI)2+O(τ2). $ (3.22)

    Set $ \omega_h = \sigma_f^{m-\theta} $ in (3.21) and use (3.22), the Cauchy-Schwarz inequality, and the Young inequality to arrive at

    $ 14τ(H(σmf)H(σm1f))+(13ε)σmθfx214ε(g(UmθI)2(ηmθf2+ξmθf2)+g(ˉUmθI)2(umθUmθI)22+τ4+t[ρmθf]2+λρmθf2+3k=1ˉEmθk2)+2εσmθf2. $ (3.23)

    Using a similar derivation to (3.14), we have

    $ H(σmf)+4τ(13ε)ml=2σlθfx2H(σ1f)+Cτml=2ulθUlθI4L4+Cτml=1(ξlθf2+σlθf2)+(32θ)tnt0ρft2ds+C(h2k+2+h2r+2+τ4)H(σ1f)+Cτml=2ulθUlθI4L4+Cτml=1(ξlθf2+σlθf2)+C(h2k+2+h2r+2+τ4). $ (3.24)

    To estimate $ \mathbb{H}(\sigma_f^1) $, we set $ \omega_h = \sigma_f^{1-\theta} $ in (3.20) and apply Taylor's formula to deal with the nonlinear term to arrive at

    $ σ1f2+(12θ)σ1fσ0f2+2τσ1θfx2=σ0f2+2(ρ1fρ0f,σ1θf)+2(τ3k=1ˉE1θk,σ1θfx)+2τλ(ρ1θf,σ1θf)+2τ(g(U1θI)(η1θf+ξ1θf)+g(ˉU1θI)(u1θU1θI)2+O(τ2),σ1θfx)C(h2k+2+h2r+2+τ4)+8ετσ1θfx2+Cτ((u1θU1θI)22+σ1θf2+ξ1θf2). $ (3.25)

    Combining (3.25) with (3.24), we have

    $ σmf2+Cτ(13ε)ml=1σlθfx2C(h2k+2+h2r+2+τ4)+Cτml=1ulθUlθI4L4+Cτml=1(ξlθf2+σlθf2). $ (3.26)

    Setting $ v_h = \xi_f^{m-\theta} $ in (3.12) and using a derivation similar to (3.16), we get

    $ Cτml=1(13ε)ξlθf2Cτml=1(13ε)ξlθfx2C(h2r+2+τ4)+τml=1σlθf2. $ (3.27)

    We now estimate the error $ C\tau \sum\limits_{l = 1}^{m}\|u^{l-\theta}-U_I^{l-\theta}\|_{L^4}^4 $. Denote $ n = \lceil\frac{l}{M}\rceil $ as the smallest integer that is equal to or greater than $ \frac{l}{M} $, then by the notations introduced in (2.11), we get

    $ ul=λlun1+(1λl)un+Cτ2cutt(ˉtl),UlI=λlUn1c+(1λl)Unc, $ (3.28)

    where $ \bar{t}_{l-\theta} \in (t_{n-\theta-1}, t_{n-\theta}) $. For $ \lambda_l \in [0, \frac{1}{2}] $, follow the idea from [46] and use (3.9) and (3.28) to obtain the following result

    $ Cτml=1ulθUlθI2Cτml=1((1θ)(unλlUnλlc)+θ(un1λlUn1λlc)2+τ4c)Cτml=1(unλlUnλlc2+un1λlUn1λlc2+τ4c)CτmM1k=0M+kMl=1+kM(uk+1λlUk+1λlc2+ukλlUkλlc2+τ4c)Cτcnk=0(ukλlUkλlc2+τ4c)C(τ4c+hmin{2k+2,2r+2}). $ (3.29)

    Using the techniques applied to (3.29), we easily get the inequality

    $ Cτml=1(ulθUlθI)x2Cτcnk=0(ukθUkθc)x2C(τ4c+hmin{2k,2r+2}). $ (3.30)

    Making use of Lemma 3.3, (3.30), and (3.29), we can obtain

    $ Cτml=1ulθUlθI4L4Cτml=1ulθUlθI2(ulθUlθI)x2Cτml=1(ulθUlθI4+(ulθUlθI)x4)C(hmin{4r+4,4k}+τ8c). $ (3.31)

    Substitute (3.27) and (3.31) into (3.26) and apply the Gronwall inequality to obtain

    $ \|\sigma_f^m\|^2 +C\tau(1-4\varepsilon)\sum\limits_{l = 1}^{m}\|\sigma_{fx}^{l-\theta}\|^2 \leq C(h^{\min\{2r+2,2k+2\}}+\tau^4+\tau_c^8). $ (3.32)

    Combine (3.27), (3.30), (3.32) and (3.6) with (3.8) and use the triangle inequality to finish the proof of the second result of Theorem 3.6.

    In this section, we provide a numerical algorithm for solving the examples with smooth solutions and weakly regular solutions. For the solution $ u $ with weak regularity, referring to [49,50], we split it into the smooth part and the weak regular part as the following

    $ u=u1+u2=jk=1cktσk+tσj+1ϱ, $ (4.1)

    where $ c_k = c_k(x) $ are coefficient functions, parameters $ \sigma_{k} $ satisfy $ 0\leq\sigma_1 < \cdots < \sigma_{j+1} $, $ \sigma_j < 3 $ and $ \sigma_{j+1}\geq 3 $ and $ \varrho $ is sufficiently smooth with respect to $ t $. Thus, we can think of $ u_1 $ as the nonsmooth part of the $ u $, which may cause a loss of accuracy in time. For solving this problem, based on the idea presented in [51], we develop a corrected technique by adding correction parts. We now discretize the spatial domain $ \bar{\Omega} $ as $ a = x_0 < x_1 < \cdots < x_L = b $, where the nodes are $ x_k = x_0+kh $ with the uniform spatial step size $ h = \frac{b-a}{L} $. Next, considering mixed linear element spaces with linear basis functions $ \{\phi_i(x)\}_{i = 0}^{L} $ and $ \{\varphi_i(x)\}_{i = 0}^{L} $, we can write numerical solution $ U_c $ and $ Q_c $ as: $ U_c^n = \sum\limits_{i = 0}^Lu_i^n\phi_i $, $ Q_c^n = \sum\limits_{i = 0}^Lq_i^n\varphi_i $, respectively. Based on the numerical scheme (2.9)-(2.10) combined with the corrected technique, we formulate a numerical algorithm in the matrix form.

    Case $ n = 1 $:

    $ B1((1θ)ταcAα(0)u1c+ταjk=1ω(α)1,kukc)+B1((1θ)u1c+jk=1ω(0)1,kukc)=C((1θ)q1c+j+1k=1ˉω(0)1,kqkc),A(τ1cq1c+τ1cj+1k=1˜ω(1)1,kqkc)+B2((1θ)q1c+j+1k=1ˉω(0)1,kqkc)=F1θ+(1θ)Cg(u1c), $ (4.2)

    Case $ n\geq 2 $:

    $ B1((1θ)ταcni=0Aα(ni)uic+θταcn1i=0Aα(n1i)uic+ταjk=1ω(α)n,kukc)+B1((1θ)unc+θun1c+jk=1ω(0)n,kukc)=C((1θ)qnc+θqn1c+j+1k=1ˉω(0)n,kqkc),A(τ1c32θ2qncτ1c44θ2qn1c+τ1c12θ2qn2c+τ1cj+1k=1ˉω(1)n,kqkc)+B2((1θ)qnc+θqn1c+j+1k=1ˉω(0)n,kqkc)=Fnθ+C((1θ)g(unc)+θg(un1c)), $ (4.3)

    where

    $ A=[(φi,φj)]T0i,jL=1L(131600162316000001613),B1=[(ϕix,ϕjx)]T0i,jL=L(10000210000001),B2=[(φix,φjx)]T0i,jL=L(11001210000011),C=[(φi,φjx)]T0i,jL=(12120012012000001212),unc=[un0,un1,unL]T,qnc=[qn0,qn1,qnL]T,F=[(f,φ0x),(f,φ1x),,(f,φLx)]T. $ (4.4)

    In the above algorithm, $ \{\omega_{n, k}^{(\alpha)}\}_{k = 1}^j $, $ \{\omega_{n, k}^{(0)}\}_{k = 1}^j $ are correction weights of $ I_\alpha^{n-\theta}[U_{cx}^{n-\theta}] $, $ U_{cx}^{n-\theta} $, respectively. $ \{\bar{\omega}_{n, k}^{(0)}\}_{k = 1}^{j+1} $ are correction weights of $ Q_{c}^{n-\theta} $. $ \{\tilde{\omega}_{1, k}^{(1)}\}_{k = 1}^{j+1} $ are correction weights of $ \partial_t[u^1] $. $ \{\bar{\omega}_{n, k}^{(1)}\}_{k = 1}^{j+1} $ are correction weights of $ \partial_t[u^{n-\theta}] $. The correction weights $ \{\omega_{n, k}^{(\alpha)}\}_{k = 1}^j $ can be obtained by the following formula [51]

    $ jk=1ω(α)n,kkm=Γ(m+1)Γ(mα+1)(nθ)mαnk=1ˆAα(nk)km,m=σ1,,σj, $ (4.5)

    where

    $ \hat{\mathcal{A}}_\alpha(0) = (1-\theta)\mathcal{A}_\alpha(0), \hat{\mathcal{A}}_\alpha(n) = (1-\theta)\mathcal{A}_\alpha(n)+\theta\mathcal{A}_\alpha(n-1)\ (n\geq 2). $

    Similarly, we can get the correction coefficients $ \{\omega_{n, k}^{(0)}\}_{k = 1}^j $, $ \{\bar{\omega}_{n, k}^{(0)}\}_{k = 1}^{j+1} $, $ \{\bar{\omega}_{n, k}^{(1)}\}_{k = 1}^{j+1} $, and $ \{\tilde{\omega}_{1, k}^{(1)}\}_{k = 1}^{j+1} $ by using (4.5).

    We divide the calculation process into two parts. First, we calculate $ \textbf{u}_c^k $ and $ \textbf{q}_c^k $ by (4.4)-(4.5), where $ k = 1, 2, \cdots, j+1 $, then we can obtain $ \textbf{u}_c^m $ and $ \textbf{q}_c^m, m > j+1 $ by $ \textbf{u}_c^k $ and $ \textbf{q}_c^k $. The process of computation on the fine mesh is similar to that on the coarse mesh, so we will not introduce details here.

    Here, for showing the feasibility and validity of our numerical method and the efficiency of the TT-M MFE system, we consider a linear element and provide the computing results by our numerical procedure.

    In this example, we use the linearized method (2.17)(a) to finish our calculations. Considering the space domain $ \bar\Omega = [0, 1] $ and the time interval $ \bar{J} = [0, 1] $, we take the nonlinear term $ g(u) = u^3-u $, the following given source term

    $ f(x,t) = (\frac{\Gamma(4+\alpha)}{\Gamma(3)}t^2+(3+\alpha)t^{2+\alpha}+\frac{\Gamma(4+\alpha)}{\Gamma(4)}t^3\pi^2+t^{3+\alpha}\pi^2-t^{3+\alpha})\sin\pi x+(t^{3+\alpha}\sin\pi x)^3, $

    and then easily validate that the exact solution is $ u = t^{3+\alpha}\sin\pi x $ and the corresponding auxiliary function is $ q = \frac{\Gamma(4+\alpha)} {\Gamma(4)}t^3\pi\cos\pi x+t^{3+\alpha}\pi\cos\pi x $.

    In Table 1, with the fixed time step length $ \tau = \frac{1}{{10000}} $, changed space step length $ h = \frac{1}{200}, \frac{1}{300}, \frac{1}{400} $, fractional parameter $ \alpha = 0.3, 0.8, 0.99 $, and shifted parameter $ \theta = 0.1, 0.3, 0.5 $, we calculate the spatial convergence results of the standard nonlinear mixed element algorithm under different parameters and record the Central Processing Unit (CPU) time required for the algorithm. One can see that for the currently selected exact solution, the spatial convergence results are optimal, which is consistent with the theoretical results of the linear element ($ k = r = 1 $) we selected. Further, in Table 2, based on the chosen changed parameters as in Table 1 with the fixed time step length $ \tau = \tau_c/M = 1/NM = 1/10000 $ ($ N = M = 100 $) for the TT-M MFE method, we get the optimal convergence results and CPU time. Comparing the data in Tables 12, one can see that the fast TT-M MFE algorithm can greatly reduce the CPU time while maintaining the same convergence accuracy as the standard nonlinear mixed element method.

    Table 1.  Spatial convergence results with $ \tau = \frac{1}{10000} $ for MFE method (Example 1).
    $ \alpha $ $ \theta $ $ h $ $ \|u-u_h\| $ rate $ \|q-q_h\| $ rate CPU(s)
    1/200 4.5123E-05 - 6.9060E-04 - 106
    0.1 1/300 2.0078E-05 1.9971 3.0697E-04 1.9997 151
    1/400 1.1299E-05 1.9983 1.7268E-04 1.9998 271
    1/200 4.5124E-05 - 6.9060E-04 - 111
    0.3 0.3 1/300 2.0079E-05 1.9971 3.0697E-04 1.9997 155
    1/400 1.1300E-05 1.9982 1.7268E-04 1.9998 285
    1/200 4.5125E-05 - 6.9060E-04 - 112
    0.5 1/300 2.0079E-05 1.9970 3.0697E-04 1.9997 153
    1/400 1.1301E-05 1.9982 1.7268E-04 1.9998 269
    1/200 4.5596E-05 - 1.1129E-03 - 111
    0.1 1/300 2.0282E-05 1.9979 4.9470E-04 1.9997 167
    1/400 1.1409E-05 1.9999 2.7828E-04 1.9998 300
    1/200 4.5597E-05 - 1.1130E-03 - 109
    0.8 0.3 1/300 2.0283E-05 1.9978 4.9470E-04 1.9997 156
    1/400 1.1410E-05 1.9997 2.7828E-04 1.9998 285
    1/200 4.5599E-05 - 1.1130E-03 - 107
    0.5 1/300 2.0285E-05 1.9977 4.9470E-04 1.9997 153
    1/400 1.1412E-05 1.9996 2.7829E-04 1.9998 271
    1/200 4.5585E-05 - 1.3908E-03 - 109
    0.1 1/300 2.0273E-05 1.9985 6.1820E-04 1.9997 144
    1/400 1.1400E-05 2.0010 3.4776E-04 1.9998 249
    1/200 4.5587E-05 - 1.3908E-03 - 97
    0.99 0.3 1/300 2.0274E-05 1.9984 6.1821E-04 1.9997 141
    1/400 1.1401E-05 2.0010 3.4776E-04 1.9998 251
    1/200 4.5588E-05 - 1.3908E-03 - 118
    0.5 1/300 2.0276E-05 1.9983 6.1821E-04 1.9997 154
    1/400 1.1403E-05 2.0007 3.4776E-04 1.9998 275

     | Show Table
    DownLoad: CSV
    Table 2.  Spatial convergence results with $ \tau = \frac{1}{10000} $ for TT-M MFE method (Example 1).
    $ \alpha $ $ \theta $ $ h $ $ \|u-U_f\| $ rate $ \|q-Q_f\| $ rate CPU(s)
    1/200 4.5123E-05 - 6.9060E-04 - 70
    0.1 1/300 2.0078E-05 1.9971 3.0697E-04 1.9997 97
    1/400 1.1299E-05 1.9983 1.7268E-04 1.9998 150
    1/200 4.5124E-05 - 6.9060E-04 - 77
    0.3 0.3 1/300 2.0079E-05 1.9971 3.0697E-04 1.9997 105
    1/400 1.1300E-05 1.9982 1.7268E-04 1.9998 161
    1/200 4.5125E-05 - 6.9060E-04 - 75
    0.5 1/300 2.0079E-05 1.9970 3.0697E-04 1.9997 102
    1/400 1.1301E-05 1.9982 1.7268E-04 1.9998 159
    1/200 4.5596E-05 - 1.1129E-03 - 72
    0.1 1/300 2.0282E-05 1.9979 4.9470E-04 1.9997 95
    1/400 1.1409E-05 1.9999 2.7828E-04 1.9998 159
    1/200 4.5597E-05 - 1.1130E-03 - 76
    0.8 0.3 1/300 2.0283E-05 1.9978 4.9470E-04 1.9997 100
    1/400 1.1410E-05 1.9997 2.7828E-04 1.9998 158
    1/200 4.5599E-05 - 1.1130E-03 - 77
    0.5 1/300 2.0285E-05 1.9977 4.9470E-04 1.9997 102
    1/400 1.1412E-05 1.9996 2.7829E-04 1.9998 168
    1/200 4.5585E-05 - 1.3908E-03 - 77
    0.1 1/300 2.0273E-05 1.9985 6.1820E-04 1.9997 104
    1/400 1.1400E-05 2.0010 3.4776E-04 1.9998 159
    1/200 4.5587E-05 - 1.3908E-03 - 69
    0.99 0.3 1/300 2.0274E-05 1.9984 6.1821E-04 1.9997 92
    1/400 1.1402E-05 2.0008 3.4776E-04 1.9998 147
    1/200 4.5588E-05 - 1.3908E-03 - 71
    0.5 1/300 2.0276E-05 1.9983 6.1821E-04 1.9997 94
    1/400 1.1403E-05 2.0006 3.4776E-04 1.9998 144

     | Show Table
    DownLoad: CSV

    In Tables 34, by taking the space step length $ h = 1/5000 $, time step length $ \tau = 1/144 $, $ 1/256 $, $ 1/400 $ ($ \tau = \tau_c^2 $ for TT-M method), time fractional parameter $ \alpha $ as $ 0.3, 0.8, 0.99 $, and shifted parameter $ \theta $ as $ 0.1, 0.3, 0.5 $, we implement the numerical calculations by using standard nonlinear MFE method and fast TT-M MFE method, respectively. From this, one can see that these two methods have almost the same error results and time convergence rate, and that our TT-M MFE algorithm can save the CPU time.

    Table 3.  Temporal convergence results with $ h = \frac{1}{5000} $ for MFE method (Example 1).
    $ \alpha $ $ \theta $ $ \tau $ $ \|u-u_h\| $ rate $ \|q-q_h\| $ rate CPU(s)
    1/144 1.9638E-05 - 5.7720E-05 - 668
    0.1 1/256 6.1726E-06 2.0115 1.8140E-05 2.0117 1216
    1/400 2.4869E-06 2.0370 7.3284E-06 2.0309 1720
    1/144 1.6339E-05 - 3.7840E-05 - 690
    0.3 0.3 1/256 5.1271E-06 2.0144 1.1854E-05 2.0173 1273
    1/400 2.0589E-06 2.0443 4.7657E-06 2.0418 1977
    1/144 1.3111E-05 - 1.7996E-05 - 630
    0.5 1/256 4.0930E-06 2.0234 5.5921E-06 2.0314 1116
    1/400 1.6332E-06 2.0586 2.2216E-06 2.0685 1868
    1/144 7.8075E-05 - 1.1170E-04 - 677
    0.1 1/256 2.4724E-05 1.9986 3.5135E-05 2.0103 1228
    1/400 1.0097E-05 2.0067 1.4196E-05 2.0306 1736
    1/144 7.1921E-05 - 7.4946E-05 - 717
    0.8 0.3 1/256 2.2772E-05 1.9988 2.3504E-05 2.0154 1211
    1/400 9.2964E-06 2.0074 9.4544E-06 2.0406 1725
    1/144 6.5762E-05 - 3.8475E-05 - 698
    0.5 1/256 2.0819E-05 1.9990 1.1988E-05 2.0267 1232
    1/400 8.4963E-06 2.0082 4.7745E-06 2.0628 1711
    1/144 1.1956E-04 - 1.4295E-04 - 699
    0.1 1/256 3.7914E-05 1.9961 4.4975E-05 2.0098 1128
    1/400 1.5512E-05 2.0026 1.8174E-05 2.0303 1881
    1/144 1.1208E-04 - 9.6687E-05 - 717
    0.99 0.3 1/256 3.5542E-05 1.9962 3.0333E-05 2.0148 1223
    1/400 1.4540E-05 2.0029 1.2204E-05 2.0401 1731
    1/144 1.0459E-04 - 5.0833E-05 - 621
    0.5 1/256 3.3168E-05 1.9961 1.5850E-05 2.0254 1193
    1/400 1.3567E-05 2.0031 6.3173E-06 2.0612 1724

     | Show Table
    DownLoad: CSV
    Table 4.  Temporal convergence results with $ h = \frac{1}{5000} $ for TT-M MFE method (Example 1).
    $ \alpha $ $ \theta $ $ \tau $ $ \|u-U_f\| $ rate $ \|q-Q_f\| $ rate CPU(s)
    1/144 1.9731E-05 - 5.7726E-05 - 500
    0.1 1/256 6.1900E-06 2.0148 1.8141E-05 2.0118 822
    1/400 2.4907E-06 2.0398 7.3285E-06 2.0310 1176
    1/144 1.6388E-05 - 3.7843E-05 - 466
    0.3 0.3 1/256 5.1364E-06 2.0165 1.1854E-05 2.0174 827
    1/400 2.0611E-06 2.0460 4.7658E-06 2.0418 1272
    1/144 1.3054E-05 - 1.7998E-05 - 439
    0.5 1/256 4.0850E-06 2.0192 5.5923E-06 2.0315 759
    1/400 1.6312E-06 2.0570 2.2216E-06 2.0686 1190
    1/144 7.8511E-05 - 1.1171E-04 - 441
    0.1 1/256 2.4805E-05 2.0025 3.5137E-05 2.0103 754
    1/400 1.0119E-05 2.0092 1.4196E-05 2.0307 1142
    1/144 7.2194E-05 - 7.4953E-05 - 484
    0.8 0.3 1/256 2.2823E-05 2.0015 2.3505E-05 2.0155 833
    1/400 9.3104E-06 2.0091 9.4547E-06 2.0406 1278
    1/144 6.5901E-05 - 3.8479E-05 - 478
    0.5 1/256 2.0845E-05 2.0005 1.1989E-05 2.0268 809
    1/400 8.5034E-06 2.0092 4.7747E-06 2.0629 1278
    1/144 1.2014E-04 - 1.4296E-04 - 475
    0.1 1/256 3.8023E-05 1.9995 4.4978E-05 2.0098 818
    1/400 1.5541E-05 2.0048 1.8175E-05 2.0304 1223
    1/144 1.1245E-04 - 9.6696E-05 - 442
    0.99 0.3 1/256 3.5611E-05 1.9985 3.0335E-05 2.0149 767
    1/400 1.4558E-05 2.0044 1.2204E-05 2.0401 1210
    1/144 1.0479E-04 - 5.0837E-05 - 440
    0.5 1/256 3.3206E-05 1.9975 1.5851E-05 2.0255 742
    1/400 1.3576E-05 2.0041 6.3175E-06 2.0613 1240

     | Show Table
    DownLoad: CSV

    In this example, we continue to use the linearization technique (2.17)(a) to verify the efficiency of the current TT-M MFE algorithm. Considering the space-time domain $ \bar\Omega\times\bar{J} = [0, 1]\times[0, 1] $, we choose the nonlinear term $ g(u) = \arctan u $ and the source term $ f(x, t) = 100\sin^2(5\pi t)\sin^2(3\pi x)\big{[}0.15-(t-\frac{1}{2})^2-(x-\frac{1}{2})^2\big{]}^2 $. Here, we just consider the TT-M MFE algorithm with $ M = 4 $. Because of the unknown exact solution, we choose the numerical solution with $ h = \tau = \frac{1}{1200} $ as the approximating exact solution.

    In Table 5, with the fixed time step length $ \tau = \tau_c/M = 1/NM = 1/1200 $, changed space step length $ h = 1/30, 1/40, 1/50 $, fractional parameter $ \alpha = 0.3, 0.5, 0.99 $, and shifted parameter $ \theta = 0.1, 0.3, 0.5 $, we can get the errors and spatial convergence results of the TT-M MFE system. In Table 6, considering the fixed space step length $ h = 1/1200 $, fine time step length $ \tau = \tau_c/M = 1/NM = 1/80, 1/100, 1/120 $ ($ N = 20, 25, 30 $), fractional parameter $ \alpha = 0.3, 0.5, 0.99 $ and shifted parameter $ \theta = 0.1, 0.3, 0.5 $, we calculate the error results and time convergence rate for the TT-M MFE algorithm. The computed data shows that the TT-M MFE algorithm can also maintain a good calculation effect for the selected numerical example with an unknown exact solution.

    Table 5.  Spatial convergence results with $ \tau = \frac{1}{1200} $ for TT-M MFE method (Example 2).
    $ \alpha $ $ \theta $ $ h $ $ \|u-U_f\| $ rate $ \|q-Q_f\| $ rate
    1/30 8.6102E-04 - 2.1992E-02 -
    0.1 1/40 4.7269E-04 2.0845 1.2031E-02 2.0969
    1/50 2.9250E-04 2.1510 7.3662E-03 2.1984
    1/30 8.6103E-04 - 2.1992E-02 -
    0.3 0.3 1/40 4.7270E-04 2.0845 1.2031E-02 2.0969
    1/50 2.9250E-04 2.1510 7.3662E-03 2.1984
    1/30 8.6104E-04 - 2.1992E-02 -
    0.5 1/40 4.7270E-04 2.0845 1.2031E-02 2.0969
    1/50 2.9251E-04 2.1510 7.3662E-03 2.1984
    1/30 7.2514E-04 - 2.1991E-02 -
    0.1 1/40 3.9992E-04 2.0686 1.2030E-02 2.0969
    1/50 2.4819E-04 2.1380 7.3660E-03 2.1983
    1/30 7.2515E-04 - 2.1991E-02 -
    0.5 0.3 1/40 3.9993E-04 2.0686 1.2030E-02 2.0969
    1/50 2.4819E-04 2.1380 7.3660E-03 2.1983
    1/30 7.2516E-04 - 2.1991E-02 -
    0.5 1/40 3.9993E-04 2.0686 1.2030E-02 2.0969
    1/50 2.4819E-04 2.1380 7.3660E-03 2.1983
    1/30 5.3808E-04 - 2.1989E-02 -
    0.1 1/40 3.0067E-04 2.0231 1.2029E-02 2.0968
    1/50 1.8816E-04 2.1004 7.3656E-03 2.1983
    1/30 5.3809E-04 - 2.1989E-02 -
    0.99 0.3 1/40 3.0067E-04 2.0231 1.2029E-02 2.0968
    1/50 1.8816E-04 2.1004 7.3656E-03 2.1983
    1/30 5.3809E-04 - 2.1989E-02 -
    0.5 1/40 3.0067E-04 2.0231 1.2029E-02 2.0968
    1/50 1.8816E-04 2.1004 7.3656E-03 2.1983

     | Show Table
    DownLoad: CSV
    Table 6.  Temporal convergence results with $ h = \frac{1}{1200} $ for TT-M MFE method (Example 2).
    $ \alpha $ $ \theta $ $ \tau $ $ \|u-U_f\| $ rate $ \|q-Q_f\| $ rate
    1/80 3.6618E-03 - 3.9369E-02 -
    0.1 1/100 2.3445E-03 1.9981 2.5898E-02 1.8768
    1/120 1.6378E-03 1.9675 1.8949E-02 1.7138
    1/80 2.6086E-03 - 2.7341E-02 -
    0.3 0.3 1/100 1.6788E-03 1.9752 1.7193E-02 2.0789
    1/120 1.1734E-03 1.9643 1.1632E-02 2.1430
    1/80 1.5372E-03 - 1.2016E-02 -
    0.5 1/100 9.8788E-04 1.9815 7.7099E-03 1.9884
    1/120 6.9141E-04 1.9572 5.2103E-03 2.1493
    1/80 2.5340E-03 - 3.9413E-02 -
    0.1 1/100 1.6204E-03 2.0037 2.5947E-02 1.8733
    1/120 1.1305E-03 1.9749 1.8978E-02 1.7157
    1/80 1.9061E-03 - 2.7370E-02 -
    0.5 0.3 1/100 1.2434E-03 1.9143 1.7208E-02 2.0798
    1/120 8.7143E-04 1.9498 1.1652E-02 2.1386
    1/80 1.3166E-03 - 1.2030E-02 -
    0.5 1/100 8.5443E-04 1.9378 7.7174E-03 1.9896
    1/120 5.9639E-04 1.9720 5.2145E-03 2.1502
    1/80 1.1108E-03 - 3.9446E-02 -
    0.1 1/100 6.9195E-04 2.1212 2.5989E-02 1.8699
    1/120 4.6577E-04 2.1709 1.9001E-02 1.7178
    1/80 7.8786E-04 - 2.7394E-02 -
    0.99 0.3 1/100 5.0252E-04 2.0153 1.7219E-02 2.0807
    1/120 3.4426E-04 2.0746 1.1668E-02 2.1343
    1/80 5.5433E-04 - 1.2043E-02 -
    0.5 1/100 3.6261E-04 1.9020 7.7234E-03 1.9909
    1/120 2.5445E-04 1.9428 5.2176E-03 2.1512

     | Show Table
    DownLoad: CSV

    Further, in order to check the behaviors of numerical solution, we provide the comparison figures of numerical solutions between different time step length sizes. In Figure 1, we show the comparison surfaces of numerical solutions $ U_f $ with the fixed space step length $ h = 1/1200 $, fractional parameter $ \alpha = 0.3 $, shifted parameter $ \theta = 0.1 $, and changed time step length $ \tau = 1/120, 1/1200 $. We also provide the comparison surfaces of numerical solutions $ Q_f $ in Figure 2. The comparison results tell us the corresponding numerical solutions have similar behavior. Moreover, in Figure 3, for fixed fractional parameter $ \alpha = 0.3 $ and parameter $ \theta = 0.1 $, we depict the figures of difference in $ L^2 $-norm between reference solution with $ h = \tau = 1/1200 $ and numerical solution with $ h = 1/1200 $ and $ \tau = 1/120 $, from which one can see the performances of $ \|u^n-U_f^n\| $ and $ \|q^n-Q_f^n\| $. It is easy to see the changes of actual errors at different time nodes from the figures, which can reveal the overall distribution of errors.

    Figure 1.  Numerical solution $ U_f $ with different time step lengths and $ h = 1/1200 $.
    Figure 2.  Numerical solution $ Q_f $ with different time step lengths and $ h = 1/1200 $.
    Figure 3.  $ L^2 $-errors at different time.

    For comparison and validation of feasibility, we still carry out the numerical calculation by taking Example 1. Here, we apply the linearized technique (2.16) to deal with the nonlinear term. One can see from the numerical results in Table 7 that the optimal spatial convergence data is almost consistent with the calculation results in Example 1, which uses the linearized method (2.17)(a). It indicates that the linearization technique adopted in this paper is feasible. Further, comparison of CPU time in Table 2 and Table 7 shows that computing time in this example is slightly slower, which may be caused due to the linearization for the $ m-1 $ layer.

    Table 7.  Spatial convergence results with $ \tau = \frac{1}{10000} $ for TT-M MFE method (Example 3).
    $ \alpha $ $ \theta $ $ h $ $ \|u-u_f\| $ rate $ \|q-q_f\| $ rate CPU(s)
    1/200 4.5123E-05 - 6.9060E-04 - 82
    0.1 1/300 2.0078E-05 1.9971 3.0697E-04 1.9997 112
    1/400 1.1299E-05 1.9983 1.7268E-04 1.9998 174
    1/200 4.5124E-05 - 6.9060E-04 - 83
    0.3 0.3 1/300 2.0079E-05 1.9971 3.0697E-04 1.9997 106
    1/400 1.1300E-05 1.9982 1.7268E-04 1.9998 169
    1/200 4.5125E-05 - 6.9060E-04 - 84
    0.5 1/300 2.0079E-05 1.9970 3.0697E-04 1.9997 113
    1/400 1.1301E-05 1.9982 1.7268E-04 1.9998 175
    1/200 4.5596E-05 - 1.1129E-03 - 87
    0.1 1/300 2.0282E-05 1.9979 4.9470E-04 1.9997 115
    1/400 1.1409E-05 1.9999 2.7828E-04 1.9998 184
    1/200 4.5597E-05 - 1.1130E-03 - 88
    0.8 0.3 1/300 2.0283E-05 1.9978 4.9470E-04 1.9997 122
    1/400 1.1410E-05 1.9997 2.7828E-04 1.9998 180
    1/200 4.5599E-05 - 1.1130E-03 - 89
    0.5 1/300 2.0285E-05 1.9977 4.9470E-04 1.9997 113
    1/400 1.1412E-05 1.9996 2.7829E-04 1.9998 183
    1/200 4.5585E-05 - 1.3908E-03 - 89
    0.1 1/300 2.0273E-05 1.9985 6.1820E-04 1.9997 119
    1/400 1.1400E-05 2.0010 3.4776E-04 1.9998 180
    1/200 4.5587E-05 - 1.3908E-03 - 80
    0.99 0.3 1/300 2.0274E-05 1.9984 6.1821E-04 1.9997 113
    1/400 1.1402E-05 2.0008 3.4776E-04 1.9998 177
    1/200 4.5588E-05 - 1.3908E-03 - 79
    0.5 1/300 2.0276E-05 1.9983 6.1821E-04 1.9997 120
    1/400 1.1403E-05 2.0006 3.4776E-04 1.9998 178

     | Show Table
    DownLoad: CSV

    In this example, we choose the solution $ u = t^{2+\alpha}\sin(\pi x) $, which has weaker regularity with comparison to the case in Example 1. We choose the same space-time domain and the nonlinear term $ g(u) $ as in Example 1. We provide the source term $ f $, which we omit here, such that the equation has the current exact solution $ u $. For this case with weak regularity, we continue to apply the linearized technique (2.16) to deal with the nonlinear term.

    By taking $ \tau = 1/16, 1/25, 1/36, 1/49 $, $ \alpha = 0.1, 0.3, 0.5 $, $ \theta = 0.1, 0.3, 0.5 $, and the fixed space step $ h = 1/1000 $, we implement numerical tests and obtain the numerical results shown in Table 8, from which one can see that most data cannot achieve second-order approximation results in time. For solving this issue, under the same parameters, we consider the corrected scheme with correction parts, and arrive at optimal time second-order convergence results listed in Table 9, which imply that the numerical scheme by adding the correction parts can effectively solve the problem of accuracy loss and restore the optimal convergence order. Further, based on the data from Tables 89, we show the case of the convergence rate in Figures 45 for $ U_f $ and $ Q_f $, from which one can see intuitively, that with comparison to the case without adding the correction parts, the optimal convergence rate can be achieved by adding the correction parts.

    Table 8.  Temporal convergence results without correction parts with $ h = \frac{1}{1000} $ (Example 4).
    $ \alpha $ $ \theta $ $ \tau $ $ \|u-U_f\| $ rate $ \|q-Q_f\| $ rate
    1/16 1.1815E-03 - 8.4390E-03 -
    0.1 1/25 5.8634E-04 1.5698 3.9830E-03 1.6824
    1/36 3.1749E-04 1.6823 2.2265E-03 1.5950
    1/49 1.8309E-04 1.7855 1.3153E-03 1.7072
    1/16 6.7319E-04 - 4.6262E-03 -
    0.1 0.3 1/25 2.9762E-04 1.8289 2.1182E-03 1.7504
    1/36 1.5559E-04 1.7787 1.0860E-03 1.8322
    1/49 8.9665E-05 1.7877 6.1517E-04 1.8434
    1/16 7.5071E-05 - 2.2560E-04 -
    0.5 1/25 3.1201E-05 1.9673 6.4598E-05 2.8021
    1/36 1.5837E-05 1.8596 3.8075E-05 1.4497
    1/49 9.1062E-06 1.7950 2.8062E-05 0.9897
    1/16 1.1096E-03 - 8.4598E-03 -
    0.1 1/25 4.9205E-04 1.8221 4.0096E-03 1.6730
    1/36 2.5452E-04 1.8078 2.1919E-03 1.6562
    1/49 1.4087E-04 1.9187 1.2752E-03 1.7570
    1/16 6.4783E-04 - 4.7511E-03 -
    0.3 0.3 1/25 2.7961E-04 1.8827 2.1137E-03 1.8149
    1/36 1.3972E-04 1.9025 1.0627E-03 1.8857
    1/49 7.6362E-05 1.9597 6.1178E-04 1.7911
    1/16 3.1590E-04 - 3.4312E-04 -
    0.5 1/25 1.2862E-04 2.0135 1.4706E-04 1.8985
    1/36 6.1578E-05 2.0199 7.4871E-05 1.8513
    1/49 3.2782E-05 2.0449 4.4690E-05 1.6738
    1/16 1.1653E-03 - 9.0917E-03 -
    0.1 1/25 4.9632E-04 1.9125 4.3197E-03 1.6675
    1/36 2.4321E-04 1.9562 2.3523E-03 1.6668
    1/49 1.3205E-04 1.9809 1.3680E-03 1.7581
    1/16 8.4052E-04 - 5.1034E-03 -
    0.5 0.3 1/25 3.4388E-04 2.0026 2.2553E-03 1.8298
    1/36 1.6484E-04 2.0165 1.1321E-03 1.8901
    1/49 8.8163E-05 2.0298 6.5240E-04 1.7877
    1/16 7.4734E-04 - 4.1001E-04 -
    0.5 1/25 3.0590E-04 2.0016 1.8169E-04 1.8237
    1/36 1.4698E-04 2.0100 9.2128E-05 1.8624
    1/49 7.8605E-05 2.0301 5.1259E-05 1.9017

     | Show Table
    DownLoad: CSV
    Table 9.  Temporal convergence results by adding correction parts with $ h = \frac{1}{1000} $ (Example 4).
    $ \alpha $ $ \theta $ $ \tau $ $ \|u-{U}_f\| $ rate $ \|q-{Q}_f\| $ rate
    1/16 3.0356E-04 - 1.7376E-03 -
    0.1 1/25 1.2169E-04 2.0482 7.1047E-04 2.0039
    1/36 5.7766E-05 2.0433 3.4171E-04 2.0073
    1/49 3.0527E-05 2.0687 1.8358E-04 2.0152
    1/16 7.5801E-04 - 3.6033E-03 -
    0.1 0.3 1/25 2.9970E-04 2.0792 1.4975E-03 1.9675
    1/36 1.4141E-04 2.0598 7.3055E-04 1.9684
    1/49 7.4831E-05 2.0644 3.9721E-04 1.9764
    1/16 9.9172E-04 - 3.7014E-03 -
    0.5 1/25 3.8117E-04 2.1426 1.5811E-03 1.9060
    1/36 1.7754E-04 2.0953 7.8511E-04 1.9198
    1/49 9.3053E-05 2.0954 4.3188E-04 1.9386
    1/16 3.8731E-04 - 2.0865E-03 -
    0.1 1/25 1.5647E-04 2.0309 8.5231E-04 2.0061
    1/36 7.4130E-05 2.0487 4.0953E-04 2.0100
    1/49 3.9028E-05 2.0809 2.1954E-04 2.0222
    1/16 9.6616E-04 - 4.0215E-03 -
    0.3 0.3 1/25 3.8454E-04 2.0643 1.6689E-03 1.9707
    1/36 1.8134E-04 2.0614 8.1646E-04 1.9606
    1/49 9.5941E-05 2.0650 4.4504E-04 1.9683
    1/16 1.2274E-03 - 3.7900E-03 -
    0.5 1/25 4.7871E-04 2.1097 1.6109E-03 1.9171
    1/36 2.2407E-04 2.0818 8.0161E-04 1.9140
    1/49 1.1774E-04 2.0871 4.4331E-04 1.9214
    1/16 4.8632E-04 - 2.5322E-03 -
    0.1 1/25 1.9796E-04 2.0139 1.0356E-03 2.0034
    1/36 9.4202E-05 2.0366 4.9789E-04 2.0085
    1/49 4.9830E-05 2.0656 2.6685E-04 2.0230
    1/16 1.1980E-03 - 4.4807E-03 -
    0.5 0.3 1/25 4.8062E-04 2.0464 1.8632E-03 1.9662
    1/36 2.2775E-04 2.0481 9.1771E-04 1.9421
    1/49 1.2091E-04 2.0540 5.0351E-04 1.9470
    1/16 1.4738E-03 - 3.8871E-03 -
    0.5 1/25 5.8365E-04 2.0755 1.6369E-03 1.9379
    1/36 2.7457E-04 2.0680 8.1438E-04 1.9146
    1/49 1.4530E-04 2.0643 4.5316E-04 1.9014

     | Show Table
    DownLoad: CSV
    Figure 4.  Time convergence rates of $ U_f $ without or with correction parts.
    Figure 5.  Time convergence rates of $ Q_f $ without or with correction parts.

    In this article, we developed a fast TT-M MFE method for solving the nonlinear fractional hyperbolic wave model. We derived optimal a priori error results for the fully discrete TT-M MFE scheme. To verify the correctness of theoretical results and the computational efficiency of the algorithm, we implemented four numerical tests. For the cases with smooth solutions, one can see from the computing results that our TT-M MFE algorithm can obtain the similar convergence results as that computed by using the nonlinear MFE algorithm, while the computing time was reduced. Further, for the case with a weakly regular solution, the considered numerical scheme under certain parameters may lose computational accuracy. For handling this problem, we designed the corrected TT-M MFE method by adding the correction term to restore calculation accuracy.

    In future works, we will design other TT-M MFE methods to solve some nonlinear fractional PDE models.

    The authors would like to thank the editor and all the anonymous referees for their valuable comments, which greatly improved the presentation of the article. This work is supported by the National Natural Science Foundation of China (12061053, 12161063), Natural Science Foundation of Inner Mongolia (2022LHMS01004), Young innovative talents project of Grassland Talents Project, Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2413, NMGIRT2207).

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare there is no conflict of interest.

    [1] Caginalp G (1986) An analysis of a phase field model of a free boundary. Arch Ration Mech Anal ,92: 205-245.
    [2] Aizicovici S, Feireisl E (2001) Long-time stabilization of solutions to a phase-field model with memory. J Evol Equ ,1: 69-84.
    [3] Aizicovici S, Feireisl E (2001) Long-time convergence of solutions to a phase-field system. Math Methods Appl Sci ,24: 277-287.
    [4] Brochet D, Chen X, Hilhorst D (1993) Finite dimensional exponential attractors for the phase-field model. Appl Anal ,49: 197-212.
    [5] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.
    [6] Cherfils L, Miranville A (2007) Some results on the asymptotic behavior of the Caginalp system with singular potentials. Adv Math Sci Appl .
    [7] Cherfils L, Miranville A (2009) On the Caginalp system with dynamic boundary conditions and singular potentials. Appl Math ,54: 89-115.
    [8] Chill R, Fasangov E′a, J. Pr¨uss (2006) Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions. Math Nachr ,279: 1448-1462.
    [9] C.I. Christov, P.M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 94 (2005), 154-301.
    [10] J.N. Flavin, R.J. Knops, and L.E. Payne, Decay estimates for the constrained elastic cylinder of variable cross-section, Quart. Appl. Math., 47 (1989), 325-350.
    [11] Gatti S, Miranville A (2006) Asymptotic behavior of a phase-field system with dynamic boundary conditions, in: Di erential Equations: Inverse and Direct Problems (Proceedings of the workshop “Evolution Equations: Inverse and Direct Problems ”, Cortona, June 21-25, 2004), in A. Favini, A. Lorenzi (Eds), A Series of Lecture Notes in Pure and Applied Mathematics ,251: 149-170.
    [12] C. Giorgi, M. Grasselli, and V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math. J., 48 (1999), 1395-1446.
    [13] Grasseli M, Miranville A, Pata V, Zelik S (2007) Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials. Math Nachr ,280: 1475-1509.
    [14] M. Grasselli, On the large time behavior of a phase-field system with memory, Asymptot. Anal., 56 (2008), 229-249.
    [15] M. Grasselli, V. Pata, Robust exponential attractors for a phase-field system with memory J. Evol. Equ., 5 (2005), 465-483.
    [16] M. Grasselli, H. Petzeltová, and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potentials, Z. Anal. Anwend., 25 (2006), 51-73.
    [17] M. Grasselli, H. Wu, and S. Zheng, Asymptotic behavior of a non-isothermal Ginzburg-Landau model, Quart. Appl. Math., 66 (2008), 743-770.
    [18] A.E. Green, P.M. Naghdi, A new thermoviscous theory for fluids, J. Non-Newtonian Fluid Mech., 56 (1995), 289-306.
    [19] A.E. Green, P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. Lond. A., 432 (1991), 171-194.
    [20] A.E. Green, P.M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal. Stresses, 15 (1992), 253-264.
    [21] J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law, J. Math. Anal. Appl., 341 (2008), 149-169.
    [22] J. Jiang, Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law, Math. Methods Appl. Sci., 32 (2009), 1156-1182.
    [23] Ph. Laurençot, Long-time behaviour for a model of phase-field type, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 167-185.
    [24] A. Miranville, R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal., 88 (2009), 877-894.
    [25] A. Miranville, R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal. TMA., 71 (2009), 2278-2290
    [26] A. Miranville, R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling. Nonlinear Anal.: Real World Applications, 11 (2010), 2849-2861.
    [27] A. Miranville, S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Diff. Equ., (2002), 1-28.
    [28] A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in: C.M. Dafermos, M. Pokorny (Eds.) Handbook of Differential Equations, Evolutionary Partial Differential Equations. Elsevier, Amsterdam, 2008.
    [29] A. Novick-Cohen, A phase field system with memory: Global existence, J. Int. Equ. Appl. 14 (2002), 73-107.
    [30] R. Quintanilla, On existence in thermoelasticity without energy dissipation, J. Thermal. Stresses, 25 (2002), 195-202.
    [31] R. Quintanilla, End effects in thermoelasticity, Math. Methods Appl. Sci.. 24 (2001), 93-102.
    [32] R. Quintanilla, R. Racke, Stability in thermoelasticity of type Ⅲ, Discrete Contin. Dyn. Syst. B, 3 (2003), 383-400.
    [33] R. Quintanilla, Phragmén-Lindelöf alternative for linear equations of the anti-plane shear dynamic problem in viscoelasticity, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 423-435.
    [34] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, second edition, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.
    [35] Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Comm. Pure Appl. Anal., 4 (2005), 683-693.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5381) PDF downloads(1561) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog