
This paper deals with localized waves in the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation in the incompressible fluid. Based on Hirota's bilinear method, N-soliton solutions related to CDGKS equation are constructed. Taking the special reduction, the exact expression of multiple localized wave solutions comprising lump soliton(s) are obtained by using the long wave limit method. A variety of interactions are illustrated analytically and graphically. The influence of parameters on propagation is analyzed and summarized. The results and phenomena obtained in this paper enrich the dynamic behavior of the evolution of nonlinear localized waves.
Citation: Jianhong Zhuang, Yaqing Liu, Ping Zhuang. Variety interaction solutions comprising lump solitons for the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation[J]. AIMS Mathematics, 2021, 6(5): 5370-5386. doi: 10.3934/math.2021316
[1] | Yu-Lan Ma, Bang-Qing Li . Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. AIMS Mathematics, 2020, 5(2): 1162-1176. doi: 10.3934/math.2020080 |
[2] | Muhammad Bilal Riaz, Faiza Naseer, Muhammad Abbas, Magda Abd El-Rahman, Tahir Nazir, Choon Kit Chan . Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods. AIMS Mathematics, 2023, 8(12): 31268-31292. doi: 10.3934/math.20231601 |
[3] | Saleh Mousa Alzahrani, Talal Alzahrani . Multiple solitons with bifurcations, lump waves, M-shaped and interaction solitons of three component generalized (3+1)-dimensional Breaking soliton system. AIMS Mathematics, 2023, 8(8): 17803-17826. doi: 10.3934/math.2023908 |
[4] | Jin Hyuk Choi, Hyunsoo Kim . Exact traveling wave solutions of the stochastic Wick-type fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. AIMS Mathematics, 2021, 6(4): 4053-4072. doi: 10.3934/math.2021240 |
[5] | Zhe Ji, Yifan Nie, Lingfei Li, Yingying Xie, Mancang Wang . Rational solutions of an extended (2+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation in liquid drop. AIMS Mathematics, 2023, 8(2): 3163-3184. doi: 10.3934/math.2023162 |
[6] | Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661 |
[7] | Khudhayr A. Rashedi, Saima Noor, Tariq S. Alshammari, Imran Khan . Lump and kink soliton phenomena of Vakhnenko equation. AIMS Mathematics, 2024, 9(8): 21079-21093. doi: 10.3934/math.20241024 |
[8] | Muhammad Bilal, Javed Iqbal, Ikram Ullah, Aditi Sharma, Hasim Khan, Sunil Kumar Sharma . Novel optical soliton solutions for the generalized integrable (2+1)- dimensional nonlinear Schrödinger system with conformable derivative. AIMS Mathematics, 2025, 10(5): 10943-10975. doi: 10.3934/math.2025497 |
[9] | Kamyar Hosseini, Farzaneh Alizadeh, Sekson Sirisubtawee, Chaiyod Kamthorncharoen, Samad Kheybari, Kaushik Dehingia . Integrability, Hirota D-operator expression, multi solitons, breather wave, and complexiton of a generalized Korteweg-de Vries–Caudrey Dodd Gibbon equation. AIMS Mathematics, 2025, 10(3): 5248-5263. doi: 10.3934/math.2025242 |
[10] | M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and M−W-shape soliton solutions to (2+1) complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780 |
This paper deals with localized waves in the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation in the incompressible fluid. Based on Hirota's bilinear method, N-soliton solutions related to CDGKS equation are constructed. Taking the special reduction, the exact expression of multiple localized wave solutions comprising lump soliton(s) are obtained by using the long wave limit method. A variety of interactions are illustrated analytically and graphically. The influence of parameters on propagation is analyzed and summarized. The results and phenomena obtained in this paper enrich the dynamic behavior of the evolution of nonlinear localized waves.
Generally, it has always been a vital task to solve soliton equation based on the soliton theory. Except for numerical calculation and computer simulation, the mainstream research has been focused on finding the exact solution of the soliton equation. Seeking the exact solution of soliton equation possesses significant value from both theoretical and practical perspectives, which not only helps to further understand the essential properties and algebraic structure of the soliton equation, but also can explain related natural phenomenon reasonably. With the rapid development of soliton theory, many systematic methods have been proved effective, such as the inverse scattering method [1,2], Riemann-Hilbert problem [3], Bäcklund transformation [4,5], Darboux transformation [6,7,8], Hirota bilinear method [9,10], Wronskian technique [11], KP reductions [12], Painlevˊe analysis [13,14] and algebra-geometric method [15,16,17] etc. Among these methods, Hirota bilinear method uses the bilinear derivative as a tool and it is only related to the equation to be solved and independent on the spectral problem of the equation or the Lax pair. As a result, Hirota bilinear method is featured as intuitive and straightforward, which has become a common method to solve several multiple solition solutions of nonlinear evolution equations [18,19,20,21,22,23,24]. Many researchers have been working on various extensions and applications of bilinear methods, which further develops and broadens bilinear methods [25,26,27,28]. For instance, by using bilinear method, Ma et al. [29,30,31] studied lump solutions and interaction solutions to integrable equations.
In this paper, we will focus on the following (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equation [32]:
36ut+u5x+15(uuxx)x+45u2ux−5uxxy−15uuy−15ux∂−1xuy−5∂−1xuyy=0, | (1.1) |
where u=u(x,y,t) is a differentiable function with the scaled space variables x,y and time variable t, and the operator ∂−1x is the inverse operator of ∂x. When uy=0, Eq (1.1) reduces to the (1+1)-dimensional CDGKS equation. The CDGKS equation is derived by Sawada and Kotera [33], also by Caudrey, Dodd and Gibbon [34,35] independently, so it is also called Sawada-Kotera (SK) quation. The CDGKS equation is one of the most important integrable equations in soliton theory for describing a large range of nonlinear dispersive physical phenomena, and widely applied in nonlinear sciences such as the conservative flow of Liouville equation, 2-dimentional gauge field theory of quantum gravity and theory of conformal field etc. [34,36].
The (2+1)-dimensional CDGKS equation is a first member in the BKP integrable hierarchy [37,38,39], which is a higher-order generalization of the celebrated nonlinear evolution equation. Recently, CDGKS equation has attracted the attentions of many researchers, and delicate works have been conducted to solve the equation. Geng [40] using the Riccati equation and the invariance of the transformation of the independent variables, Darboux transformations of the (2+1)-dimensional CDGKS equation and the CDGKS equation are constructed. As an application, rational solutions and soliton solutions of these two equations are obtained by means of the Darboux transformations. Cao et al. [41] used the Lax methods to reduce the equation to integrability ordinary different equation and got the quasi period solution. By applying Painlevˊe expansion method and extended homoclinic test approach, Wang and Xian [42] obtained the homoclinic breather-wave solutions, periodic wave solutions and kink solitary wave solutions for Eq (1.1). In [43], new non-travelling wave solutions of (2+1)-dimensional CDGKS equation were derived by combining the Lie point group method to proper non-linear travelling wave method, and moreover, the localized structures were discussed. Geng et al. [44] obtained the Riemann theta function solutions of the CDGKS equation. The other solutions to Eq (1.1) including rational solutions and triangular periodic solutions, quasi-periodic solutions and novel periodic solitary wave have been derived by tanh method, Darboux transformation and Hirota bilinear method, respectively [45,46,47,48,49,50].
Up to now, there are few results about different soliton interaction solutions of the (2+1)-dimensional CDGKS equation, such as the interaction between line soliton and periodic soliton, the interaction between line soliton and lump soliton and the interaction between periodic soliton and lump soliton. By using Hirota bilinear method, Ref. [51] investigated the interactions among different kinds of single solitary wave, such as line-line, line-lump, lump-lump, etc. Due to the lump soliton is the periodically infinite increment of periodic soliton, in other words, it is derived by taking the limit of periodic soliton. The interactions among soliton solutions became more complicated with high order of the solution, which will be discussed in detail in this paper.
Bilinear form of Eq (1.1) has been obtained via the dependent variable transformation
u=2(lng)xx, | (2.1) |
which could be written as
(5Dy(D3x+Dy)−Dx(D5x+36Dt))(g⋅g)=0. | (2.2) |
Based on the Hirota's bilinear theory, Eq (1.1) has standard N-soliton solution by Eqs (2.1)-(2.2), and the solution of Eq (2.2) is in the form of
gN=∑μ=0,1exp(N∑i=1μiηi+∑1≤i<jμiμjln(Aij)), | (2.3) |
where
ηi=aix+biy+cit+η0i, ci=−5a3ibi+5b2i−a6i36ai, |
Aij=−(ai−aj)6−5(ai−aj)3(bi−bj)+36(ai−aj)(ci−cj)−5(bi−bj)2(ai+aj)6−5(ai+aj)3(bi+bj)+36(ai+aj)(ci+cj)−5(bi+bj)2, |
with ai,bi,ci and η0i (i=1,2,…,N) any arbitrary constants, and ∑μ=0,1 summation total of taking over all possible combinations of ηi,ηj=0,1(i,j=1,2,3,…,N). Based on the work of [26,52], the following theorem is proposed.
Theorem 1. Let bk=qkak(k=1,⋯N),aj=ljϵ,exp(η0j)=−1(j=1,⋯2M), qn=q∗n+M(n=1,⋯M)(′∗′ is conjugate), a2M+l=a∗2M+P+l,(l=1,⋯P) and a2M+2P+h(h=1,⋯Q) are real constants, when ϵ→0, the N-soliton solution u of Eq (2.1) with (2.3) can reduce to the interaction solutions of M-lump, P-breather and Q-line soliton, where N=2M+2P+Q, in which M,P,Q are nonnegative integers and express the numbers of lump, breather and line soliton, respectively.
To construct interaction solutions comprising one lump soliton satisfying the condition, the parameters in Eq (2.3) need to satisfy the following conditions
bi=aiqi (i=1,2,⋯,5),a1=l1ε,a2=l2ε,η01=η∗02=iπ,η03=η04=η05=0, |
and take the long wave limit as ε→0 in five-soliton solution, then we have
g=(ϱ1ϱ2+d12)l1l2ε2+(5)∑j=3(ϱ1ϱ2+d2jϱ1+d1jϱ2+d12+d1jd2j)exp(ηj)l1l2ε2+(5)∑3≤j<kdjk[ϱ1ϱ2+(d2j+d2k)ϱ1+(d1j+d1k)ϱ2+d12+(d1j+d1k)(d2j+d2k)]⋅exp(ηj+ηk)l1l2ε2+5∏3≤j<kdjk[ϱ1ϱ2+(5)∑s=3(d2sϱ1+d1sϱ2)+d12+(5)∑s=3d1s(5)∑s=3d2s]⋅exp((5)∑s=3ηs)l1l2ε2+O(ε3), | (3.1) |
with
ϱi=x+qiy+536q2it (i=1,2),d12=6(q1+q2)(q1−q2)2, | (3.2) |
dsj=−6aj(a2j−qs−qj)a4j−(qs+2qj)a2j+(qs−qj)2 (s=1,2, j=3,4,5), | (3.3) |
dsj=MN, (3≤s<j≤5), | (3.4) |
where
M=a4s−3a3saj+(4a2j−2qs−qj)a2s−3aj(a2j−qs−qj)as+a4j−(qs+2qj)a2j+(qs−qj)2,N=a4s+3a3saj+(4a2j−2qs−qj)a2s+3aj(a2j−qs−qj)as+a4j−(qs+2qj)a2j+(qs−qj)2. |
Inserting Eqs (3.1)-(3.4) into Eq (2.1), the solution of Eq (1.1) can be obtained.
(i) In the special case of P=0,Q=3.
If taking
q1=q∗2=−13−2i,q3=−32,q4=34,q5=−13,a3=−45,a4=45,a5=−32, |
the solution u given by Eq (3.1) expresses the interaction among a lump soliton and three bell-shaped line solitons. Figure 1 presents the interaction behavior between three bell-shaped line solitons and a lump soliton in Eq (3.1) at different time. It can be observed that the lump spreads together with the three bell-shaped line solitons. During the interaction process, we can find that the shape and velocity of three bell-shaped line solitons and lump remain unchanged, which exhibit the characteristic of "elastic collision".
(ii) In the special case of P=1,Q=1.
If taking
q1=q∗2=−13−2i,q3=q∗4=−14−12i,q5=1,a3=a4=−15,a5=34, |
in Eq (3.1), Figure 2 presents the interaction behavior between one lump, one breather and one bell-shaped line soliton. The period of the breather is 20π along the y direction. It can be observed that the lump spreads together with the breather and line soliton. During the interaction process, the shape and velocity of the lump and line soliton remain unchanged, the period of the breather remain unchanged.
To construct interaction solutions comprising one lump soliton satisfying the condition, the parameters in Eq (2.3) need to satisfy the following conditions
bi=aiqi (i=1,2,⋯,6),a1=l1ε,a2=l2ε,η01=η∗02=iπ,η03=η04=η05=η06=0, |
and take the long wave limit as ε→0 in the function g in Eq (2.3), then
g=(ϱ1ϱ2+d12)l1l2ε2+(6)∑j=3(ϱ1ϱ2+d2jϱ1+d1jϱ2+d12+d1jd2j)exp(ηj)l1l2ε2+(6)∑3≤j<kdjk[ϱ1ϱ2+(d2j+d2k)ϱ1+(d1j+d1k)ϱ2+d12+(d1j+d1k)(d2j+d2k)]⋅exp(ηj+ηk)l1l2ε2+(6)∑3≤j<k<sdjkdjsdks[ϱ1ϱ2+(d2j+d2k+d2s)ϱ1+(d1j+d1k+d1s)ϱ2+d12+(d1j+d1k+d1s)(d2j+d2k+d2s)]exp(ηj+ηk+ηs)l1l2ε2+6∏3≤j<kdjk[ϱ1ϱ2+(6)∑s=3(d2sϱ1+d1sϱ2)+d12+(6)∑s=3d1s(6)∑s=3a2s]exp((6)∑s=3ηs)l1l2ε2+O(ε3), | (3.5) |
where
ϱi=x+qiy+536q2it, (i=1,2), | (3.6) |
d12=6(q1+q2)(q1−q1)2, | (3.7) |
dsj=−6aj(a2j−qs−qj)a4j−(qs+2qj)a2j+(qs−qj)2 (s=1,2, j=3,4,5,6), | (3.8) |
dsj=MN, (3≤s<j≤6), | (3.9) |
where
M=a4s−3a3saj+(4a2j−2qs−qj)a2s−3aj(a2j−qs−qj)as+a4j−(qs+2qj)a2j+(qs−qj)2,N=a4s+3a3saj+(4a2j−2qs−qj)a2s+3aj(a2j−qs−qj)as+a4j−(qs+2qj)a2j+(qs−qj)2. |
Inserting Eqs (3.5)-(3.9) into Eq (2.1), the solution of Eq (1.1) can be obtained.
(i) In the special case of P=0,Q=4.
If taking
q1=q∗2=−1−2i,q3=−32,q4=−34,q5=1,q6=23,a3=a4=1,a5=a6=54, |
the solutions u given by Eq (3.5) express the elastic interaction between one lump and four bell-shaped solitons at different time as shown in Figure 3.
(ii) In the special case of P=1,Q=2.
In Eq (3.5), if taking
q1=q∗2=−1+2i,q3=q∗4=−43i,q5=−34,q6=34,a3=a4=13,a5=a6=1, |
the solution of Eq (1.1) corresponds to the interaction behavior among one lump, one breather and two bell-shaped line solitons, as shown in Figure 4.
(iii) In the special case of P=2,Q=0.
If taking
q1=q∗2=−1−3i,q3=q∗4=−1−43i,q5=q∗6=−17−12i,a3=a4=18,a5=a6=15, |
the solutions u given by Eq (3.5) express the elastic interaction between one lump and two breather solitons at different time as shown in Figure 5.
To construct interaction solutions comprising two lump solitons satisfying the condition, the parameters in Eq (2.3) need to satisfy the following conditions
bi=aiqi,ai=liε (i=1,2,3,4),b5=a5q5,η01=η∗02=η03=η∗04=iπ,η05=0, |
and take the long wave limit as ε→0 in five-soliton solution, we can obtain
g=(4∏j=1ϱj+(4)∑1≤s<jdsj4∏k≠s,jϱk+(4)∑1<j≠k,1<s<kd1jdsk)l1l2l3l4ε4+{4∏j=1ϱj+(4)∑j=1dj54∏k≠jϱk+(4)∑j<k,s<m≠j,kϱjϱk(ds5dm5+asm)+(4)∑j≠k<s≤5,m≠j≠k≠s,m<w≤5ϱj[(dksdmw+4∏n≠jdn5]+(4)∑s<k,1<j≠sd1jaks+(4)∑s<m,k<n≠s,mds5dm5dkn+4∏i=1di5}exp(η5)×l1l2l3l4ε4+O(ε5), | (4.1) |
where
ϱi=x+qiy+536q2it (i=1,2,3,4), | (4.2) |
dsj=6(qs+qj)(qs−qj)2 (1≤s<j≤4), | (4.3) |
and
ds5=−6a5(a25−qs−q5)a45−(qs+2q5)a25+(qs−q5)2 (s=1,2,3,4). | (4.4) |
Inserting Eqs (4.1)-(4.4) into Eq (2.1), the solution of Eq (1.1) can be obtained.
If taking
q1=q∗2=−13−2i,q3=q∗4=−12−i,q5=25,a5=34, |
the solutions u given by Eq (4.1) express the elastic interaction between two lump solitons and one bell-shaped line soliton at different time as shown in Figure 6. With the evolution of time, the two lump solitons move along the positive x-axis, and the line soliton moves along the negative x-axis. After elastic collision, the two lump solitons pass through the line soltion, and switch their positions.
To construct interaction solutions comprising two lump solitons satisfying the condition, the parameters in Eq (2.3) need to satisfy the following conditions
bi=aiqi(i=1,2,⋯,6),ak=lkε(k=1,2,3,4),η01=η∗02=η03=η∗04=iπ,η05=η06=0, |
and take the long wave limit as ε→0 in six-soliton solution, we can obtain
g=(4∏j=1ϱj+(4)∑1≤s<jdsj4∏k≠s,jϱk+(4)∑s<j≠m,s<k<mdsjdkm)l1l2l3l4ε4+(6)∑w=5{4∏j=1ϱj+(4)∑j=1djw4∏k≠jϱk+(4)∑j<k,s<m≠j,kϱjϱk(dswdmw+dsm)+(4)∑j≠k<s,m≠j≠k≠sϱj[(dksdmw+4∏n≠jdnw]+(4)∑s<j≠m,s<k<mdsjdkm+(4)∑s<m,k<n≠s,mdswdmwdkn+4∏n=1dnw}exp(ηw)×l1l2l3l4ε4+d56{4∏j=1ϱj+(4)∑j=1(dj5+dj6)4∏k≠jϱk+(4)∑j<k,s<m≠j,kϱjϱk[(ds5+ds6)(dm5+dm6)+dsm]+(4)∑j≠k<s,m≠j≠k≠sϱj[dks(dm5+dm6)+4∏n≠j(dn5+dn6)]+(4)∑s<j≠m,s<k<mdsjdkm+(4)∑s<m,k<n≠s,m(ds5+ds6)(dm5+dm6)dkn+4∏n=1(dn5+dn6)}×exp(η5+η6)l1l2l3l4ε4+O(ε5), | (4.5) |
where
ϱi=x+qiy+536q2it (i=1,2,3,4), | (4.6) |
dsj=6(qs+qj)(qs−qj)2 (1≤s<j≤4), | (4.7) |
and
dsj=−6aj(a2j−qs−qj)a4j−(qs+2qj)a2j+(qs−qj)2 (s=1,2,3,4, j=5,6), | (4.8) |
d56=MN, | (4.9) |
where
M=a45−3a35a6+(4a26−2q5−q6)a25−3a6(a26−q5−q6)a5+a46−(q5+2q6)a26+(q5−q6)2,N=a45+3a35a6+(4a26−2q5−q6)a25+3a6(a26−q5−q6)a5+a46−(q5+2q6)a26+(q5−q6)2. |
Inserting Eqs (4.5)-(4.9) into Eq (2.1), the solution of Eq (1.1) can be obtained.
(i) In the special case of P=0,Q=2.
If taking
q1=q∗2=−1−2i,q3=q∗4=−14−3i,q5=−23,q6=23,a5=a6=−65, |
the solutions u given by Eq (4.5) express the elastic interaction between two lump and two bell-shaped line solitons at different time as shown in Figure 7.
(ii) In the special case of P=1,Q=0.
If taking
q1=q∗2=−3−3i,q3=q∗4=−1−2i,q5=q∗6=−1−i,a5=a6=−14, |
the solutions u given by Eq (4.5) express the elastic interaction between two lump solitons and one breather soliton, the period of the breather is 8π along the y direction, as shown in Figure 8.
In the special case of Theorem 1 with M=3,P+Q=0, we obtain the interaction solution among three lumps. About the pure lumps solution, there have the following result [9]:
Corollary 1. In (2.3), setting N=2M, bk=qkak(k=1,⋯N),aj=ljϵ, exp(η0j)=−1(j=1,⋯2M),qn=q∗n+M(n=1,⋯M), when ϵ→0, the N-soliton solution of Eq (1.1) can reduce to the interaction solutions of M-lump[53,54]. The expression can be obtained by (2.1) with
g2M=2M∏j=1ϱj+12(2M)∑s,jdsj2M∏l≠s,jϱl+12!22(2M)∑s,j,k,mdsjdkm∏l≠s,j,k,mϱl+⋯+1M!2M(2M)∑s,j,k,mdsjM⏞drl⋯dwn2M∏p≠s,j,r,l,⋯,w,nϱp+⋯, | (5.1) |
where ϱs and dsj meet following requirements,
ϱi=x+qiy+536q2it, (s=1,2,⋯,2M), | (5.2) |
and
dsj=6(qs+qj)(qs−qj)2 (1≤s<j≤2M), | (5.3) |
where j,s are positive integers, m is arbitrary complex constant. When M=3, the solution of Eq (1.1) corresponds to interaction among three lump solitons.
In the followings, the large time asymptotic behaviors of the three lumps solution are analyzed. Fixing the modulus of a phase function, e.g. |ϱ1|2= constant, considering the limit of t→±∞, ϱ2,ϱ∗2,ϱ3,ϱ∗3=O(t) and ϱ2ϱ∗2=O(t2), ϱ3ϱ∗3=O(t2), function g has the following asymptotic states
g∼|ϱ1|2|ϱ2|2|ϱ3|2+d14|ϱ2|2|ϱ3|2. | (5.4) |
Considering the properties of bilinear transformation of CDGKS equation, the function g in Eq. (5.4) can be farther equivalent to
g∼|ϱ1|2+d14. | (5.5) |
If |ϱ2|2= constant or |ϱ3|2= constant, similar conclusion to Eq (5.5) can be obtained. Thus, in the limit of t→±∞, the three lumps solution tends to become three single lump with different velocity and their phase function are ϱ1=x+q1y+536q21t,ϱ2=x+q2y+536q22t,ϱ3=x+q3y+536q23t, respectively. According to expression of phase function, each single lump has no phase shift, in other word, there is no phase shift for these three lumps during collision process.
In Eq (5.1), if taking
q1=q∗2=−1−2i,q3=q∗4=−14−3i,q5=q∗6=−23−65i, |
we can obtain the elastic interactions among three lump solitons at different time as shown in Figure 9. It can be observed that the three lumps form a triangle structure before the collision. When t=0, these three lumps merge into single one. After the collision, the three lumps separate from each other and maintain a triangle structure. The interaction among the lumps is elastic, indicating that these three lumps remain their shapes, amplitudes and velocity both before and after the interactions.
Now, from the Sections 3 to 5, we summarize a few mathematical characters to obtain the interaction among lump soliton(s), and among lump soliton(s) with line soliton(s) or/and periodic soliton(s) from five- and six-soliton solutions u through choosing the appropriate parameters, see Table 1. With the aid of symbolic computation software Maple, the above obtained interaction solutions comprising lump solitons have been verified by substituting them into Eq (1.1).
M-lump | Interaction structures of localized waves | Parameters |
M=1 | M=1,P=0,Q=3. one lump + three LSs | bi=aiqi (i=1,⋯,5), a1=l1ε,a2=l2ε,a3=δ1, a4=δ2,a5=δ3,q1=q∗2=α1+iβ1,q3=ϑ1,q4=ϑ2, q5=ϑ3,η01=η∗02=iπ,ε→0 |
M=1,P=1,Q=1. one lump + one PB + one LS | bi=aiqi (i=1,⋯,5), a1=l1ε,a2=l2ε, a3=a4=δ4,a5=δ5,q1=q∗2=α2+iβ2, q3=q∗4=α3+iβ3,q5=ϑ4,η01=η∗02=iπ,ε→0 | |
M=1,P=0,Q=4. one lump + four LSs |
bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, q1=q∗2=τ1+iν1,q3=κ1,q4=κ2, q5=κ3,q6=κ4,a3=a4=ς1,a5=a6=ς2, η01=η∗02=iπ,ε→0 | |
M=1,P=1,Q=2. one lump + one PB +two LSs | bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, a3=a4=ς3,a5=a6=ς4, q1=q∗2=τ2+iν2,q3=q∗4=τ3+iν3,q5=κ5, q6=κ6,η01=η∗02=iπ,ε→0 | |
M=1,P=2,Q=0. one lump + two PBs | bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, a3=a4=ς5,a5=a6=ς6,q1=q∗2 =τ4+iν4,q3=q∗4=τ5+iν5,q5=q∗6=τ6+iν6, η01=η∗02=iπ,ε→0 | |
M=2 | M=2,P=0,Q=1. two lumps + one LS | bi=aiqi, ai=liε (i=1,⋯,4),b5=a5q5, q1=q∗2=α4+iβ4,q3=q∗4=α5+iβ5,q5=ϑ5, a5=δ6,η01=η∗02=η03=η∗04=iπ, ε→0 |
M=2,P=0,Q=2. two lumps+ two LSs | bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, a3=l3ε,a4=l4ε,a5=a6=ς7, q1=q∗2=ω1+iι1,q3=q∗4=ω2+iι2,q5=κ7,q6=κ8, η01=η∗02=η03=η∗04=iπ, ε→0 | |
M=2,P=1,Q=0. two lumps + one PB | bi=aiqi (i=1,⋯,6), a1=l1ε,a2=l2ε, a3=l3ε,a4=l4ε,a5=a6=ς8, q1=q∗2=ω3+iι3,q3=q∗4=ω4+iι4,q5=q∗6=ω5+iι5, η01=η∗02=η03=η∗04=iπ, ε→0 | |
M=3 | M=3,P=0,Q=0. three lumps | bi=aiqi,ai=liε,(i=1,⋯,6),q1=q∗2 =ω6+iι6,q3=q∗4=ω7+iι7,q5=q∗6=ω8+iι8, η01=η∗02=η03=η∗04=η05=η∗06=iπ,ε→0 |
Note: LS=Line soliton, PB= Periodic breather. Here, δs,αj,βj,ϑj,τs,νs,κl,ςl,ωl,ιl (s=1,⋯,6,j=1,⋯,5,l=1,⋯,8) are nonzero real constants. |
In this paper, we have studied the exact expression of multiple localized wave solutions comprising lump solitons and interaction structures from five-soliton and six-soliton solutions of the CDGKS equation via Hirota bilinear method. Some mathematical features to obtain localized waves and their interactions from the five- and six-soliton solutions were illustrated. By choosing appropriate parameters and using long wave limit method on the five-soliton and six-soliton solutions, some novel results and interaction phenomena have been found including the elastic interactions among one lump and three bell-shaped solitons (see Figure 1), one lump and one periodic breather and one bell-shaped soliton (see Figure 2), one lump and four bell-shaped solitons (see Figure 3), one lump and one periodic breather and two bell-shaped solitons (see Figure 4), one lump and two periodic breathers (see Figure 5), two lumps and one bell-shaped soliton (see Figure 6), two lumps and two bell-shaped solitons (see Figure 7), two lumps and one periodic breather (see Figure 8), and three lumps (see Figure 9). The relevant interaction evolution processes and dynamic characteristics are presented and analyzed. Table 1 shows some mathematical features to obtain localized nonlinear waves and their interactions from the five- and six-soliton solutions of Eq (1.1) about how to choose appropriate parameters. The results presented in this paper might be helpful for understanding some physical phenomena of the propagation of nonlinear localized waves.
This work is supported by the National Natural Science Foundation of China (Nos. 11905013, 12071042 and 11772063), the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant (No. KM201911232011), and the Beijing Natural Science Foundation under Grant (No. 1202006).
The authors declare no conflict of interest.
[1] |
C. S. Gardner, The Korteweg-de Vries equation and generalizations. VI. Method for exact solution, Comm. Pure Appl. Math., 27 (1974), 97-133. doi: 10.1002/cpa.3160270108
![]() |
[2] |
C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the KdV equation, Phys. Rev. Lett., 19 (1967), 1095-1097. doi: 10.1103/PhysRevLett.19.1095
![]() |
[3] |
D. S. Wang, B. L. Guo, X. L. Wang, Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions, J. Differ. Equ., 266 (2019), 5209-5253. doi: 10.1016/j.jde.2018.10.053
![]() |
[4] | C. Rogers, W. Shadwick, B¨acklund transformations and applications, New York: Academic Press, 1982. |
[5] |
D. S. Wang, J. Liu, Integrability aspects of some two-component KdV systems, Appl. Math. Lett., 79 (2018), 211-219. doi: 10.1016/j.aml.2017.12.018
![]() |
[6] |
H. C. Hu, Q. P. Liu, New Darboux transformation for Hirota-Sastuma coupled KdV system, Chaos Soliton Fract., 17 (2003), 921-928. doi: 10.1016/S0960-0779(02)00309-0
![]() |
[7] |
L. Xu, D. S. Wang, X. Y. Wen, Y. L. Jiang, Exotic localised vector waves in a two-component nonlinear wave system, J. Nonlinear Sci., 30 (2020), 537-564. doi: 10.1007/s00332-019-09581-0
![]() |
[8] |
D. S. Wang, Q. Li, X. Y. Wen, L. Liu, Matrix spectral problems and integrability aspects of the Blaszak-Marciniak lattice equations, Reports Math. Phys., 86 (2020), 325-353. doi: 10.1016/S0034-4877(20)30087-2
![]() |
[9] |
R. Hirota, J. Satsuma, A simple structure of superpositon formula of Backlund transformation, J. Phys. Soc. Japan, 45 (1978), 1741-1750. doi: 10.1143/JPSJ.45.1741
![]() |
[10] |
R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192-1194. doi: 10.1103/PhysRevLett.27.1192
![]() |
[11] |
N. C. Freeman, J. J. C. Nimmo, Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petmiashvili equations: the Wronskian technique, Phys. Lett. A, 95 (1983), 1-3. doi: 10.1016/0375-9601(83)90764-8
![]() |
[12] | J. C. Chen, Y. Chen, B. F. Feng, K. I. Maruno, Breather to the Yajima-Oikawa equation, arXiv: 1712.00945. |
[13] |
M. J. Ablowitz, A. Ramini, H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P-type. II, J. Math. Phys., 21 (1980), 1006-1015. doi: 10.1063/1.524548
![]() |
[14] | J. Weiss, B¨acklund transformation and the Painlevˊe property, J. Math. Phys., 27 (1986), 1296-1305. |
[15] |
R. Dickson, F. Gesztesy, K. Unterkofler, Algebra-geometric solutions of the Boussinesq hierarchy, Rev. Math. Phys., 11 (1999), 823-879. doi: 10.1142/S0129055X9900026X
![]() |
[16] |
C. Q. Dai, Y. Y. Wang, Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals, Nonlinear Dyn., 102 (2020), 1733-1741. doi: 10.1007/s11071-020-05985-w
![]() |
[17] |
C. Q. Dai, Y. Y. Wang, J. F. Zhang, Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials, Nonlinear Dyn., 102 (2020), 379-391. doi: 10.1007/s11071-020-05949-0
![]() |
[18] |
W. X. Ma, X. L. Yong, H. Q. Zhang, Diversity of interaction solutions to the (2+1)-dimensional Ito equation, Comput. Math. Appl., 75 (2018), 289-295. doi: 10.1016/j.camwa.2017.09.013
![]() |
[19] |
B. Ren, W. X. Ma, J. Yu, Characteristics and interactions of solitary and lump waves of a (2+1)-dimensional coupled nonlinear partial differential equation, Nonlinear Dyn., 96 (2019), 717-727. doi: 10.1007/s11071-019-04816-x
![]() |
[20] |
B. Ren, W. X. Ma, J. Yu, Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation, Comput. Math. Appl., 77 (2019), 2086-2095. doi: 10.1016/j.camwa.2018.12.010
![]() |
[21] |
M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Math. Method Appl. Sci., 42 (2019), 6277-6283. doi: 10.1002/mma.5721
![]() |
[22] |
A. M. Wazwaz, S. A. El-Tantawy, Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota's method, Nonlinear Dyn., 88 (2017), 3017-3021. doi: 10.1007/s11071-017-3429-x
![]() |
[23] | Y. Liu, B. Li, A. M. Wazwaz, Novel high-order breathers and rogue waves in the Boussinesq equation via determinants. Math. Meth. Appl. Sci., 43 (2020), 3701-3715. |
[24] |
J. G. Liu, W. H. Zhu, L. Zhou, Breather wave solutions for the Kadomtsev-Petviashvili equationwith variable coefficients in a fluid based on the variable-coefficient three-wave approach, Math. Meth. Appl. Sci., 43 (2020), 458-465. doi: 10.1002/mma.5899
![]() |
[25] |
J. Rao, D. Mihalache, Y. Cheng, J. He, Lump-soliton solutions to the Fokas system, Phys. Lett. A, 383 (2019), 1138-1142. doi: 10.1016/j.physleta.2018.12.045
![]() |
[26] |
Y. Q. Liu, X. Y. Wen, D. S. Wang, Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation, Comput. Math. Appl., 78 (2019), 1-19. doi: 10.1016/j.camwa.2019.03.005
![]() |
[27] |
Y. Q. Liu, X. Y. Wen, D. S. Wang, The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation, Comput. Math. Appl., 77 (2019), 947-966. doi: 10.1016/j.camwa.2018.10.035
![]() |
[28] |
J. J. Wu, Y. Q. Liu, L. H. Piao, J. H. Zhuang, D. S. Wang, Nonlinear localized waves resonance and interaction solutions of the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Nonlinear Dyn., 100 (2020), 1527-1541. doi: 10.1007/s11071-020-05573-y
![]() |
[29] |
Y. Zhou, M. Solomon, W. X. Ma, Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation, Commun. Nonlinear Sci. Numer. Simulat., 68 (2019), 56-62. doi: 10.1016/j.cnsns.2018.07.038
![]() |
[30] |
S. T. Chen, W. X. Ma, Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation, Comput. Math. Appl., 76 (2018), 1680-1685. doi: 10.1016/j.camwa.2018.07.019
![]() |
[31] |
J. B. Zhang, W. X. Ma, Mixed lump-kink solutions to the BKP equation, Comput. Math. Appl., 74 (2017), 591-596. doi: 10.1016/j.camwa.2017.05.010
![]() |
[32] |
B. Konopelchenko, V. Dubrovsky, Some new integrable nonlinear evolution equations in 2+1 dimensions, Phys. Lett. A, 102 (1984), 15-17. doi: 10.1016/0375-9601(84)90442-0
![]() |
[33] |
K. Sawada, T. Kotera, A Method for finding N-Soliton solutions of the K.d.V. equation and K.d.V.-Like equation, Prog. Theor. Phys., 51 (1974), 1355-1367. doi: 10.1143/PTP.51.1355
![]() |
[34] | P. J. Caudrey, R. K. Dodd, J. D. Gibbon, A new hierarchy of Korteweg-de Vries equations, P. Roy. Soc. A-Math. Phy., 351 (1976), 407-422. |
[35] | R. K. Dodd, J. D. Gibbon, The prolongation structure of a higher order Korteweg-de Vries equation, P. Roy. Soc. A-Math. Phy., 358 (1978), 287-296. |
[36] |
S. Y. Lou, Abundant symmetries for the 1+1 dimensional classical Liouville field theory, J. Math. Phys., 35 (1994), 2336-2348. doi: 10.1063/1.530556
![]() |
[37] |
E. Date, M. Jimbo, M. Kashiwara, T. Miwa, KP hierarchies of orthogonal and symplectic type -transformation groups for soliton equations VI, J. Phys. Soc. Jpn., 50 (1981), 3813-3818. doi: 10.1143/JPSJ.50.3813
![]() |
[38] |
M. Jimbo, T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. I. Math. Sci., 19 (1983), 943-1001. doi: 10.2977/prims/1195182017
![]() |
[39] |
X. B. Hu, S. H. Li, The partition function of the Bures ensemble as the τ-function of BKP and DKP hierarchies: continuous and discrete, J. Phys. A-Math. Theor., 50 (2017), 285201. doi: 10.1088/1751-8121/aa7395
![]() |
[40] | X. G. Geng, Darboux transformation of two-dimensional Sawada-Kotera equation, Appl. Math. J. Chinese Univ., 4 (1989), 494-497. (in Chinese) |
[41] |
C. W. Cao, Y. T. Wu, X. G. Geng, On quasi-periodic solutions of the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Phys. Lett. A, 256 (1999), 59-65. doi: 10.1016/S0375-9601(99)00201-7
![]() |
[42] | L. Wang, D. Q. Xian, Homoclinic breather-wave solutions, periodic-wave solutions and kink solitary-wave solutions for CDGKS equation, Chin. J. Quantum Elect., 29 (2012), 417-420. (in Chinese) |
[43] |
X. R. Kang, D. Q. Xian, Z. D. Dai, Non-traveling wave solutions for the (2+1)-D Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Int. J. Numer. Method. H, 25 (2015), 617-628. doi: 10.1108/HFF-03-2013-0086
![]() |
[44] |
X. G. Geng, G. L. He, L. H. Wu, Riemann theta function solutions of the Caudrey-Dodd-Gibbon-Sawada-Kotera hierarchy, J. Geom. Phys., 140 (2019), 85-103. doi: 10.1016/j.geomphys.2019.01.005
![]() |
[45] |
C. R. Gilson, J. J. C. Nimmo, Lump solutions of the BKP equation, Phys. Lett. A, 147 (1990), 472-476. doi: 10.1016/0375-9601(90)90609-R
![]() |
[46] |
J. Manafian, M. Lakestani, N-lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Gemo. Phys., 150 (2020), 103598. doi: 10.1016/j.geomphys.2020.103598
![]() |
[47] |
X. P. Cheng, Y. Q. Yang, B. Ren, J. Y. Wang, Interaction behavior between solitons and (2+1)-dimensional CDGKS waves, Wave Motion, 86 (2019), 150-161. doi: 10.1016/j.wavemoti.2018.08.008
![]() |
[48] |
W. Q. Peng, S. F. Tian, L. Zou, T. T. Zhang, Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Nonlinear Dyn., 93 (2018), 1841-1851. doi: 10.1007/s11071-018-4292-0
![]() |
[49] |
X. H. Meng, The periodic solitary wave solutions for the (2+1)-dimensional fifth-order KdV equation, J. Appl. Math. Phys., 2 (2014), 639-643. doi: 10.4236/jamp.2014.27070
![]() |
[50] |
Z. H. Yang, A series of exact solutions of (2+1)-dimensional CDGKS equation, Commun. Theor. Phys., 46 (2006), 807-811. doi: 10.1088/0253-6102/46/5/008
![]() |
[51] | J. H. Zhuang, Y. Q. Liu, X. Chen, J. J. Wu, X. Y. Wen, Diverse solitons and interaction solutions for the (2+1)-dimensional CDGKS equation, Mod. Phys. Lett. B, 33 (2019), 1950174. |
[52] |
L. Liu, X. Y. Wen, D. S. Wang, A new lattice hierarchy: Hamiltonian structures, symplectic map and N-fold Darboux transformation, Appl. Math. Model., 67 (2019), 201-218. doi: 10.1016/j.apm.2018.10.030
![]() |
[53] |
J. Satsuma, M. J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 20 (1979), 1496-1503. doi: 10.1063/1.524208
![]() |
[54] |
Y. Zhang, Y. P. Liu, X. Y. Tang, M-lump solutions to a (3+1)-dimensional nonlinear evolution equation, Comput. Math. Appl., 76 (2018), 592-601. doi: 10.1016/j.camwa.2018.04.039
![]() |
1. | Wen-Xin Zhang, Yaqing Liu, Solitary wave solutions and integrability for generalized nonlocal complex modified Korteweg-de Vries (cmKdV) equations, 2021, 6, 2473-6988, 11046, 10.3934/math.2021641 | |
2. | Hongcai Ma, Yidan Gao, Aiping Deng, Fission and fusion solutions of the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation: case of fluid mechanics and plasma physics, 2022, 108, 0924-090X, 4123, 10.1007/s11071-022-07429-z | |
3. | Shao-Hua Liu, Bo Tian, Singular soliton, shock-wave, breather-stripe soliton, hybrid solutions and numerical simulations for a (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada system in fluid mechanics, 2022, 108, 0924-090X, 2471, 10.1007/s11071-022-07279-9 | |
4. | Hongcai Ma, Shupan Yue, Aiping Deng, Nonlinear superposition between lump and other waves of the (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid dynamics, 2022, 109, 0924-090X, 1969, 10.1007/s11071-022-07508-1 | |
5. | Shijie Zeng, Yaqing Liu, Xin Chen, Wen-Xin Zhang, Various breathers, Lumps, line solitons and their interaction solutions for the (2+1)-dimensional variable-coefficient Sawada–Kotera equation, 2022, 42, 22113797, 105992, 10.1016/j.rinp.2022.105992 | |
6. | Muhammad Bilal Riaz, Faiza Naseer, Muhammad Abbas, Magda Abd El-Rahman, Tahir Nazir, Choon Kit Chan, Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods, 2023, 8, 2473-6988, 31268, 10.3934/math.20231601 | |
7. | Peng Dong, Zheng-Yi Ma, Hui-Ling Wu, Quan-Yong Zhu, The symmetry breaking solutions of the nonlocal Alice–Bob B-type Kadomtsev–Petviashvili system, 2023, 49, 22113797, 106475, 10.1016/j.rinp.2023.106475 | |
8. | Li-Jun Xu, Zheng-Yi Ma, Jin-Xi Fei, Hui-Ling Wu, Li Cheng, The Multi-Soliton Solutions for the (2+1)-Dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada Equation, 2025, 13, 2227-7390, 236, 10.3390/math13020236 | |
9. | Yang-Kai Du, Zheng-Yi Ma, Li Cheng, The nonlocal Alice–Bob solutions for an extended combination of the Kadomtsev–Petviashvili3 and the Kadomtsev–Petviashvili4 equations, 2025, 124, 11100168, 273, 10.1016/j.aej.2025.03.050 |
M-lump | Interaction structures of localized waves | Parameters |
M=1 | M=1,P=0,Q=3. one lump + three LSs | bi=aiqi (i=1,⋯,5), a1=l1ε,a2=l2ε,a3=δ1, a4=δ2,a5=δ3,q1=q∗2=α1+iβ1,q3=ϑ1,q4=ϑ2, q5=ϑ3,η01=η∗02=iπ,ε→0 |
M=1,P=1,Q=1. one lump + one PB + one LS | bi=aiqi (i=1,⋯,5), a1=l1ε,a2=l2ε, a3=a4=δ4,a5=δ5,q1=q∗2=α2+iβ2, q3=q∗4=α3+iβ3,q5=ϑ4,η01=η∗02=iπ,ε→0 | |
M=1,P=0,Q=4. one lump + four LSs |
bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, q1=q∗2=τ1+iν1,q3=κ1,q4=κ2, q5=κ3,q6=κ4,a3=a4=ς1,a5=a6=ς2, η01=η∗02=iπ,ε→0 | |
M=1,P=1,Q=2. one lump + one PB +two LSs | bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, a3=a4=ς3,a5=a6=ς4, q1=q∗2=τ2+iν2,q3=q∗4=τ3+iν3,q5=κ5, q6=κ6,η01=η∗02=iπ,ε→0 | |
M=1,P=2,Q=0. one lump + two PBs | bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, a3=a4=ς5,a5=a6=ς6,q1=q∗2 =τ4+iν4,q3=q∗4=τ5+iν5,q5=q∗6=τ6+iν6, η01=η∗02=iπ,ε→0 | |
M=2 | M=2,P=0,Q=1. two lumps + one LS | bi=aiqi, ai=liε (i=1,⋯,4),b5=a5q5, q1=q∗2=α4+iβ4,q3=q∗4=α5+iβ5,q5=ϑ5, a5=δ6,η01=η∗02=η03=η∗04=iπ, ε→0 |
M=2,P=0,Q=2. two lumps+ two LSs | bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, a3=l3ε,a4=l4ε,a5=a6=ς7, q1=q∗2=ω1+iι1,q3=q∗4=ω2+iι2,q5=κ7,q6=κ8, η01=η∗02=η03=η∗04=iπ, ε→0 | |
M=2,P=1,Q=0. two lumps + one PB | bi=aiqi (i=1,⋯,6), a1=l1ε,a2=l2ε, a3=l3ε,a4=l4ε,a5=a6=ς8, q1=q∗2=ω3+iι3,q3=q∗4=ω4+iι4,q5=q∗6=ω5+iι5, η01=η∗02=η03=η∗04=iπ, ε→0 | |
M=3 | M=3,P=0,Q=0. three lumps | bi=aiqi,ai=liε,(i=1,⋯,6),q1=q∗2 =ω6+iι6,q3=q∗4=ω7+iι7,q5=q∗6=ω8+iι8, η01=η∗02=η03=η∗04=η05=η∗06=iπ,ε→0 |
Note: LS=Line soliton, PB= Periodic breather. Here, δs,αj,βj,ϑj,τs,νs,κl,ςl,ωl,ιl (s=1,⋯,6,j=1,⋯,5,l=1,⋯,8) are nonzero real constants. |
M-lump | Interaction structures of localized waves | Parameters |
M=1 | M=1,P=0,Q=3. one lump + three LSs | bi=aiqi (i=1,⋯,5), a1=l1ε,a2=l2ε,a3=δ1, a4=δ2,a5=δ3,q1=q∗2=α1+iβ1,q3=ϑ1,q4=ϑ2, q5=ϑ3,η01=η∗02=iπ,ε→0 |
M=1,P=1,Q=1. one lump + one PB + one LS | bi=aiqi (i=1,⋯,5), a1=l1ε,a2=l2ε, a3=a4=δ4,a5=δ5,q1=q∗2=α2+iβ2, q3=q∗4=α3+iβ3,q5=ϑ4,η01=η∗02=iπ,ε→0 | |
M=1,P=0,Q=4. one lump + four LSs |
bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, q1=q∗2=τ1+iν1,q3=κ1,q4=κ2, q5=κ3,q6=κ4,a3=a4=ς1,a5=a6=ς2, η01=η∗02=iπ,ε→0 | |
M=1,P=1,Q=2. one lump + one PB +two LSs | bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, a3=a4=ς3,a5=a6=ς4, q1=q∗2=τ2+iν2,q3=q∗4=τ3+iν3,q5=κ5, q6=κ6,η01=η∗02=iπ,ε→0 | |
M=1,P=2,Q=0. one lump + two PBs | bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, a3=a4=ς5,a5=a6=ς6,q1=q∗2 =τ4+iν4,q3=q∗4=τ5+iν5,q5=q∗6=τ6+iν6, η01=η∗02=iπ,ε→0 | |
M=2 | M=2,P=0,Q=1. two lumps + one LS | bi=aiqi, ai=liε (i=1,⋯,4),b5=a5q5, q1=q∗2=α4+iβ4,q3=q∗4=α5+iβ5,q5=ϑ5, a5=δ6,η01=η∗02=η03=η∗04=iπ, ε→0 |
M=2,P=0,Q=2. two lumps+ two LSs | bi=aiqi (i=1,⋯,6), a1=l1ε, a2=l2ε, a3=l3ε,a4=l4ε,a5=a6=ς7, q1=q∗2=ω1+iι1,q3=q∗4=ω2+iι2,q5=κ7,q6=κ8, η01=η∗02=η03=η∗04=iπ, ε→0 | |
M=2,P=1,Q=0. two lumps + one PB | bi=aiqi (i=1,⋯,6), a1=l1ε,a2=l2ε, a3=l3ε,a4=l4ε,a5=a6=ς8, q1=q∗2=ω3+iι3,q3=q∗4=ω4+iι4,q5=q∗6=ω5+iι5, η01=η∗02=η03=η∗04=iπ, ε→0 | |
M=3 | M=3,P=0,Q=0. three lumps | bi=aiqi,ai=liε,(i=1,⋯,6),q1=q∗2 =ω6+iι6,q3=q∗4=ω7+iι7,q5=q∗6=ω8+iι8, η01=η∗02=η03=η∗04=η05=η∗06=iπ,ε→0 |
Note: LS=Line soliton, PB= Periodic breather. Here, δs,αj,βj,ϑj,τs,νs,κl,ςl,ωl,ιl (s=1,⋯,6,j=1,⋯,5,l=1,⋯,8) are nonzero real constants. |