Research article Special Issues

Solar Power: A new mathematical definition and theoretical proof it is a Green Public Good

  • Solar Power is redefined in a new mathematical framework which describes its pertinent properties. It is shown that it is an economic good and that there are Property Rights and Economic Ownership associated with it. Its externalities have been examined with a view of including economic obligations created during the post emission control periods which correspond to growth without climate sustainability obligations. Also its valuation has been examined in states of both non-use and use in electricity production. A new definition of a Green Public Good is described which retains Samuelson's classic definition and has an climate externality component which under Pigouvian tax/subsidy does not satisfy Samuelson's second condition for Pareto optimality.

    Citation: Kalomoira Zisopoulou, Dionysia Panagoulia. Solar Power: A new mathematical definition and theoretical proof it is a Green Public Good[J]. Green Finance, 2019, 1(3): 312-327. doi: 10.3934/GF.2019.3.312

    Related Papers:

    [1] Maurizio Verri, Giovanna Guidoboni, Lorena Bociu, Riccardo Sacco . The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics. Mathematical Biosciences and Engineering, 2018, 15(4): 933-959. doi: 10.3934/mbe.2018042
    [2] Aftab Ahmed, Javed I. Siddique . The effect of magnetic field on flow induced-deformation in absorbing porous tissues. Mathematical Biosciences and Engineering, 2019, 16(2): 603-618. doi: 10.3934/mbe.2019029
    [3] Hatim Machrafi . Nanomedicine by extended non-equilibrium thermodynamics: cell membrane diffusion and scaffold medication release. Mathematical Biosciences and Engineering, 2019, 16(4): 1949-1965. doi: 10.3934/mbe.2019095
    [4] Ching-Han Huang, Yu-Min Wang, Shana Smith . Using high-dimensional features for high-accuracy pulse diagnosis. Mathematical Biosciences and Engineering, 2020, 17(6): 6775-6790. doi: 10.3934/mbe.2020353
    [5] Marya L. Poterek, Mauricio Santos-Vega, T. Alex Perkins . Equilibrium properties of a coupled contagion model of mosquito-borne disease and mosquito preventive behaviors. Mathematical Biosciences and Engineering, 2025, 22(8): 1875-1897. doi: 10.3934/mbe.2025068
    [6] Nilay Mondal, Koyel Chakravarty, D. C. Dalal . A mathematical model of drug dynamics in an electroporated tissue. Mathematical Biosciences and Engineering, 2021, 18(6): 8641-8660. doi: 10.3934/mbe.2021428
    [7] Jianguo Xu, Cheng Wan, Weihua Yang, Bo Zheng, Zhipeng Yan, Jianxin Shen . A novel multi-modal fundus image fusion method for guiding the laser surgery of central serous chorioretinopathy. Mathematical Biosciences and Engineering, 2021, 18(4): 4797-4816. doi: 10.3934/mbe.2021244
    [8] Yafei Liu, Linqiang Yang, Hongmei Ma, Shuli Mei . Adaptive filter method in Bendlet domain for biological slice images. Mathematical Biosciences and Engineering, 2023, 20(6): 11116-11138. doi: 10.3934/mbe.2023492
    [9] Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis . A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences and Engineering, 2012, 9(1): 175-198. doi: 10.3934/mbe.2012.9.175
    [10] Yi Ren, Guolei Zhang, Longbin Yang, Yanwei Hu, Xiaojing Nie, Zhibin Jiang, Dawei Wang, Zhifan Wu . Study on seafloor hydrothermal systems circulation flow and heat transfer characteristics. Mathematical Biosciences and Engineering, 2022, 19(6): 6186-6203. doi: 10.3934/mbe.2022289
  • Solar Power is redefined in a new mathematical framework which describes its pertinent properties. It is shown that it is an economic good and that there are Property Rights and Economic Ownership associated with it. Its externalities have been examined with a view of including economic obligations created during the post emission control periods which correspond to growth without climate sustainability obligations. Also its valuation has been examined in states of both non-use and use in electricity production. A new definition of a Green Public Good is described which retains Samuelson's classic definition and has an climate externality component which under Pigouvian tax/subsidy does not satisfy Samuelson's second condition for Pareto optimality.


    In the medical field, it is of interest in measuring the uptake of certain fluids that are indicators of corresponding complications. One way to do so is placing a scaffold on the spot where those biological fluids may be present. Such scaffolds are typically of porous nature and may contain also nanoparticles for structure reinforcement. The porous scaffolds have their own properties depending on the porosity and nanoparticle content, besides the scaffold itself. The properties in question may be of thermal, electrical or mass diffusional nature. When the scaffold absorps some biological fluid, it is natural to say that this changes the aforementioned properties. We are interested here by the thermal properties. By introducing thermal pulses of high frequency on one side of such a porous scaffold and measuring the response on the other side, one is able to deduce from the response whether some biological fluid has been taken up. Since many factors may play a role in such an analysis, modelling can provide for useful tools that can be used to compose such sensors. It is well known that Fourier's law is not valid for high pulse responses. For information from biosensors in case of continuous monitoring, other models should be proposed. We propose a model that can be used for such purposes concerning a porous medium, in which nanoparticles are dispersed. Besides the model representing the evolution of the heat flux and the temperature, we need also a model that describes how the thermal diffusion through the porous medium is affected by the biological fluid uptake. We propose to do this by using an effective thermal conductivity, adapted from [1,2]. This effective thermal conductivity is valid at the condition that the thermal conductivity of the scaffold is much higher than that of air and the nanoparticles. This is justified since we use as scaffold a medium self-assembled from carbon nanotubes (CNT), wherein silica (SiO2) nanoparticles are embedded for reinforcement and alignment of the CNTs for a better conductivity [3]. The fabrication process and characterisation of this scaffold has been presented in previous work [3]. Since it is important to use a correct effective thermal conductivity, we validate this against experiments of self-assembled CNT-SiO2 porous nanocomposites.

    The self-assembly procedure is applied in various forms in many fields [4,5,6,7,8,9,10,11,12]. The one against which we validate the effective thermal conductivity is explained in details in [3]. Essentially it resumes to the following. By using drop-by-drop evaporation of aqueous solutions of CNT and SiO2, we deposit multiple self-assembled layers of CNTs and SiO2 on a substrate. The obtained dry residu is a porous structure that, depending on the initial parametric conditions, can have different properties. As mentioned before, the focus is on the thermal conductivity. The porosity of the scaffolds and the volume fraction of the nanoparticles are also determined from those experiments. The data are imported in our model, leading to a heat flux and temperature evolution depending on the porosity and volume fraction of the scaffold medium. Since in the model used for the effective thermal conductivity, the thermal conductivity of air and the nanoparticles are considered to be negligible with respect to that of CNT, it is solely dependent on the porosity and nanoparticles. The biological fluid that is being taken up in the scaffold has also a thermal conductivity negligible to that of CNT, so that it can be treated on the same level as the nanoparticles. So, an uptake of the biological fluid is equivalent to an increase of the volume fraction of nanoparticles in the scaffold. The idea is to impose high-frequency temperature pulses and calculating their response at the other side. By varying the volume fraction, one is able to calculate the response to a fixed heat pulse, being indicative of measuring biological fluid intake. Our model is developed in section 2 and the experimental data needed for the model in section 3. Section 4 discusses the results and section 5 concludes.

    A previously developed model from Extended Thermodynamics proposes constitutive equations for the thermal transport taking into account non-localities [13]. In case the system size is much larger than the mean free path of the thermal carriers, a one-dimensional version of the constitutive equation for the heat flux, q can be given by

    τrtq+q=λeffxT (1)

    where τr,t,x,λeff and T are the relaxation time of the heat flux, the time and space coordinates, the effective thermal conductivity and the temperature, respectively. The one-dimensional balance equation for energy is

    ρcptT=xq (2)

    with ρ and cp the density and heat capacity, respectively. In (1)-(2), the thermal conductivity for a porous structure is given by [2,14].

    λp=λ022ε2+ε. (3)

    where λ0 denotes the thermal conductivity for the bulk material, and ε stands for its porosity. If nanoparticles are homogeneously inserted in such a porous matrix (for instance, by depositing a droplet containing a mixture of CNTs and nanoparticles) then, for the thermal conductivity, (3) should be adapted:

    λeff=λp22φ2+φ=λ022ε2+ε22φ2+φ, (4)

    where λp=λ022ε2+ε is the volume fraction of the nanoparticles. Note that in (3)-(4), simplifications are introduced with respect to [2,14], because of the much higher thermal conductivity of CNT with respect to air and even with respect to the silica nanoparticles. The difference in the phonon relaxation times of CNTs, SiO2 and biological fluids being less important here than the difference in thermal conductivity, we will assume that its dependence on the volume fraction is negligible, so that:

    τr=τr0 (5)

    with τr0 the relaxation time of the bulk material. For computational purposes, our model is rendered dimensionless. We choose for the time scale τr0, for the spatial scale the system's size δ, for the heat flux λ0ΔTδ, and for the temperature TTT0ΔT. Herein, ΔT=TiT0, where the subscripts i and 0 indicate a maximum and minimum temperature to which the material is exposed to. In case there is an imposed oscillatory boundary temperature, Ti would stand for the peak maximum temperature and T0 for the peak minimum temperature, which is also chosen to be the initial one. This gives for heat transport, writing the same symbols for the dimensionless quantities, the following set of equations

    tq+q=22ε2+ε22φ2+φxT (6)
    tT=αthxq (7)

    with αth=τr0τth, the thermal diffusion characteristic time being defined by τth=δ2κth, with κth=λ0ρcp the thermal diffusivity. The boundary conditions are given by a zero-heat-flux condition, i.e. q = 0 (which means a zero-temperature-gradient in virtue of (1)) at the measuring point (x = 0) and an imposed oscillatory temperature at the other side (x = 1), with frequency ω=P/τr0, where P is a value determining the periodicity of the oscillations with respect to the relaxation time. The dimensionless versions are

    xT|x=0=0 (8)
    T|x=1=12(1cos(2Pπt)) (9)

    For convenience, the form of boundary condition (9) has been chosen as such to assure a positive value of T for all t.

    This section presents experimental data, which will serve in section 4 to validate the model for the effective thermal conductivity as a function of the porosity for a certain determined fixed volume fraction of dispersed nanoparticles.

    The process of the drop-deposition experiment is described by the deposition of droplets that contain nanomaterial, letting them evaporate at room temperature and ambient humidity (60% humidity) for seven hours. The duration of the process was needed not so much to evaporate the droplets as such, but rather to evacuate the water that is held back in the pores due to the capillary pressure, since the deposited nanomaterial creates a nano-porous network. The droplets, used for the depositions, contain a mixture of CNTs and SiO2 nanoparticles. The 3 g/L aqueous 5 nm multi-walled CNT dispersion has been supplied by Nanocyl and the 0.3 g/L aqueous 175 nm SiO2 has been supplied by Bangs-Laboratories. The CNT solutions are kept in homogeneous dispersion by the presence of anionic surfactants, which guarantee a long-lasting stable homogeneous aqueous dispersion of the CNTs. As for the SiO2 solutions, they are found to remain in a stable homogeneous aqueous dispersion due to Si-OH surface groups. As recommended by the fabricants, the aqueous solutions are sonicated before depositing the droplets. The position of the droplet is controlled by a motor with a precision of 0.01 mm. Each droplet is deposited by a syringe on a spot that is delimited by a groove, which creates pinning conditions. This results into 40 µL droplets with a diameter of 12 mm. The drop deposition setup has been developed in the lab (Physical Chemistry Group) and is made of a bi-dimensional translation stage (Moons STM17S-1AE) and a home-made double syringe pump using the same motorized stages. The software drives automatically the setup and acquires images of the drop after each deposition (camera JAI BM-500GE) to control the volume of the drop. As soon as the droplets are deposited, the start to evaporate, which induces convectional instabilities. The CNTs and SiO2 nanoparticles move along the flow lines. After the fluid has evaporated, the nanoparticles and CNTs settle on the substrate, forming a porous nanostructure.

    The porosity of the matrix is defined as

    ε=VpVtVnp=1VmVtVnp=1(Nd+1)cmVdρmπr2mδmNdCnpVdρnp (10)

    where Vp, Vm and Vnp are the pore volume (air in our case), the volume occupied by the matrix (CNT) and the volume occupied by the nanoparticles (SiO2), respectively (note that the total volume is Vt = Vp+Vm+Vnp). Moreover, Cm is the matrix material concentration in the deposited droplet (Cm = 3 g/L), Cnp is the silica concentration in the deposited droplet (Cnp = 0.3 g/L), ρm the CNT "tap" density (ρm = 1.6 kg/L), ρnp the silica density (ρnp = 2.65 kg/L) and Vd the volume of each deposited droplet (Vd = 40 µL). The term Nd+1 in (10) stands for the fact that before depositing the CNT-SiO2 mixtures, one layer of pure CNT is deposited [3]. The calculated porosity presents an error of less than 0.5% and is presented in Table 1 as a function of the number of deposited droplets. Furthermore, in (10), δm and rm are the thickness of the deposited material and the radius, respectively. The radius is measured to be rm = 6 mm and δm is measured by means of a confocal probe [3] and also given in Table 1.

    Table 1.  Calculated ε and δm as a function of Nd.
    Nd 1 2 3 4 5 6 7
    ε 0.83 0.83 0.85 0.84 0.82 0.80 0.81
    δmm] 8.0 11.9 18.1 20.9 22.3 24.0 28.0

     | Show Table
    DownLoad: CSV

    The volume fraction of the nanoparticles used in the aforementioned material can be calculated via

    φ=CnpρnpρmCm+Cnp (11)

    which gives φ = 0.057.

    Since it is quite difficult to find the exact values for λ0, they will be taken from experimental findings from [3] of pure CNT depositions. It is found that for a pure monolayer nanoporous CNT, λp = 0.88 kW/Km. With a porosity (calculated from data from [3], with a droplet volume of 45 µL and using Eq (10) with Nd = 2 and δm = 20 µm) of ε = 0.85, we find easily from Eq (3) as approximation that λ0 = 8.4 kW/Km (which is, taking into account experimental uncertainty, not far from the 6600 W/Km found in the literature [14].

    The deposited nanostructures, for several number of deposited droplets (see Table 1), are measured for their effective thermal conductivity, λexp. The results are presented in Table 2.

    Table 2.  Measured thermal conductivities.
    Nd 1 2 3 4 5 6 7
    ε 0.83 0.83 0.85 0.84 0.82 0.80 0.81
    λ|| [kW/Km] 0.88 0.89 0.93 0.89 0.96 1.00 0.98

     | Show Table
    DownLoad: CSV

    Table 2 shows that, in overall, the thermal conductivities increase, with an overall decreasing porosity, which suggests indeed that a denser structure is obtained, which can be explained by a better alignment of CNTs. In general, a composite structure that becomes denser than the CNT structure, would lead to a relative increase of the thermal conductivity with respect to its initial value. As for the alignment of the CNTs, this is confirmed by SEM images in [3] and is not the subject of the present work. In general, as the degree of alignment of CNTs is higher, the thermal conductivity should increase in the axial direction of the nanotubes.

    For practical purposes (applications as biosensors, batteries, rather than insulators, semi-conductors), the interest lies more into the conductivities in the longitudinal direction of the CNTs. For a preferred substrate direction, even though the CNTs are not perfectly aligned, the longitudinal axis of the majority of the CNTs will still be in that preferred direction. The experimental data used for this purpose are taken from section 4.1. Nevertheless, for the sake of completeness, important details are represented next. With our model, the effective thermal conductivities are calculated from the model in section 2 and compared to the experimental values. The results are presented in Figure 1.

    Figure 1.  Effective thermal conductivity of the porous SiO2-CNT nanocomposite as a function of porosity. Squares are the experimental results from Table 2 and the lines represent our model.

    Figure 1 shows a good agreement between the model and the experiments, showing that a lower porosity corresponds to higher thermal conductivities. The results confirm the validity of the model for the effective thermal conductivities for the purposes of this work.

    In the expression of the thermal characteristic time, the thermal conductivity is that of the bulk material (i.e. λ0 = 6600 W/(Km)), whilst the density and heat capacity are those of the porous medium. Taking a volume-fraction-based weighted average (the densities of CNT and air are 1600 and 1.2 kg/m3, respectively, whilst the heat capacities of CNT and air are 620 [16] and 1005 J/(kgK), respectively), noting that the porosity is defined on volume basis and that ε = O(0.85), we find ρ = 241 kg/m3 and cp = 947 J/(kgK). The relaxation time for a CNT-SiO2 system is given in [17] to be τr0 = 85 ps. Taking for the thickness a value of the same order of magnitude as Table 1, let us say δ = O(10) µm, we find a thermal characteristic time of τth = 31 ns. This gives αth≈2.5*10-2. For this value, our model is used for the calculations by means of the programme Mathematica. Figure 2 shows a 3D example for φ = 0.057.

    Figure 2.  Temperature T across the one-dimensional porous nanocomposite layer x as a function of time t for αth≈2.5*10-2, φ = 0.057 and P = 0.5.

    Figure 2 shows that the oscillations at x = 1 (not clearly visible, because the period of the temperature oscillations is equivalent to 2t on a scale of 400t in the Figure) are quickly damped. This is due to the relaxation time being much smaller than the thermal diffusion time. Furthermore, this damping also results into a delayed response, due to the presence of a relaxation time in se. The temperature at the other side increases to a value equal to the mean value of the oscillatory temperature, i.e. T = 0.5. In order to visualize this more, it is more convenient to plot the response temperature (i.e. T at x = 0) as a function of time. We do this for four values of φ = 0.057, 0.1, 0.2 and 0.5. The results are presented in Figure 3.

    Figure 3.  Temperature T at x = 0 as a function of time t for αth≈2.5*10-2 and different values of the volume fraction φ (the volume fraction of the biological fluid uptake is given by φb = φ-0.057).

    Note that the volume fraction for the biological uptake is given by φb = φ-0.057. So, φ = 0.057 is the reference state (the value corresponding to the silica nanoparticles), where no biological fluid has been taken up yet. We can see indeed that no oscillations are present (fully damped) and that the uptake of the biological fluid (φ > 0.057) results into a decrease of the temperature response, which is attributed to the decrease in the effective thermal conductivity. A way to measure the evolution of the uptake of biological fluid would be following the gradient of the temperature evolution, indicative for the time needed to attain the final value of T = 0.5. For illustrative purposes, we perform the same calculations also for δ = O(3.5), δ = O(1.5) and δ = O(1) µm, so that αth = O(0.2), αth = O(1) and αth = O(2.5), respectively. These results are presented in Figures 4 to 6, respectively.

    Figure 4.  Temperature T at x = 0 as a function of time t for αth = 0.2 and different values of the volume fraction φ (the volume fraction of the biological fluid uptake is given by φb = φ-0.057).
    Figure 5.  Temperature T at x = 0 as a function of time t for αth = 1 and different values of the volume fraction φ (the volume fraction of the biological fluid uptake is given by φb = φ-0.057).
    Figure 6.  Temperature T at x = 0 as a function of time t for αth = 2.5 and different values of the volume fraction φ (the volume fraction of the biological fluid uptake is given by φb = φ-0.057).

    Figure 4 shows that a higher value of αth (the thermal diffusion time becomes smaller than in the previous case, which could be due to another material or another thickness of the same material) results into a small "left-over" of the imposed oscillations, but keeping approximately the same incremental tendency.

    Figure 5 shows that, for a relaxation time of the order of magnitude of a thermal diffusion time, the incremental behaviour is only slightly visible, but rather the oscillatory behaviour of the temperature response becomes more important. As such, for higher values of φ (higher uptake of the biological fluid), the measurement could be indicated by a phase lag of the oscillations. This phase lag becomes even more important when augmenting αth in Figure 6. There, the incremental behaviour has completely vanished and only the phase lag is observable as an indication of biological fluid uptake.

    Figures 4 to 6 show that, depending on the ratio of the thermal relaxation time and the thermal diffusion characteristic time, the detection of the biological fluid uptake can be monitored by two distinctive ways. If the thermal diffusion time is smaller for a certain relaxation time, the fluid uptake can be monitored by a gradient of the temperature response, whilst for larger thermal diffusion times the uptake can be followed by measuring the phase lag of an oscillatory temperature response. This can open ways to several types of biosensors.

    In this work, a study on the response of an imposed temperature oscillation at high frequency is performed, using as material a porous carbon nanotube-silica nanocomposite. The purpose is to measure the uptake of biological fluids by noting that the temperature response can be altered by the thermal properties of the material, which depends also on the uptake of the biological fluids. For this study, a heat flux from Extended Thermodynamics has been employed, combined with an energy balance and an equation for the effective thermal conductivity. It is important to note that the evolution equation for the heat flux, although taken from developments from Extended Thermodynamics and neglecting thereby non-local effects [1], corresponds also to Cattaneo's equation for heat transport [18]. The model for the effective thermal conductivity has been satisfactorily validated against experiments of a porous CNT-SiO2 nanocomposite. The experiments concern a procedure of self-assembled porous nanocomposite structures, of which the thermal conductivities have been measured.

    Subsequently, the temperature response (induced by the imposed oscillatory temperature) is calculated using the heat transport equations. The ratio of the relaxation time and the thermal diffusion time is also varied in order to appreciate the effect the thickness of a material could have on the response. The uptake of the biological fluid has an influence on the effective thermal conductivity, which will change the temperature response. Although, for a final application, such methodology should be implemented in electrical circuits (implying indirectly induced temperature pulses), the source of the temperature pulses is not the subject of this study. Rather, it provides the mathematical and conceptual tools allowing such possible implementations. It appeared indeed that the uptake of biological fluid, simulated here by an increase of the volume fraction, alters clearly the temperature response, and this even in two distinct ways. It appeared that this response was of oscillatory nature with a phase lag when the thermal diffusion time was much lower than the relaxation time. On the other hand, when the thermal diffusion time was much higher than the relaxation time, the response was rather of exponential growing nature towards an asymptotic value.

    Financial support from BelSPo is acknowledged.

    All authors declare no conflicts of interest in this paper.



    [1] Arora P, Chong A (2018) Government Effectiveness in the Provision of Public Goods: The Role of Institutional Quality. J Appl Econ 21: 175-196. doi: 10.1080/15140326.2018.1550593
    [2] Arrow KJ (1969) The Organization of Economic Activity: Issues Pertinent to the Choice of Market versus Nonmarket Allocation, In The Analysis and Evaluation of Public Expenditures: The PBB-System, Joint Economic Committee, 91st Cong., 1st Session, 16. U.S. Government.
    [3] Arrow K, Solow R, Portney PR, et al. (1993) Report of the NOAA Panel on Contingent Valuation. Fed Regist 58: 4601-4614.
    [4] Bator FM (1958) The Anatomy of Market Failure. Q J Econ 72: 351-379. doi: 10.2307/1882231
    [5] Bergstrom TC, Cornes RC (1983) Independence of Allocative Efficiency from Distribution in the Theory of Public Goods. Econometrica 51: 1753-1765. doi: 10.2307/1912115
    [6] Bowen HR (1943) The Interpretation of Voting in the Allocation of Economic Resources. Q J Econ 58: 27-48. doi: 10.2307/1885754
    [7] Buchanan JM (1965) The Economic Theory of Clubs. Economic New Ser 32: 1-14. doi: 10.2307/2552442
    [8] Candela R, Geloso V (2019) Why Consider the Lighthouse a Public Good?. SSRN, 1-43.
    [9] Central Statistical Office of Ireland (2013) Economic Ownership and Changes in Ownership Goods, Non-Financial Assets, Financial Assets and Liabilities. In Meeting of Group of Experts on National Accounts-Interim Meeting on Global Production, 1-23.
    [10] Cheng HY, Yu CC, Hsu KC, et al. (2019) Estimating Solar Irradiance on Tilted Surface with Arbitrary Orientations and Tilt Angles. Energies 12: 1-14. doi: 10.3390/en13010001
    [11] Choy LHT, Ho WKO (2018) Building a Low Carbon China through Coasean Bargaining. Habitat Int 75: 139-146. doi: 10.1016/j.habitatint.2018.03.007
    [12] Clarke EH (1971) Multipart Pricing of Public Goods. Public Choice 11: 17-33. doi: 10.1007/BF01726210
    [13] Coase RH (1960) The Problem of Social Cost. J Law Econ 40: 351-376.
    [14] Coulomb R, Henriet F (2018) The Grey Paradox: How Fossil-Fuel Owners Can Benefit from Carbon Taxation. J Environ Econ Manage 87: 206-223. doi: 10.1016/j.jeem.2017.07.001
    [15] DeBono E (1978) When Opportunity Knocks. Manage Today, 102-105.
    [16] Doda B (2013) Emissions-GDP Relationship in Times of Growth and Decline. Centre for Climate Change Economics and Policy No. 136.
    [17] Epple D (1987) Hedonic Prices and Implicit Markets: Estimating Demand and Supply Functions for Differentiated Products. J Political Econ 95: 59-80. doi: 10.1086/261441
    [18] Fröhlich C (2012) Total Solar Irradiance Observations. Surv Geophys 33: 453-473. doi: 10.1007/s10712-011-9168-5
    [19] Grossman GM (1995) Pollution and Growth: What Do We Know?, In The Economics of Sustainable Development, edited by Ian Goldin and L. Alan Winters, Cambridge University Press, 29-46.
    [20] Guasoni P, Schachermayer W (2004) Necessary Conditions for the Existence of Utility Maximizing Strategies under Transaction Costs. Statist Decisions 22: 153-170. doi: 10.1524/stnd.22.2.153.49129
    [21] Hamlin L (2019) Despite Renewables Mandate More than 80% of California Energy Needs Met Using Fossil Fuels. WUWT: Watts Up With That? Available from: https://wattsupwiththat.com/2019/05/26/despite-renewables-mandate-more-than-80-of-california-energy-needs-met-using-fossil-fuels/.
    [22] Head JG (1962) Public Goods and Public Policy. Public Financ 3: 205-208.
    [23] Holcombe RG (2000) Public Goods Theory and Public Policy. J Value Inquiry 34: 273-286. doi: 10.1023/A:1004730424324
    [24] Holcombe RG, Sobel RS (2001) Public Policy toward Pecuniary Externalities. Public Financ Rev 29: 304-325. doi: 10.1177/109114210102900402
    [25] Hosenuzzaman M, Rahim NA, Selvaraj J, et al. (2015) Global Prospects, Progress, Policies, and Environmental Impact of Solar Photovoltaic Power Generation. Renew Sust Energy Rev 41: 284-297. doi: 10.1016/j.rser.2014.08.046
    [26] Hulbert B, Brown RB, Adams S (1997) Towards an Understanding of "opportunity". Marketing Education Rev 7: 67-73. doi: 10.1080/10528008.1997.11488608
    [27] ICWE (1992) The Dublin statement on water and sustainable development. In ICWE (International Conference on Water and the Environment), Dublin: ICWE (International Conference on Water and the Environment), 55.
    [28] International Task Force on Global Public Goods (2006) Meeting Global Challenges: International Cooperation in the National Interest, Stockholm.
    [29] Iqbal M (1983) An Introduction To Solar Radiation, Academic Press.
    [30] Irena C (2014) The Socio-Economic Benefits of Large-Scale Solar and Wind Energy: An EconValue Report.
    [31] Kaufman N (2018a) The Social Cost of Carbon in Taxes and Subsidies Part 1: The Use of Current Estimates, New York.
    [32] Kaufman N (2018b) The Social Cost of Carbon in Taxes and Subsidies Part 2: Alternatives To the Us Government Sc-CO2 Estimates. Center Global Energy Policy.
    [33] Kaul I, Mendoza RU (2003) Advancing the Concept of Global Public Goods. In Providing Global Public Goods: Managing Globalization, edited by Inge Kaul, Pedro Conceição, Katell Le Goulven, and Ronald U. Mendoza, New York: Oxford University Press, 78-112.
    [34] King A, Schneider B (1992) The First Global Revolution: A Report of the Coucil of the Club of Rome, Orient Longman.
    [35] Kopp G (2016) Magnitudes and Timescales of Total Solar Irradiance Variability. J Space Weather Space Climate 6: 1-19. doi: 10.1051/swsc/2015040
    [36] Marten M, van Dender K (2019) The Use of Revenues from Carbon Pricing. 43. OECD Taxation Working Papers.
    [37] Marvão A, Manuel R, Pereira M (2010) Is Fuel-Switching a No-Regrets Environmental Policy? VAR Evidence on Carbon Dioxide Emissions, Energy Consumption and Economic Performance in Portugal. Energy Econ 32 (1): 227-242.
    [38] McConnell CR, Brue SL, Flynn SM (2012) Microeconomics Principles, Problems, and Policies, 19th ed. McGraw-Hill Irwin.
    [39] Meadows DH, Meadows DL, Randers J, et al. (1972) Limits to Growth: A Report of the Coucil of the Club of Rome, 5th ed. New York: Universe Books.
    [40] Miller NH (1990) Notes on Micoeconomic Theory. Available from: https://doi.org/10.1016/b978-0-444-88644-6.50013-8.
    [41] Minasian JR (1964) Television Pricing and the Theory of Public Goods. J Law Econ 7: 71-80. doi: 10.1086/466600
    [42] Moghimi AM (2017) Optical, Thermal and Economic Optimization of a Linear Fresnel Collector. University of Pretoria.
    [43] Musgrave RA (1939) The Voluntary Exchange Theory of Public Economy. Q J Econ 53: 213-237. doi: 10.2307/1882886
    [44] Musgrave RA (1959) The Theory of Public Finance; A Study in Public Economy.
    [45] Musgrave RA (1969) Cost-Benefit Analysis and the Theory of Public Finance. J Econ Lit 7: 797-806.
    [46] Nam KM, Selin NE, Reilly JM, et al. (2010) Measuring Welfare Loss Caused by Air Pollution in Europe: A CGE Analysis. Energy Policy 38: 5059-5071. doi: 10.1016/j.enpol.2010.04.034
    [47] Nelson J, Gambhir A, Ekins-Daukes N (2014) Solar Power for CO2 Mitigation. London. Available from: https://pdfs.semanticscholar.org/7722/c6f78dedc4b0491701ff29f0916be7d2af1a.pdf.
    [48] Nordhaus WD (2008) A Question of Balance, Yale University Press.
    [49] Nordhaus WD, Boyer J (2000) Warming the World: Economic Models of Global Warming, Cambridge, Mass: MIT Press.
    [50] OECD (2016) The Economic Consequences of Outdoor Air Pollution, OECD Publishing, Paris.
    [51] Pearce D (1989) Economic Values and the Natural Environment. Anuari de La Societat Catalana d'Economia 7: 132-139.
    [52] Perry C, Rock M, Seckler D (1997) Water as an Economic Good: A Solution, or a Problem?. International Irrigation Management Institute Research Report 14, Colombo, Sri Lanka.
    [53] Pigou AC (1929) The Economis of Welfare, 3rd ed. Macmillan and Co.
    [54] Pigou AC (1947) A Study in Public Finance, 3rd ed. London: Macmillan.
    [55] Poynder J (1844) Literary Extracts from English and Other Works, London: John Hatchard & Son.
    [56] Rezai A, Taylor L, Foley D (2017) Economic Growth, Income Distribution, and Climate Change. Working Paper Series 2017.
    [57] Robbins L (1932) An Essay on the Nature and Significance of Economic Science, Edited by MacMillan & Co. London.
    [58] Robinson S (1990) Pollution, Market Failure, and Optimal Policy in an Economywide Framework. 198571. CUDARE Working Papers.
    [59] Samuelson PA (1954) The Pure Theory of Public Expenditure. Rev Econ Stat 36: 387-389. doi: 10.2307/1925895
    [60] Samuelson PA (1955) Diagrammatic Exposition of a Theory of Public Expenditure. Rev Econ Stat 37: 350-356. doi: 10.2307/1925849
    [61] Samuelson PA (1964) Public Goods and Subscription TV: Correction of the Record. J Law Econ 7: 81-83. doi: 10.1086/466601
    [62] Samuelson PA, Nordhaus WD (2009) Economics, 19th ed. McGraw-Hill/Irwin.
    [63] Sandmo A (2001) Public Goods and Pigouvian Taxes. Available from: https://pdfs.semanticscholar.org/6e9f/d30e502c6ddd6e35bf2f005e48e9f8e4c2aa.pdf.
    [64] Sandmo A (2009) The Scale and Scope of Environmental Taxation, In Tax Systems: Whence and Whither. Recent Evolution, Current Problems and Future Challenges, Malaga: Norwegian, 34.
    [65] Sax E (1887) Grundlegung Der Theoretischen Staatswirthschaft, Wien: Holder, Alfred. Available from: https://archive.org/details/grundlegungdert01saxgoog/page/n10.
    [66] Sax E (1958) Die Wertungstheorie Der Steuer (1924) Zeitschrift Fur Volkswirtschaft Und Socialpolitik, Vol. 4' Translated as The Valuation Theory of Taxation, In Classics in the Theory of Public Finance, edited by Richard Abel Musgrave and Allen T. Peacock, 1rst ed., New York: MacMillan St Martin's Press, 177-189.
    [67] Schlenker W, Roberts MJ (2009) Nonlinear Temperature Effects Indicate Severe Damages to U. S. Crop Yields under Climate Change. PNAS 106: 15594-15598.
    [68] Scitovsky T (1954) Two Concepts of External Economies. J Political Econ 62: 143-151. doi: 10.1086/257498
    [69] Smith VK (1993) Nonmarket Valuation of Environmental Resources: An Interpretive Appraisal. Land Econ 69: 1-26. doi: 10.2307/3146275
    [70] Smith VK, Huang JC (1995) Can Markets Value Air Quality? A Meta-Analysis of Hedonic Property Value Models. J Political Econ 103: 209-227.
    [71] Starrett DA (2003) Property Rights, Public Goods and the Environment. In Handbooks in Economics Series Vol. 1:Perspectives on Environmental Economics, edited by Karl-Goran Maler and Jeffrey Vincent, 1rst ed., North Holland, 572.
    [72] Sullivan S (2014) The Natural Capital Myth; or Will Accounting Save the World. The Leverhulme Centre for the Study of Value. Available from: http://thestudyofvalue.org/wp-content/uploads/2013/11/WP3-Sullivan-2014-Natural-Capital-Myth.pdf%0Ahttp://www.academia.edu/download/33689440/WP3-Sullivan-2014-Natural-Capital-Myth.pdf%0Ahttp://files/361/Sullivan-2014-Thenaturalcapitalmyth%0Aorwill.
    [73] Tabb WK (2007) Resource Wars. Mon Rev 58: 32-42. doi: 10.14452/MR-058-08-2007-01_3
    [74] Tiebout CM (1956) A Pure Theory of Local Expenditures. J Political Econ 64: 416-424. doi: 10.1086/257839
    [75] Uimonen S (2001) The Insufficiency of Pigouvian Taxes in a Spatial General Equilibrium Model. Ann Reg Sci 35: 283-98. doi: 10.1007/s001680100045
    [76] Valenzuela N, Literman R, Neuwald JL, et al. (2019) Extreme Thermal Fluctuations from Climate Change Unexpectedly Accelerate Demographic Collapse of Vertebrates with Temperature-Dependent Sex Determination. Sci Reports 9: 1-11. doi: 10.1038/s41598-018-37186-2
    [77] Wald L (2018) Basics in Solar Radiation At Earth Surface. MINES ParisTech, PSL Research University. Available from: https://hal-mines-paristech.archives-ouvertes.fr/hal-01676634/document.
    [78] White C (2015) Understanding Water Markets: Public vs. Private Goods, In Global Water Forum, 1-8.
    [79] Wicksell K (1958) Eine Neues Prinzip Der Gerechten Besteuerung, K. Wicksell (Ed) Finanztheoretische Untersuchungen Nebst Darstellung Und Kritik Des Steuerwesens Schwedens, Gustav Fleischer Jena 1896' Translated as A New Principle of Just Taxation, In Classics in the Theory of Public Finance, edited by Richard Abel Musgrave and Allen T. Peacock, 1rst ed., MacMillan St Martin's Press, 72-118.
    [80] World Bank Group (1998) Economic Analysis of Environmental Externalities, In Pollution Prevention and Abatement Handbook 1998, World Bank Group, 54-62.
    [81] Zhao XB (2011) The Impact of CO2 Emission Cuts on Income. In Agricultural & Applied Economics Association's 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh: Agricultural & Applied Economics Association's 2011 AAEA & NAREA Joint Annual Meeting, 1-18.
  • This article has been cited by:

    1. Mahendra Saini, Hemant K.S. Yadav, Priya Sen, Manish Gupta, Nidhi Chauhan, 2025, 9780443216589, 109, 10.1016/B978-0-443-21658-9.00011-5
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6027) PDF downloads(414) Cited by(4)

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog