Citation: Aftab Ahmed, Javed I. Siddique. The effect of magnetic field on flow induced-deformation in absorbing porous tissues[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 603-618. doi: 10.3934/mbe.2019029
[1] | Xingjia Li, Jinan Gu, Zedong Huang, Chen Ji, Shixi Tang . Hierarchical multiloop MPC scheme for robot manipulators with nonlinear disturbance observer. Mathematical Biosciences and Engineering, 2022, 19(12): 12601-12616. doi: 10.3934/mbe.2022588 |
[2] | Xingjia Li, Jinan Gu, Zedong Huang, Wenbo Wang, Jing Li . Optimal design of model predictive controller based on transient search optimization applied to robotic manipulators. Mathematical Biosciences and Engineering, 2022, 19(9): 9371-9387. doi: 10.3934/mbe.2022436 |
[3] | Van Dong Nguyen, Dinh Quoc Vo, Van Tu Duong, Huy Hung Nguyen, Tan Tien Nguyen . Reinforcement learning-based optimization of locomotion controller using multiple coupled CPG oscillators for elongated undulating fin propulsion. Mathematical Biosciences and Engineering, 2022, 19(1): 738-758. doi: 10.3934/mbe.2022033 |
[4] | Ruiping Yuan, Jiangtao Dou, Juntao Li, Wei Wang, Yingfan Jiang . Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning. Mathematical Biosciences and Engineering, 2023, 20(2): 1903-1918. doi: 10.3934/mbe.2023087 |
[5] | Xinyu Shao, Zhen Liu, Baoping Jiang . Sliding-mode controller synthesis of robotic manipulator based on a new modified reaching law. Mathematical Biosciences and Engineering, 2022, 19(6): 6362-6378. doi: 10.3934/mbe.2022298 |
[6] | Xinran Zhang, Yongde Zhang, Jianzhi Yang, Haiyan Du . A prostate seed implantation robot system based on human-computer interactions: Augmented reality and voice control. Mathematical Biosciences and Engineering, 2024, 21(5): 5947-5971. doi: 10.3934/mbe.2024262 |
[7] | Yongli Yan, Fucai Liu, Teng Ren, Li Ding . Nonlinear extended state observer based control for the teleoperation of robotic systems with flexible joints. Mathematical Biosciences and Engineering, 2024, 21(1): 1203-1227. doi: 10.3934/mbe.2024051 |
[8] | Juan Du, Jie Hou, Heyang Wang, Zhi Chen . Application of an improved whale optimization algorithm in time-optimal trajectory planning for manipulators. Mathematical Biosciences and Engineering, 2023, 20(9): 16304-16329. doi: 10.3934/mbe.2023728 |
[9] | Mubashir Ahmad, Saira, Omar Alfandi, Asad Masood Khattak, Syed Furqan Qadri, Iftikhar Ahmed Saeed, Salabat Khan, Bashir Hayat, Arshad Ahmad . Facial expression recognition using lightweight deep learning modeling. Mathematical Biosciences and Engineering, 2023, 20(5): 8208-8225. doi: 10.3934/mbe.2023357 |
[10] | Kun Zhai, Qiang Ren, Junli Wang, Chungang Yan . Byzantine-robust federated learning via credibility assessment on non-IID data. Mathematical Biosciences and Engineering, 2022, 19(2): 1659-1676. doi: 10.3934/mbe.2022078 |
Differential equations are used to describe dynamic evolutionary processes in natural sciences, engineering and technology. There are many mathematicians working to construct methods for computing exact solutions to differential equations: for example, the Bäcklund transformation method [1], the inverse scattering method [2], the Darboux transformation method [3], the Hirota bilinear method [4], the tanh-function method [5], the Homotopy analysis method [6], etc. In recent years, there have been many results in constructing exact solutions of partial differential equations with a finite number of integer-order derivatives, such as the conformable fractional derivative, the M-fractional derivative, the alternative fractional derivative, the local fractional derivative and the Caputo-Fabrizio fractional derivatives with exponential kernels.
In Tarasov's points, the above mentioned differential operators are not fractional, with exponential kernels that cannot be considered as fractional derivatives of non-integer orders [7]. Therefore, the method designed for differential operators with integer orders can be embedded in the above mentioned type of differential equations with derivative variants.
For the question of how to distinguish between differential equations with integer-order and with fractional order, Tarasov introduced the nonlocality principle to prove that the conformable fractional derivative with exponential kernels cannot be considered as fractional derivatives of non-integer orders [7]. The derivatives of integer orders are determined by properties of differentiable functions only in the infinitely small neighborhoods of the considered point but not nonlocal. In the sense of conformable derivatives, the fractional differential problems become differential problems with integer-order derivatives that may no longer properly describe the original fractional physical phenomena [8]. Many mathematicians have worked on improving the conformable derivative to make it have more complete properties or apply more; for examples, see [9,10,11,12].
There are many ways of find exact solutions of differential equations, but no single method can handle all types of solutions. The complex method [13,14,15] and its variants, such as the extended complex method [16], can be used to construct meromorphic solutions for certain partial differential equations. Several researchers have tried to apply the complex method to find exact solutions of some higher-order or higher-dimension partial differential equations; for examples, see [17,18]. The complex method will be used here because this kind of method can construct more types of solutions in the complex domain, such as elliptic function solutions, simply periodic function solutions and exponential function solutions. Also, this is a good attempt to solve differential equations with conformal derivatives by the complex method.
Shallow waters exhibit nonlinear phenomena in the propagation and transformation of waves. Nonlinear differential equations, such as the Huxley equation, describe spectral energy transfer for waves of finite amplitude in shallow waters above a flat seafloor [19,20]. Chaotic oscillations usually occur in nonlinear dynamical systems. These systems can be represented by the Huxley equation with nonlinear oscillations and external periodic excitation [21].
Although the sub-equation method, the Kudryashov method and the exp-function method have been applied to build exact solutions for the conformable Huxley equation [22] (see Eq (3.1)), we remain committed to finding abundant new exact solutions using the complex method. The new exact solutions may contribute to a much better understanding of the features of the solutions of the conformable Huxley equation.
The basic definition and theorems of conformable derivatives [23] are as follows.
Definition 2.1. Let g:(0,∞)→R be a function. For all k>0,α∈(0,1), the CFD of g for order α is defined by
Tα(g(k))=limε→0g(k+εk1−α)−g(k)ε. | (2.1) |
Lemma 2.1. For α∈(0,1], if a function g:(0,+∞)→R is α-differentiable at t0>0, then g is continuous at t0.
Lemma 2.2. Let f and g be α-differential at a point t>0, α∈(0,1].
Tα(αf+bg)=aTα(f)+bTα(g),for all a,b∈R,Tα(tp)=ptp−α,for all p∈R,Tα(λ)=0,for all constant functions f(t)=λ,Tα(fg)=fTα(g)+gTα(f) andTα(fg)=gTα(f)−fTα(g)g2. | (2.2) |
If g is differentiable,
Tα(g)(t)=t1−αdgdt(t). | (2.3) |
Giving a nonlinear conformable partial differential equation with two independent variables,
P(∂αu∂t α,∂u∂x,∂2αu∂t2α,∂2u∂x2,⋯)=0,0<α≤1. | (2.4) |
Taking a traveling wave transformation u(x,t)=w(z),z=x−ct αα (c is the speed of wave), on Eq (2.4) with
∂α∂t α=−c∂∂ξ,∂2α∂t2α=c2∂2∂ξ2,∂∂x=∂∂ξ,∂2∂x2=∂2∂ξ2,⋯, | (2.5) |
Eq (2.4) will be reduced to a nonlinear ordinary differential equation (ODE),
Q(w,w′,w″,w‴,⋯)=0. | (2.6) |
Weierstrass elliptic function [24] ℘(z):=℘(z,g2,g3) is a meromorphic function with two periods 2ω1,2ω2 and satisfies
(℘′(z))2=4℘(z)3−g2℘(z)−g3, | (2.7) |
with the invariants g2=60s4,g3=140s6 and discriminant Δ(g2,g3)≠0.
Furthermore, ℘′(−z)=−℘′(z), 2℘″(z)=12℘2(z)−g2,℘‴(z)=12℘(z)℘′(z),⋯, any kth derivatives of ℘ can be deduced by these identities, and ℘ has the Laurent series expansion ℘(z)=1z2+g2z220+g3z428+O(|z|6), with the addition formula
℘(z−z0)=−℘(z)−℘(z0)+14[℘′(z)+℘′(z0)℘(z)−℘(z0)]2. | (2.8) |
The basic related definitions and lemmas of the complex method [13] are as follows.
Given a nonlinear ODE
P(w,w′,⋯,w(m))=0, | (2.9) |
P is a polynomial in w(z) and its derivatives with constant coefficients.
We assume that the Laurent series expansion of meromorphic solutions of Eq (2.9) are in the form of
w(z)=∞∑k=−qck(z−z0)k(q>0). | (2.10) |
Definition 2.2. If there are exactly p distinct formal meromorphic Laurent series
w(z)=∞∑k=−qckzk | (2.11) |
satisfying Eq (2.9), we say Eq (2.9) satisfies the ⟨p,q⟩ condition. If only determine p distinct principal parts ∑−1k=−qckzk, we say Eq (2.9) satisfies the weak ⟨p,q⟩ condition.
Eremenko [25] defined that a meromorphic function f(z) belongs to the class W if f(z) is an elliptic function, a rational function of eαz(α∈C) or a rational function of z.
Lemma 2.3. ([13,15]) Suppose that an equation
P(w,w′,⋯,w(m))=bwn | (2.12) |
satisfies the ⟨p,q⟩ condition, where p,l,m,n∈N,degP(w,w′,⋯,w(m))<n. Then, all meromorphic solutions w belong to the class W. Furthermore, each elliptic solution with a pole at z=0 can be written as
w(z)=l−1∑i=1q∑j=2(−1)jc−ij(j−1)!dj−2dzj−2(14[℘′(z)+Bi℘(z)−Ai]2−℘(z))+l−1∑i=1c−i12℘′(z)+Bi℘(z)−Ai+q∑j=2(−1)jc−lj(j−1)!dj−2dzj−2℘(z)+c0, | (2.13) |
where c−ij are given by (2.11), B2i=4A3i−g2Ai−g3, ∑li=1c−i1=0, and c0∈C.
Each rational function solution w:=R(z) is of the form
R(z)=l∑i=1q∑j=1cij(z−zi)j+c0, | (2.14) |
with l(≤p) distinct poles of multiplicity q.
Each simply periodic solution is a rational function R(ξ) of ξ=eαz(α∈C). R(ξ) is of the form
R(ξ)=l∑i=1q∑j=1cij(ξ−ξi)j+c0, | (2.15) |
where R(ξ) has l(≤p) distinct poles with multiplicity q.
By the former discussion, the complex method can be described concerning Eq (2.4) as follows:
Step 1 Substituting the transform u(x,t)=w(z),z=Kx−ct αα , with Eq (2.5) into Eq (2.4) and obtaining the nonlinear ODE Eq (2.6).
Step 2 Substituting (2.11) into Eq (2.6) to determine that the ⟨p,q⟩ condition holds.
Step 3 By indeterminant relations (2.13)–(2.15), building the elliptic, rational and simply periodic solutions w(z) of Eq (2.6) with pole at z=0, respectively.
Step 4 By Lemma 2.3 mainly, obtaining all meromorphic solutions w(z−z0).
Step 5 Substituting the inverse transform T−1 into these meromorphic solutions w(z−z0), we get all exact solutions u(x,t) of the original given Eq (2.4).
The conformable equation is defined as
∂α∂t αu(x,t)−∂2∂x2u(x,t)=βu(x,t)(1−u(x,t))(u(x,t)−γ), | (3.1) |
where α∈(0,1], β is a non zero constant, and γ∈(0,1). Equation (3.1) can be written as
∂α∂t αu(x,t)−∂2∂x2u(x,t)+βu3(x,t)−β(1+γ)u2(x,t)+βγu(x,t)=0,0<α≤1. | (3.2) |
Using the transformations u(x,t)=u(z),z=Kx−λt αα in Eq (3.2), where K and λ are non-zero constants, it follows that
K2u′′+λu′−βγu+β(1+γ)u2−βu3=0. | (3.3) |
If λ=0 and β=0, Eq (3.3) will reduce to the equation K2u′′−βu3=0. Then, multiply u′, and it will reduce to a first-order Briot-Bouquet differential equation.
If γ=−1, Eq (3.3) will reduce to the equation K2u′′+λu′+βu−βu3=0, and its solutions were investigated in [26].
For Eq (3.3), we assume γ≠−1. Obviously, Eq (3.3) has no nonconstant polynomial solution and has no nonconstant transcendental entire solution by using the Wiman-Valiron theory. Therefore, we need to consider the nonconstant meromorphic solutions of Eq (3.3) with at least one pole on C.
Assume that a meromorphic solution u(z) satisfies Eq (3.3), and if u(z) has a movable pole at z=0, then in a neighborhood of z=z0, the Laurent series of u is of the form ∑∞k=−qck(z−z0)k(q>0,c−q≠0). Substituting the Laurent series into Eq (3.3), balancing the terms u″ and w3, we have p=2,q=1, and then
c−1=√2√1βK,c0=2Kγ√β+2K√β−λ√26K√β,c1=√2(β(γ2−γ+1)K2−λ22)18√βK3,c2=(γ−12)K3(γ−2)(γ+1)β32+32(β(γ2−γ+1)K2−2λ23)λ√254√βK5, | (3.4) |
c−1=−√2√1βK,c0=2Kγ√β+2K√β+λ√26K√β,c1=−√2(β(γ2−γ+1)K2−λ22)18√βK3,c2=(γ−12)K3(γ−2)(γ+1)β32−32(β(γ2−γ+1)K2−2λ23)λ√254√βK5. | (3.5) |
By comparing the coefficients of z in the expansion of K2u″+λu′ and −βγu+β(1+γ)u2−βu3, we have
(0⋅c3−2λβ27K2−2λβγ327K2+λβγ29K2+λβγ9K2−√βλ2√29K3+2√2λ427K5√β−√βλ2√2γ29K3+√βλ2√2γ9K3)⋅(0⋅c3−2λβ27K2+√βλ2√2γ29K3−√βλ2√2γ9K3−2√2λ427K5√β+√βλ2√29K3+λβγ29K2+λβγ9K2−2λβγ327K2)=0. | (3.6) |
Then, Eq (3.6) can be reduced to
((−2λ27K2−2λγ327K2+λγ29K2+λγ9K2)β+(−λ2√29K3−λ2√2γ29K3+λ2√2γ9K3)√β+2√2λ427K5√β)⋅((−2λγ327K2+λγ29K2+λγ9K2−2λ27K2)β+(λ2√2γ29K3−λ2√2γ9K3+λ2√29K3)√β−2√2λ427K5√β)=0, | (3.7) |
or
4(K2(γ−2)2β−2λ2)((γ−12)2K2β−λ22)(K2(γ+1)2β−2λ2)λ2=0. | (3.8) |
Equation (3.3) has two integer Fuchs indexes, −1,4. From Eq (3.6), we know the coefficient c3 is an arbitrary constant, and the other coefficients c4,c5,⋯ can be represented using c3. Then, Eq (3.3) satisfies the <p,q> condition, and Eq (3.3) is integrable. Therefore, by Lemma 2.3, all meromorphic solutions of Eq (3.3) belong to the class W.
According to the complex method, we will build the meromorphic solutions of Eq (3.3).
Case 1. Rational solutions.
According to (2.14), we assume that the undetermined form of rational solutions of Eq (3.3) with a pole at z0∈C is given by
u(z)=c−1(z−z0)−1+c0=±√2√1βKz−z0+2Kγ√β+2K√β∓λ√26K√β. | (3.9) |
From Eq (3.8), we have γ=0, λ2=2βK2 or λ2=12βK2; γ=1, λ2=2βK2 or λ2=12βK2; γ=2,λ2=92βK2; γ=12,λ2=98βK2. From Eq (3.9), only the cases γ=0,1 make Eq (3.3) have the following rational solutions.
When γ=0 and λ=±√2√βK, we have the following rational solution:
u(z)=±√2√1βKz−z0, | (3.10) |
where z0 is an arbitrary constant.
When γ=1 and λ=±√2√βK, we have the following rational solution:
u(z)=∓√2√1βKz−z0+1. | (3.11) |
Then, substituting z=x−ct αα into the rational solutions (3.10) and (3.11), we get the following exact solutions for Eq (3.1):
u(z)=±√2√1βKx−ct αα −z0, | (3.12) |
u(z)=∓√2√1βKx−ct αα −z0+1. | (3.13) |
Case 2. Elliptic function solutions.
Case 2.1
By (2.13) and ∑2i=1c−1=0, we can assume the following undetermined form of elliptic solutions will satisfy Eq (3.3):
u(z)=l−1∑i=1c−i12℘′(z)+Bi℘(z)−Ai+c0=√2√1βK(P′(z;g2,g3)+B1)2P(z;g2,g3)−A1−√2√1βK(P′(z;g2,g3)+B2)2(P(z;g2,g3)−A2)+c0, | (3.14) |
where c0 is a constant. We noted that the Laurent series of (3.14) are as follows:
u(z)=−√2√1βK(−A2+A1)z+√2√1βK(B1−B2)z22+O(z3). | (3.15) |
However, the term of z−1 vanished in (3.14), compared to the Laurent series (3.4). It follows that Eq (3.3) has no elliptic solution in the form of (3.14).
Case 2.2
To reduce the complexity of the calculation, rewrite Eq (3.3) into the following form:
u′′+Au′+Bu+Cu2+Du3=0, | (3.16) |
where A=λK2,B=−βγK2,C=β(1+γ)k2,D=−βk2. By (2.13), we assume that the following forms of elliptic solutions satisfy Eq (3.3):
w(z)=1√−2D℘′(z,g2,g3)+B1℘(z,g2,g3)−A1+c0, | (3.17) |
w(z)=−1√−2D℘′(z,g2,g3)+B1℘(z,g2,g3)−A1+c0. | (3.18) |
Comparing the coefficients in the Laurent series of solutions w(z) in (3.17) and (3.18) with (3.4) and (3.5), we have the following solutions:
w(z)=1√−2D℘′(z,g2,g3)+B1℘(z,g2,g3)−A1+A√−2D=−2√−2Dz−1+A√−2D, | (3.19) |
where C=A√−2D, A1=A212+B6, B1=0, g2=(A2+2B)212, g3=−13(A2+2B)33240 and B=−A22. Solution (3.19) must degenerate into a rational function, and
w(z)=−1√−2D℘′(z,g2,g3)+B1℘(z,g2,g3)−A1−A√−2D, | (3.20) |
where C=−A√−2D, A1=A212+B6, B1=0, g2=(A2+2B)212, g3=−(A2+2B)3216.
Therefore, we obtain the following solutions of Eq (3.3):
w(z)=−√2K2√β1z−z0+λ√2βK2, | (3.21) |
where β(1+γ)=λ√2βK2, βγ=λ22K2, and
w(z)=−1√−2D℘′(z−z0,g2,g3)+B1℘(z−z0,g2,g3)−A1−λ√2βK2, | (3.22) |
where β(1+γ)=−λ√2βK2, A1=λ212K4−βγ6K2, B1=0, g2=(2K2βγ−λ2)212K8, g3=(2K2βγ−λ2)3216K12, and z0 is arbitrary.
Case 2.3
Rewrite Eq (3.3) into the following form:
u″+λK2u′−βK2u(u−1)(u−γ)=0. | (3.23) |
By Lemma 4.5 in the [27], we have q1=0,q2=1,q3=γ, and Eq (3.23) has nonconstant meromorphic solutions if and only if
λK2∏(λμK2+qi+qj−2qk)(−λμK2+qi+qj−2qk)=0, | (3.24) |
where μ=±√2K2β, (ijk) is any permutation of (123). Further, for λ≠0 and λK2=2qi−qj−qkμ=−qi+2qj−qk−μ, Eq (3.23) has the following elliptic solutions:
w(z)=qk−qi−qk2e−qi−qkμz℘′(e−qi−qkμz−z0;g2,0)℘(e−qi−qkμz−z0;g2,0),z0,g2 arbitrary. | (3.25) |
Then substituting z=x−ct αα into the solution (3.25), yielding the corresponding exact solutions for Eq (3.1) instantly.
Case 3. Exponential function solutions.
We only consider the case of c−1=√2√1βK, for in the case of c−1=−√2√1βK, which we omit here, the operation is the same.
Case 3.1
By (2.15), we assume that the undetermined form of the simply periodic solutions of Eq (3.3) is given by
w(z)=c−1eθz−ξ+c0=√2√1βKeθz−ξ+2Kγ−λ√2√1β+2K6K, | (3.26) |
where ξ∈C is a constant.
Substituting (3.26) into Eq (3.3), combining the similar terms in the expansion of Eq (3.3) and balancing the coefficients, we have
2√2√1βK3(e2αzα2−1)(eαz−ξ)3=0. | (3.27) |
Equation (3.27) obviously has no algebraic solution of α. This means that Eq (3.3) does not have a simply periodic solution in the shape of (3.26).
Case 3.2
We assume that Eq (3.3) has the following undetermined form of exponential solutions:
u(z)=A(z)eαz−ξ+c0, | (3.28) |
where ξ,c0∈C are constants, and A(z) is an undetermined function.
Then, substituting (3.28) into Eq (3.3), we have
A(−2K2e2αzα2+βA2)(−eαz+ξ)3=0. | (3.29) |
Therefore, A(z)=±√2αeαzK√β and A=0 is omitted here.
Case 3.2.1
Substituting (3.28) with A(z)=√2αeαzK√β into Eq (3.3), we have
3(−2K(γ−3c0+1)√β3+√2(K2α+λ3))α2Ke2αz√β(eαz−ξ)2=0. | (3.30) |
By solving Eq (3.30), we have
c0=−3K2√2α−2K√βγ−2K√β+√2λ6K√β. | (3.31) |
Then, substituting (3.28) with (3.31) into Eq (3.3), we have
α=±√6K2βγ2−6βγK2+6K2β−3λ23K2. | (3.32) |
Then, substituting (3.28) with (3.31), (3.32) into Eq (3.3), we have
(227γ3−19γ2−19γ+227)β+(γ2√2λ9K−γ√2λ9K+√2λ9K)√β−2√2λ327K3√β=0. | (3.33) |
Therefore, we have the following solution:
u(z)=√2αeαzK√βeαz−ξ−3K2√2α−2K√βγ−2K√β+√2λ6K√β, | (3.34) |
provided that α=±√6K2βγ2−6βγK2+6K2β−3λ23K2, and (227γ3−19γ2−19γ+227)β+(γ2√2λ9K−γ√2λ9K+√2λ9K)√β−2√2λ327K3√β=0.
The exponential function solution (3.34) can be reduced to
u(z)=±√2√6K2βγ2−6K2βγ+6K2β−3λ2e±√6K2βγ2−6K2βγ+6K2β−3λ2z3K23√βK(e±√6K2βγ2−6K2βγ+6K2β−3λ2z3K2−ξ)−±√2√6K2βγ2−6K2βγ+6K2β−3λ2−2√βKγ−2√βK+λ√26√βK, | (3.35) |
provided that (227γ3−19γ2−19γ+227)β+(γ2√2λ9K−γ√2λ9K+√2λ9K)√β−2√2λ327K3√β=0.
Then, substituting z=x−ct αα into the exponential function solution (3.34), we get the following exact solution for Eq (3.1):
u(x,t)=√2αeαKx−λt αK√βeαKx−λt α−ξ−3K2√2α−2K√βγ−2K√β+√2λ6K√β, | (3.36) |
provided that α=±√6K2βγ2−6βγK2+6K2β−3λ23K2, and (227γ3−19γ2−19γ+227)β+(γ2√2λ9K−γ√2λ9K+√2λ9K)√β−2√2λ327K3√β=0.
Case 3.2.2
Substituting (3.28) with A(z)=−√2αeαzK√β into Eq (3.3), we have
3(−2K(γ−3c0+1)√β3+√2(K2α+λ3))α2Ke2αz√β(eαz−ξ)2=0. | (3.37) |
By solving Eq (3.37), we have
c0=3K2√2α+2K√βγ+2K√β+√2λ6K√β. | (3.38) |
Then, substituting (3.28) with (3.38) in Eq (3.3), we have
α=±√6K2βγ2−6βγK2+6K2β−3λ23K2. | (3.39) |
Then, substituting (3.28) with (3.38) and (3.39) into Eq (3.3), we have
(−19γ2+227γ3−19γ+227)β+(−γ2√2λ9K+γ√2λ9K−√2λ9K)√β+2√2λ327K3√β=0. | (3.40) |
Therefore, we have the following solution:
u(z)=−√2αeαzK√β(eαz−ξ)+3K2√2α+2K√βγ+2K√β+√2λ6K√β, | (3.41) |
provided that α=±√6K2βγ2−6βγK2+6K2β−3λ23K2, and (−19γ2+227γ3−19γ+227)β+(−γ2√2λ9K+γ√2λ9K−√2λ9K)√β+2√2λ327K3√β=0.
Exponential function solution (3.41) can be reduced to
u(z)=∓√2√6K2βγ2−6βγK2+6K2β−3λ2e±√6K2βγ2−6βγK2+6K2β−3λ2z3K23K√β(e±√6K2βγ2−6βγK2+6K2β−3λ2z3K2−ξ)+±√2√6K2βγ2−6βγK2+6K2β−3λ2+2K√βγ+2K√β+√2λ6K√β. | (3.42) |
Then, substituting z=Kx−ct αα into the exponential function solution (3.41), we get the following exact solution for Eq (3.1):
u(x,t)=−√2αeαKx−ct αK√β(eαKx−ct α−ξ)+3K2√2α+2K√βγ+2K√β+√2λ6K√β. | (3.43) |
Case 3.3
Substituting
u(z)=√2αeαzK√β(eαz−ξ)−3K2√2α−2K√βγ−2K√β+√2λ6K√β | (3.44) |
into Eq (3.3), we have
−(K4α2−2β(γ2−γ+1)K23+λ23)α√2eαz2√β(eαz−ξ)K=0. | (3.45) |
It follows that
β=3K4α2+λ22K2(γ2−γ+1). | (3.46) |
Substituting (3.44) with (3.46) into Eq (3.3), Eq (3.3) reduces to an algebraic equation:
K(γ+1)(K4α2+λ23)(γ−12)(γ−2)√3K4α2+λ2K2+3(γ2−γ+1)32(K2α−λ3)(K2α+λ3)λ9(γ2−γ+1)√3K4α2+λ2K2K3=0. | (3.47) |
By solving Eq (3.47), we have
α=±λK2(2γ−1),±γλK2(γ−2),±λ(γ−1)K2(γ+1). | (3.48) |
Case 3.3.1
Substituting (3.44) with (3.46) and α=λK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=eλzK2(2γ−1)eλzK2(2γ−1)−ξ. | (3.49) |
Solution (3.49) can be converted to the following form:
u(z)=cosh(λzK2(2γ−1))+sinh(λzK2(2γ−1))cosh(λzK2(2γ−1))+sinh(λzK2(2γ−1))−ξ. | (3.50) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.49) and (3.50), we get the following exact solutions for Eq (3.1):
u((x,t)=eλ(Kx−ct αα ) K2(2γ−1)eλ(Kx−ct αα ) K2(2γ−1)−ξ, | (3.51) |
u(x,t)=cosh(λ(Kx−ct αα ) K2(2γ−1))+sinh(λ(Kx−ct αα ) K2(2γ−1))cosh(λ(Kx−ct αα ) K2(2γ−1))+sinh(λ(Kx−ct αα ) K2(2γ−1))−ξ. | (3.52) |
Case 3.3.2
Substituting (3.44) with (3.46) and α=−λK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=ξ−e−λzK2(2γ−1)+ξ. | (3.53) |
Solution (3.53) can be converted to the following form:
u(z)=ξ−cosh(λzK2(2γ−1))+sinh(λzK2(2γ−1))+ξ. | (3.54) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.53) and (3.54), we get the following exact solutions for Eq (3.1):
u(x,t)=ξ−e−λ(Kx−ct αα ) K2(2γ−1)+ξ, | (3.55) |
u(x,t)=ξ−cosh(λ(Kx−ct αα ) K2(2γ−1))+sinh(λ(Kx−ct αα ) K2(2γ−1))+ξ. | (3.56) |
Case 3.3.3
Substituting (3.44) with (3.46) and α=γλK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=ξγ−eγλzK2(γ−2)+ξ. | (3.57) |
Solution (3.57) can be converted to the following form:
u(z)=ξγ−cosh(γλzK2(γ−2))−sinh(γλzK2(γ−2))+ξ. | (3.58) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.57) and (3.58), we get the following exact solutions for Eq (3.1):
u(x,t)=ξγ−eγλ(Kx−ct αα )K2(γ−2)+ξ, | (3.59) |
u(x,t)=ξγ−cosh(γλ(Kx−ct αα )K2(γ−2))−sinh(γλ(Kx−ct αα )K2(γ−2))+ξ. | (3.60) |
Case 3.3.4
Substituting (3.44) with (3.46) and α=−γλK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=γe−γλzK2(γ−2)e−γλzK2(γ−2)−ξ. | (3.61) |
Solution (3.61) can be converted to the following form:
u(z)=γ(cosh(γλzK2(γ−2))−sinh(γλzK2(γ−2)))cosh(γλzK2(γ−2))−sinh(γλzK2(γ−2))−ξ. | (3.62) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.61) and (3.62), we get the following exact solutions for Eq (3.1):
u(x,t)=γe−γλ(Kx−ct αα )K2(γ−2)e−γλzK2(γ−2)−ξ, | (3.63) |
u(x,t)=γ(cosh(γλ(Kx−ct αα )K2(γ−2))−sinh(γλ(Kx−ct αα )K2(γ−2)))cosh(γλ(Kx−ct αα )K2(γ−2))−sinh(γλ(Kx−ct αα )K2(γ−2))−ξ. | (3.64) |
Case 3.3.5
Substituting (3.44) with (3.46) and α=λ(γ−1)K2(γ+1) into Eq (3.3), the left hand side of Eq (3.3) reduces to 4(γ−2)(2γ−1)λ2. Therefore, we obtain the following solution:
u(z)=(−2γ+1)eλ(γ−1) z K2(γ+1)−ξ(γ−2)−3eλ(γ−1) z K2(γ+1)+3ξ, | (3.65) |
provided that 2(K√λ2K2+λ)(γ−2)λ2(2γ−1)=0.
Solution (3.65) can be converted to the following form:
u(z)=(−2γ+1)(cosh(λ(γ−1) z K2(γ+1))+sinh(λ(γ−1) z K2(γ+1)))−ξ(γ−2)−3cosh(λ(γ−1) z K2(γ+1))−3sinh(λ(γ−1) z K2(γ+1))+3ξ. | (3.66) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.65) and (3.66), we get the following exact solutions for Eq (3.1):
u(x,t)=(−2γ+1)eλ(γ−1)(Kx−ct αα ) K2(γ+1)−ξ(γ−2)−3eλ(γ−1)(Kx−ct αα ) K2(γ+1)+3ξ, | (3.67) |
u(x,t)=(−2γ+1)(cosh(λ(γ−1)(Kx−ct αα ) K2(γ+1))+sinh(λ(γ−1)(Kx−ct αα ) K2(γ+1)))−ξ(γ−2)−3cosh(λ(γ−1)(Kx−ct αα ) K2(γ+1))−3sinh(λ(γ−1)(Kx−ct αα ) K2(γ+1))+3ξ. | (3.68) |
Case 3.3.6
Substituting (3.44) with (3.46) and α=−λ(γ−1)K2(γ+1) into Eq (3.3), the left hand side of Eq (3.3) reduces to 4(γ−2)(2γ−1)λ2=0. Therefore, we obtain the following solution:
u(z)=(γ−2)e−λ(γ−1) z K2(γ+1)+ξ(2γ−1)−3e−λ(γ−1) z K2(γ+1)+3ξ, | (3.69) |
provided that (γ−2)(2γ−1)λ2=0.
Solution (3.69) can be converted to the following form:
u(z)=(γ−2)(cosh(λ(γ−1) z K2(1+γ))−sinh(λ(γ−1) z K2(1+γ)))+ξ(2γ−1)−3cosh(λ(γ−1) z K2(1+γ))+3sinh(λ(γ−1) z K2(1+γ))+3ξ. | (3.70) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.69) and (3.70), we get the following exact solutions for Eq (3.1):
u(x,t)=(γ−2)e−λ(γ−1)(Kx−ct αα ) K2(γ+1)+ξ(2γ−1)−3e−λ(γ−1)(Kx−ct αα ) K2(γ+1)+3ξ, | (3.71) |
u(x,t)=(γ−2)(cosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ)))+ξ(2γ−1)−3cosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))+3sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ))+3ξ. | (3.72) |
Case 3.4
Substituting
u(z)=−√2αeαzK√β(eαz−ξ)+3K2√2α+2K√βγ+2K√β+√2λ6K√β | (3.73) |
into Eq (3.3), we have
−(K4α2−2β(γ2−γ+1)K23+λ23)α√2eαz2√β(eαz−ξ)K=0. | (3.74) |
It follows that
β=3K4α2+λ22K2(γ2−γ+1). | (3.75) |
Substituting (3.73) with (3.75) into Eq (3.3), Eq (3.3) reduces to an algebraic equation:
(γ−12)(1+γ)(γ−2)(K4α2+λ23)K√3K4α2+λ2K2−3λ(γ2−γ+1)32(K2α−λ3)(K2α+λ3)9√3K4α2+λ2K2(γ2−γ+1)K3=0. | (3.76) |
By solving Eq (3.76), we have
α=±λK2(2γ−1),±γλK2(γ−2),±λ(γ−1)K2(γ+1). | (3.77) |
Case 3.4.1
Substituting (3.73) with (3.75) and α=λK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=(−2γ+1)eλzK2(2γ−1)+2ξ(1+γ)−3eλzK2(2γ−1)+3ξ. | (3.78) |
Solution (3.78) can be converted to the following form:
u(z)=(−2γ+1)(cosh(λzK2(2γ−1))+sinh(λzK2(2γ−1)))+2ξ(1+γ)−3cosh(λzK2(2γ−1))−3sinh(λzK2(2γ−1))+3ξ. | (3.79) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.78) and (3.79), we get the following exact solutions for Eq (3.1):
u(x,t)=(−2γ+1)eλ(Kx−ct αα )K2(2γ−1)+2ξ(1+γ)−3eλ(Kx−ct αα )K2(2γ−1)+3ξ, | (3.80) |
u(x,t)=(−2γ+1)(cosh(λ(Kx−ct αα )K2(2γ−1))+sinh(λ(Kx−ct αα )K2(2γ−1)))+2ξ(1+γ)−3cosh(λ(Kx−ct αα )K2(2γ−1))−3sinh(λ(Kx−ct αα )K2(2γ−1))+3ξ. | (3.81) |
Case 3.4.2
Substituting (3.73) with (3.75) and α=−λK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=2e−λzK2(2γ−1)γ−2ξγ+2e−λzK2(2γ−1)+ξ3e−λzK2(2γ−1)−3ξ. | (3.82) |
Solution (3.82) can be converted to the following form:
u(z)=(2γ+2)sinh(λzK2(2γ−1))+(−2γ−2)cosh(λzK2(2γ−1))+2ξγ−ξ3sinh(λzK2(2γ−1))−3cosh(λzK2(2γ−1))+3ξ. | (3.83) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.82) and (3.83), we get the following exact solutions for Eq (3.1):
u(x,t)=2e−λ(Kx−ct αα ) K2(2γ−1)γ−2ξγ+2e−λ(Kx−ct αα ) K2(2γ−1)+ξ3e−λ(Kx−ct αα ) K2(2γ−1)−3ξ, | (3.84) |
u(x,t)=(2γ+2)sinh(λ(Kx−ct αα ) K2(2γ−1))+(−2γ−2)cosh(λ(Kx−ct αα ) K2(2γ−1))+2ξγ−ξ3sinh(λ(Kx−ct αα ) K2(2γ−1))−3cosh(λ(Kx−ct αα ) K2(2γ−1))+3ξ. | (3.85) |
Case 3.4.3
Substituting (3.73) with (3.75) and α=γλK2(2γ−1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=(−2γ−2)eγλzK2(γ−2)−ξ(γ−2)−3eγλzK2(γ−2)+3ξ, | (3.86) |
provided that 2(K√λ2K2+λ)(2γ−1)λ2(1+γ)=0.
Solution (3.86) can be converted to the following form:
u(z)=(−2γ−2)(cosh(γλzK2(γ−2))+sinh(γλzK2(γ−2)))−ξ(γ−2)−3cosh(γλzK2(γ−2))−3sinh(γλzK2(γ−2))+3ξ. | (3.87) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.86) and (3.87), we get the following exact solutions for Eq (3.1):
u(x,t)=(−2γ−2)eγλ(Kx−ct αα )K2(γ−2)−ξ(γ−2)−3eγλ(Kx−ct αα )K2(γ−2)+3ξ, | (3.88) |
u(x,t)=(−2γ−2)(cosh(γλ(Kx−ct αα )K2(γ−2))+sinh(γλ(Kx−ct αα )K2(γ−2)))−ξ(γ−2)−3cosh(γλ(Kx−ct αα )K2(γ−2))−3sinh(γλ(Kx−ct αα )K2(γ−2))+3ξ. | (3.89) |
Case 3.4.4
Substituting (3.73) with (3.75) and α=−λ(γ−1)K2(γ+1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=(γ−2)e−γλzK2(γ−2)+2ξ(1+γ)−3e−γλzK2(γ−2)+3ξ, | (3.90) |
provided that 2λ2(2γ−1)(K√λ2K2+λ)(1+γ)=0.
Solution (3.90) can be converted to the following form:
u(z)=(γ−2)(cosh(γλzK2(γ−2))−sinh(γλzK2(γ−2)))+2ξ(1+γ)−3cosh(γλzK2(γ−2))+3sinh(γλzK2(γ−2))+3ξ. | (3.91) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.90) and (3.91), we get the following exact solutions for Eq (3.1):
u(x,t)=(γ−2)e−γλ(Kx−ct αα )K2(γ−2)+2ξ(1+γ)−3e−γλ(Kx−ct αα )K2(γ−2)+3ξ, | (3.92) |
u(x,t)=(γ−2)(cosh(γλ(Kx−ct αα )K2(γ−2))−sinh(γλ(Kx−ct αα )K2(γ−2)))+2ξ(1+γ)−3cosh(γλ(Kx−ct αα )K2(γ−2))+3sinh(γλ(Kx−ct αα )K2(γ−2))+3ξ. | (3.93) |
Case 3.4.5
Substituting (3.73) with (3.75) and α=λ(γ−1)K2(γ+1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=ξγ−eλ(γ−1) z K2(1+γ)−eλ(γ−1) z K2(1+γ)+ξ, | (3.94) |
provided that 2(2γ−1)λ2(K√λ2K2−λ)(γ−2)=0.
Solution (3.94) can be converted to the following form:
u(z)=ξγ−cosh(λ(γ−1) z K2(1+γ))−sinh(λ(γ−1) z K2(1+γ))−cosh(λ(γ−1) z K2(1+γ))−sinh(λ(γ−1) z K2(1+γ))+ξ. | (3.95) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.94) and (3.95), we get the following exact solutions for Eq (3.1):
u(x,t)=ξγ−eλ(γ−1)(Kx−ct αα ) K2(1+γ)−eλ(γ−1)(Kx−ct αα ) K2(1+γ)+ξ, | (3.96) |
u(x,t)=ξγ−cosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−cosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ))+ξ. | (3.97) |
Case 3.4.6
Substituting (3.73) with (3.75) and α=−λ(γ−1)K2(γ+1) into Eq (3.3), the left hand side of Eq (3.3) reduces to zero. Therefore, we obtain the following solution:
u(z)=e−λ(γ−1) z K2(1+γ) γ−ξe−λ(γ−1) z K2(1+γ)−ξ, | (3.98) |
provided that 2λ2(2γ−1)(K√λ2K2−λ)(γ−2)=0.
Solution (3.98) can be converted to the following form:
u(z)=(cosh(λ(γ−1) z K2(1+γ))−sinh(λ(γ−1) z K2(1+γ)))γ−ξcosh(λ(γ−1) z K2(1+γ))−sinh(λ(γ−1) z K2(1+γ))−ξ. | (3.99) |
Then, substituting z=Kx−ct αα into the exponential function solutions (3.98) and (3.99), we get the following exact solutions for Eq (3.1):
u(x,t)=e−λ(γ−1)(Kx−ct αα ) K2(1+γ)γ−ξe−λ(γ−1)(Kx−ct αα ) K2(1+γ)−ξ, | (3.100) |
u(x,t)=(cosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ)))γ−ξcosh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−sinh(λ(γ−1)(Kx−ct αα ) K2(1+γ))−ξ. | (3.101) |
The traveling wave solutions (3.12), (3.13), (3.21), (3.22), (3.25), (3.36), (3.43), (3.51), (3.52), (3.55), (3.56), (3.59), (3.60) (3.63), (3.64), (3.67), (3.68), (3.71), (3.72), (3.80), (3.81), (3.84), (3.85), (3.88), (3.89), (3.92), (3.93), (3.96), (3.97), (3.100), (3.101) appear to be new, comparing the results in [22] and other open literature.
We find a new shape of exponential function solution for Eq (2.12) in the shape of (3.28), where A(z) is an undetermined function, which is not of the shape of (2.15). This has resulted in an important extension to the complex method to build new exponential function solutions for PDEs, since the new shape of the exponential function solution cannot be degenerated by the elliptic function solution.
By traveling wave transformation, the conformable Huxley equation is reduced to an ordinary differential equation. Then, by using the complex method and the extended form of exponential solutions u(z)=A(z)eαz−ξ+const, where A(z) is an undetermined function, we can build some new exact exponential solutions and hyperbolic solutions. Therefore, by using the complex method and the extended form of exponential solutions, more exact solutions can be built for partial differential equations.
The authors are thankful to the referees for their invaluable comments and suggestions, which put the article in its present shape.
The authors declare there are no conflicts of interest.
[1] | H. Darcy, Les fontaines publiques de la ville de Dijon, Paris: Dalmont, 1856. |
[2] | D. D. Joseph, D. A. Nield and G. Papanicolaou, Nonlinear equation governing flow in a saturated porous medium, Water Res., 18 (1982), 1049–1052. |
[3] | K. Terzaghi, Erdbaumechanik auf bodenphysikalischen Grundlagen, Wien: Deuticke, 1925. |
[4] | M. A. Biot, General theory of three dimensional consolidation, J. Appl. Phys., 12 (1941), 155–164. |
[5] | M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (1955), 182–185. |
[6] | A. Fick, Ueber diffusion, Annalen der Physik, 170 (1855), 59–86. |
[7] | C. Truesdell, Sulle basi della thermomeccanica, Atti della Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, 22 (1957), 33–38. |
[8] | R. J. Atkin and R. E. Craine, Continuum theories of mixtures: Basic theory and historical development, Q. J. Mech. Appl. Math., 29 (1976), 209–244. |
[9] | R. J. Atkin and R. E. Craine, Continuum theories of mixtures: Applications, J. I. Math. Appl., 17 (1976), 153–207. |
[10] | K. R. Rajagopal and L. Tao, Mechanics of mixtures, World Scientific, Singapore, 1995. |
[11] | J. I. Siddique, A. Ahmed, A. Aziz and C. M. Khalique, A review of mixture theory for deformable porous media and applications, Appl. Sci., 7 (2017), 1–15. |
[12] | D. E. Kenyon, The theory of an incompressible solid-fluid mixture, Arch. Ration. Mech., 62 (1976), 131–147. |
[13] | D. E. Kenyon, A mathematical model of water flux through aortic tissue, B. Math. Biol., 41 (1979), 79–90. |
[14] | G. Jayaraman, Water transport in the arterial wall: a theoretical study, J. Biomech., 16 (1983), 833–840. |
[15] | R. Jain and G. Jayaraman, A theoretical model for water flux through the arterial wall, J. Biomech. Eng., 109 (1987), 311–317. |
[16] | M. Klanchar and J. M. Tarbell, Modeling water flow through arterial tissue, B. Math. Biol., 49 (1987), 651–669. |
[17] | V. C. Mow and W. M. Lai, Mechanics of animal joints, Annu. Rev. Fluid Mech., 11 (1979), 247–288. |
[18] | W. M. Lai and V. C. Mow, Drag induced compression of articular cartilage during a permeation experiment, Biorheology, 17 (1980), 111–123. |
[19] | M. H. Holmes, Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression, J. Biomech. Eng., 108 (1986), 372–381. |
[20] | A. Ahmed, J. I. Siddique and A. Mahmood, Non-Newtonian flow-induced deformation from pressurized cavities in absorbing porous tissues, Comput. Method. Biomec., 20 (2017), 1464–1473. |
[21] | C. W. J. Oomens, D. H. V. Campen and H. J. Grootenboer, A mixture approach to the mechanics of skin, J. Biomech., 20 (1987), 877–885. |
[22] | T. R. Ford, J. S. Sachs, J. B. Grotberg and M. R. Glucksberg, Mechanics of the perialveolar interstitium of the lung, First World Congress of Biomechanics, La Jolla, 1 (1990), 31. |
[23] | M. H. Friedman, General theory of tissue swelling with application to the corneal stroma, J. Theor. Biol., 30 (1971), 93–109. |
[24] | C. Nicholson, Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity, Brain Res., 333 (1985), 325–329. |
[25] | N. T. M. Eldabe, G. Saddeek and K. A. S. Elagamy, Magnetohydrodynamic flow of a biviscosity fluid through porous medium in a layer of deformable material, J. Porous Media, 14 (2011), 273–283. |
[26] | J. I. Siddique and A. Kara, Capillary rise of magnetohydrodynamics liquid into deformable porous material, J. Appl. Fluid Mech., 9 (2016), 2837–2843. |
[27] | A. Naseem, A. Mahmood, J. I. Siddique and L. Zhao, Infiltration of MHD liquid into a deformable porous material, Results Phys., 8 (2018), 71–75. |
[28] | S. Sreenadh, K. V. Prasad, H. Vaidya, E. Sudhakara, G. Krishna and M. Krishnamurthy, MHD Couette Flow of a Jeffrey Fluid over a Deformable Porous Layer, Int. J. Appl. Comput. Math., 3 (2017), 2125–2138. |
[29] | J. Bagwell, J. Klawitter, B. Sauer and A. Weinstein, A study of bone growth into porous polyethylene, Presented at the Sixth Annual Biomaterials Symposium, Clemson University, Clemson, SC, USA, (1974), 20–24. |
[30] | R. M. Pilliar, H. V. Cameron and I. MacNab, Porous surface layered prosthetic devises, Biomed. Eng., 4 (1975), 12–16. |
[31] | M. L. Bansal, Magneto Therapy, Jain Publishers, New Delhi, 1976. |
[32] | P. N. Tandon, A. Chaurasia and T. Gupta, Comput. Math. Appl., 22 (1991), 33–45. |
[33] | S. I. Barry and G. K. Aldis, Flow-induced deformation from Pressurized cavities in absorbing porous tissues, B. Math. Biol., 54 (1992), 977–997. |
[34] | M. H. Holmes, A theoretical analysis for determining the nonlinear hydraulic permeability of a soft tissue from a permeation experiment, B. Math. Biol., 47 (1985), 669–683. |
[35] | S. I. Barry and G. K. Aldis, Radial flow through deformable porous shells, J. Aust. Math. Soc. B, 34 (1993), 333–354. |
[36] | J. S. Hou, M. H. Holmes,W. M. Lai and V. C. Mow, Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications, J. Biomech. Eng., 111 (1989), 78–87. |
[37] | M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, New York, Dover, 1972. |
[38] | W. E. Schiesser, The numerical method of lines: Integration of partial differential equations, Academic Press, San Diego, 1991. |
[39] | A. Farina, P. Cocito and G. Boretto, Flow in deformable porous media: Modelling an simulations of compression moulding processes, Math. Comput. Model., 26 (1997), 1–15. |
[40] | S. I. Barry and G. K. Aldis, Fluid flow over a thin deformable porous layer, J. Appl. Math. Phys. (ZAMP), 42 (1991), 633–648. |
1. | Bo Liu, Zhou-Bo Duan, Li-Fang Niu, Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method, 2024, 98, 0973-7111, 10.1007/s12043-024-02791-6 | |
2. | Guoqiang Dang, Yufeng Guo, Kai Li, How to Pose Problems on Periodicity and Teaching with Problem Posing, 2023, 15, 2073-8994, 1716, 10.3390/sym15091716 | |
3. | Guoqiang Dang, Elliptic and multiple-valued solutions of some higher order ordinary differential equations, 2023, 31, 2688-1594, 5946, 10.3934/era.2023302 | |
4. | Guoqiang Dang, On the equation f n + (f″)m ≡ 1, 2023, 56, 2391-4661, 10.1515/dema-2023-0103 | |
5. | Feng Ye, Xiaoting Zhang, Chunling Jiang, Bo Zeng, Comment on: "Solving the conformable Huxley equation using the complex method" [Electron. Res. Arch., 31 (2023), 1303–1322], 2025, 33, 2688-1594, 255, 10.3934/era.2025013 |