Relaxation approximation of Friedrichs' systems under convex constraints

  • Primary: 35L45, 35L60; Secondary: 35A35.

  • This paper is devoted to present an approximation of a Cauchy problem for Friedrichs' systems under convex constraints. It is proved the strong convergence in $L^2_{\text{loc}}$ of a parabolic-relaxed approximation towards the unique constrained solution.

    Citation: Jean-François Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints[J]. Networks and Heterogeneous Media, 2016, 11(2): 223-237. doi: 10.3934/nhm.2016.11.223

    Related Papers:

  • This paper is devoted to present an approximation of a Cauchy problem for Friedrichs' systems under convex constraints. It is proved the strong convergence in $L^2_{\text{loc}}$ of a parabolic-relaxed approximation towards the unique constrained solution.


    加载中
    [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, $2^{nd}$ edition, Elsevier, Amsterdam, 2003.
    [2] H. Brézis, Analyse Fonctionnelle, Masson, Paris, 1983.
    [3] B. Després, F. Lagoutière and N. Seguin, Weak solutions to Friedrichs systems with convex constraints, Nonlinearity, 24 (2011), 3055-3081. doi: 10.1088/0951-7715/24/11/003
    [4] L. C. Evans, Partial Differential Equations, $2^{nd}$ edition, American mathematical society, Providence, 2010. doi: 10.1090/gsm/019
    [5] K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math., 11 (1958), 333-418. doi: 10.1002/cpa.3160110306
    [6] C. Mifsud, B. Després and N. Seguin, Dissipative formulation of initial boundary value problems for Friedrichs' systems, Comm. Partial Differential Equations, 41 (2016), 51-78. doi: 10.1080/03605302.2015.1103750
    [7] A. Morando and D. Serre, On the $L^2$-well posedness of an initial boundary value problem for the 3D linear elasticity, Commun. Math. Sci., 3 (2005), 575-586. doi: 10.4310/CMS.2005.v3.n4.a7
    [8] J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), 273-299.
    [9] A. Nouri and M. Rascle, A global existence and uniqueness theorem for a model problem in dynamic elastoplasticity with isotropic strain-hardening, SIAM J. Math. Anal., 26 (1995), 850-868. doi: 10.1137/S0036141091199601
    [10] J. Simon, Compact Sets in the Space $L^p(0,T,B)$, Annali Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360
    [11] P.-M. Suquet, Evolution problems for a class of dissipative materials, Quart. Appl. Math., 38 (1980), 391-414.
    [12] P.-M. Suquet, Sur les équations de la plasticité: Existence et régularité des solutions, J. Mécanique, 20 (1981), 3-39.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4068) PDF downloads(142) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog