This paper is devoted to present an approximation of a Cauchy problem for Friedrichs' systems under convex constraints. It is proved the strong convergence in of a parabolic-relaxed approximation towards the unique constrained solution.
Citation: Jean-François Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints[J]. Networks and Heterogeneous Media, 2016, 11(2): 223-237. doi: 10.3934/nhm.2016.11.223
Related Papers:
[1]
Jean-François Babadjian, Clément Mifsud, Nicolas Seguin .
Relaxation approximation of Friedrichs' systems under convex constraints. Networks and Heterogeneous Media, 2016, 11(2): 223-237.
doi: 10.3934/nhm.2016.11.223
[2]
Jan Friedrich, Oliver Kolb, Simone Göttlich .
A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13(4): 531-547.
doi: 10.3934/nhm.2018024
[3]
John D. Towers .
The Lax-Friedrichs scheme for interaction between the inviscid Burgers equation and multiple particles. Networks and Heterogeneous Media, 2020, 15(1): 143-169.
doi: 10.3934/nhm.2020007
[4]
Mengyuan Dai, Chunyan Zhang, Yingli Zhang, Lichao Feng .
Note on adaptive prescribed-time stabilization of nonlinear systems with uncertainty. Networks and Heterogeneous Media, 2025, 20(3): 798-817.
doi: 10.3934/nhm.2025034
[5]
Martin Gugat, Rüdiger Schultz, Michael Schuster .
Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195.
doi: 10.3934/nhm.2020008
[6]
Caterina Balzotti, Simone Göttlich .
A two-dimensional multi-class traffic flow model. Networks and Heterogeneous Media, 2021, 16(1): 69-90.
doi: 10.3934/nhm.2020034
[7]
Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini .
Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 2016, 11(1): 29-47.
doi: 10.3934/nhm.2016.11.29
[8]
Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada .
A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux. Networks and Heterogeneous Media, 2023, 18(2): 664-693.
doi: 10.3934/nhm.2023029
[9]
Ciro D'Apice, Peter I. Kogut, Rosanna Manzo .
On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9(3): 501-518.
doi: 10.3934/nhm.2014.9.501
[10]
Shenglun Yan, Wanqian Zhang, Weiyuan Zou .
Multi-cluster flocking of the thermodynamic Cucker-Smale model with a unit-speed constraint under a singular kernel. Networks and Heterogeneous Media, 2024, 19(2): 547-568.
doi: 10.3934/nhm.2024024
Abstract
This paper is devoted to present an approximation of a Cauchy problem for Friedrichs' systems under convex constraints. It is proved the strong convergence in of a parabolic-relaxed approximation towards the unique constrained solution.
References
[1]
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, edition, Elsevier, Amsterdam, 2003.
[2]
H. Brézis, Analyse Fonctionnelle, Masson, Paris, 1983.
[3]
B. Després, F. Lagoutière and N. Seguin, Weak solutions to Friedrichs systems with convex constraints, Nonlinearity, 24 (2011), 3055-3081. doi: 10.1088/0951-7715/24/11/003
[4]
L. C. Evans, Partial Differential Equations, edition, American mathematical society, Providence, 2010. doi: 10.1090/gsm/019
[5]
K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math., 11 (1958), 333-418. doi: 10.1002/cpa.3160110306
[6]
C. Mifsud, B. Després and N. Seguin, Dissipative formulation of initial boundary value problems for Friedrichs' systems, Comm. Partial Differential Equations, 41 (2016), 51-78. doi: 10.1080/03605302.2015.1103750
[7]
A. Morando and D. Serre, On the -well posedness of an initial boundary value problem for the 3D linear elasticity, Commun. Math. Sci., 3 (2005), 575-586. doi: 10.4310/CMS.2005.v3.n4.a7
[8]
J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), 273-299.
[9]
A. Nouri and M. Rascle, A global existence and uniqueness theorem for a model problem in dynamic elastoplasticity with isotropic strain-hardening, SIAM J. Math. Anal., 26 (1995), 850-868. doi: 10.1137/S0036141091199601
[10]
J. Simon, Compact Sets in the Space , Annali Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360
[11]
P.-M. Suquet, Evolution problems for a class of dissipative materials, Quart. Appl. Math., 38 (1980), 391-414.
[12]
P.-M. Suquet, Sur les équations de la plasticité: Existence et régularité des solutions, J. Mécanique, 20 (1981), 3-39.
This article has been cited by:
1.
Jean-François Babadjian, Vito Crismale,
Dissipative boundary conditions and entropic solutions in dynamical perfect plasticity,
2021,
148,
00217824,
75,
10.1016/j.matpur.2021.02.001
2.
Jean-François Babadjian, Clément Mifsud,
Hyperbolic Structure for a Simplified Model of Dynamical Perfect Plasticity,
2017,
223,
0003-9527,
761,
10.1007/s00205-016-1045-4
Jean-François Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints[J]. Networks and Heterogeneous Media, 2016, 11(2): 223-237. doi: 10.3934/nhm.2016.11.223
Jean-François Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints[J]. Networks and Heterogeneous Media, 2016, 11(2): 223-237. doi: 10.3934/nhm.2016.11.223