Processing math: 100%

Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws

  • Received: 01 May 2015 Revised: 01 October 2015
  • Primary: 35M13; Secondary: 35L04.

  • We revisit the Cauchy-Dirichlet problem for degenerate parabolic scalar conservation laws. We suggest a new notion of strong entropy solution. It gives a straightforward explicit characterization of the boundary values of the solution and of the flux, and leads to a concise and natural uniqueness proof, compared to the one of the fundamental work [J. Carrillo, Arch. Ration. Mech. Anal., 1999]. Moreover, general dissipative boundary conditions can be studied in the same framework. The definition makes sense under the specific weak trace-regularity assumption. Despite the lack of evidence that generic solutions are trace-regular (especially in space dimension larger than one), the strong entropy formulation may be useful for modeling and numerical purposes.

    Citation: Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws[J]. Networks and Heterogeneous Media, 2016, 11(2): 203-222. doi: 10.3934/nhm.2016.11.203

    Related Papers:

    [1] Boris Andreianov, Mohamed Karimou Gazibo . Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11(2): 203-222. doi: 10.3934/nhm.2016.11.203
    [2] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171. doi: 10.3934/nhm.2017006
    [3] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
    [4] Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina . Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2(1): 159-179. doi: 10.3934/nhm.2007.2.159
    [5] Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661
    [6] Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163
    [7] Travis G. Draper, Fernando Guevara Vasquez, Justin Cheuk-Lum Tse, Toren E. Wallengren, Kenneth Zheng . Matrix valued inverse problems on graphs with application to mass-spring-damper systems. Networks and Heterogeneous Media, 2020, 15(1): 1-28. doi: 10.3934/nhm.2020001
    [8] Alexandre M. Bayen, Alexander Keimer, Nils Müller . A proof of Kirchhoff's first law for hyperbolic conservation laws on networks. Networks and Heterogeneous Media, 2023, 18(4): 1799-1819. doi: 10.3934/nhm.2023078
    [9] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [10] Juraj Földes, Peter Poláčik . On asymptotically symmetric parabolic equations. Networks and Heterogeneous Media, 2012, 7(4): 673-689. doi: 10.3934/nhm.2012.7.673
  • We revisit the Cauchy-Dirichlet problem for degenerate parabolic scalar conservation laws. We suggest a new notion of strong entropy solution. It gives a straightforward explicit characterization of the boundary values of the solution and of the flux, and leads to a concise and natural uniqueness proof, compared to the one of the fundamental work [J. Carrillo, Arch. Ration. Mech. Anal., 1999]. Moreover, general dissipative boundary conditions can be studied in the same framework. The definition makes sense under the specific weak trace-regularity assumption. Despite the lack of evidence that generic solutions are trace-regular (especially in space dimension larger than one), the strong entropy formulation may be useful for modeling and numerical purposes.


    [1] J. Aleksic and D. Mitrovic, Strong traces for averaged solutions of heterogeneous ultra-parabolic transport equations, J. Hyperb. Differ. Equ., 10 (2013), 659-676. doi: 10.1142/S0219891613500239
    [2] K. Ammar, P. Wittbold and J. Carrillo, Scalar conservation laws with general boundary condition and continuous flux function, J. Differ. Equ., 228 (2006), 111-139. doi: 10.1016/j.jde.2006.05.002
    [3] B. Andreianov, M. Bendahmane and K. H. Karlsen, Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations, J. Hyperb. Differ. Equ., 7 (2010), 1-67. doi: 10.1142/S0219891610002062
    [4] B. Andreianov and F. Bouhsiss, Uniqueness for an elliptic-parabolic problem with Neumann boundary condition, J. Evol. Equ., 4 (2004), 273-295. doi: 10.1007/s00028-004-0143-1
    [5] B. Andreianov and M. Karimou Gazibo, Entropy formulation of degenerate parabolic equation with zero-flux boundary condition, Z. Angew. Math. Phys., 64 (2013), 1471-1491. doi: 10.1007/s00033-012-0297-6
    [6] B. Andreianov and M. Karimou Gazibo, Convergence of finite volume scheme for degenerate parabolic problem with zero flux boundary condition, Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, Springer Proc. Math. Stat., 77 (2014), 303-311. doi: 10.1007/978-3-319-05684-5_29
    [7] B. Andreianov and K. Shibi, Scalar conservation laws with nonlinear boundary conditions, C. R. Acad. Paris Ser. I Math., 345 (2007), 431-434. doi: 10.1016/j.crma.2007.09.008
    [8] B. Andreianov and K. Sbihi, Well-posedness of general boundary-value problems for scalar conservation laws, Trans. AMS, 367 (2015), 3763-3806. doi: 10.1090/S0002-9947-2015-05988-1
    [9] C. Bardos, A.-Y. LeRoux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. PDE, 4 (1979), 1017-1034. doi: 10.1080/03605307908820117
    [10] Ph. Bénilan, Equations D'évolution dans un Espace de Banach Quelconque et Applications, Thèse d'état, Orsay, 1972.
    [11] Preprint book.
    [12] Ph. Bénilan, J. Carrillo and P. Wittbold, Renormalized entropy solutions of scalar conservation laws, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 313-327.
    [13] R. Bürger, H. Frid and K.H. Karlsen, On the well-posedness of entropy solution to conservation laws with a zero-flux boundary condition, J. Math. Anal. Appl., 326 (2007), 108-120. doi: 10.1016/j.jmaa.2006.02.072
    [14] R. Bürger, H. Frid and K. H. Karlsen, On a free boundary problem for a strongly degenerate quasilinear parabolic equation with an application to a model of presssure filtration, SIAM J. Math. Anal., 34 (2003) 611-635.
    [15] C. Cancès, Th. Gallouët and A. Porretta, Two-phase flows involving capillary barriers in heterogeneous porous media, Interfaces Free Bound, 11 (2009), 239-258. doi: 10.4171/IFB/210
    [16] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147 (1999), 269-361. doi: 10.1007/s002050050152
    [17] G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118. doi: 10.1007/s002050050146
    [18] R. Colombo and E. Rossi, Rigorous estimates on balance laws in bounded domains, Acta Mathematica Sci., 35 (2015), 906-944. doi: 10.1016/S0252-9602(15)30028-X
    [19] F. Dubois and Ph. LeFloch, Boundary condition for nonlinear hyperbolic conservation laws, J. Differ. Equ., 71 (1988), 93-122. doi: 10.1016/0022-0396(88)90040-X
    [20] S. Evje and K. H. Karlsen, Monotone difference approximations of BV solutions to degenerate convection-diffusion equations, SIAM J. Numer. Anal., 37 (2000), 1838-1860. doi: 10.1137/S0036142998336138
    [21] G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modeles Nonlinéaires de L'ingénierie Pétroliere, Math. et Appl., 22. Springer-Verlag, Berlin, 1996.
    [22] M. Karimou Gazibo, Degenerate Convection-Diffusion Equation with a Robin boundary condition, In F. Ancona et al., eds. Hyperbolic Problems : Theory, Numerics, Applications, Proceedings of 14th HYP conference in Padua, AIMS series in Appl. Math., 8 (2014), 583-590.
    [23] Preprint available at http://hal.archives-ouvertes.fr/hal-00855746.
    [24] M. Karimou Gazibo, Études Mathématiques et Numériques des Problèmes Paraboliques Avec Des Conditions Aux Limites, Thèse de Doctorat Besançon, 2013.
    [25] S. N. Kruzhkov, First order quasi-linear equations in several independent variables, Math. USSR Sb., 10 (1970), 217-243.
    [26] Y. S. Kwon, Strong traces for degenerate parabolic-hyperbolic equations, Discrete Contin. Dyn. Syst., 25 (2009), 1275-1286. doi: 10.3934/dcds.2009.25.1275
    [27] M. Maliki and H. Touré, Uniqueness of entropy solutions for nonlinear degenerate parabolic problems, J. Evol. Equ., 3 (2003), 603-622. doi: 10.1007/s00028-003-0105-z
    [28] F. Otto, Initial-boundary value problem for a scalar conservation laws, C. R. Acad. Sci. Paris Sér I Math., 322 (1996), 729-734.
    [29] C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equation, Arch. Ration. Mech. Anal., 163 (2002), 87-124. doi: 10.1007/s002050200184
    [30] A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal., 41 (2003), 2262-2293. doi: 10.1137/S0036142902406612
    [31] E. Yu. Panov, On the theory of generalized entropy solutions of Cauchy problem for a first-order quasilinear equation in the class of locally integrable functions, Iszvestiya Math., 66 (2002), 1171-1218 (in Russian). doi: 10.1070/IM2002v066n06ABEH000411
    [32] E. Yu. Panov, Existence of strong traces for quasi-solutions of multi-dimensional scalar conservation laws, J. Hyp. Diff. Equ., 4 (2009), 729-770. doi: 10.1142/S0219891607001343
    [33] E. Yu. Panov, On the strong pre-compactness property for entropy solutions of a degenerate elliptic equation with discontinuous flux, J. Differ. Equ., 247 (2009), 2821-2870. doi: 10.1016/j.jde.2009.08.022
    [34] A. Porretta and J. Vovelle, L1 solutions to first order hyperbolic equations in bounded domains, Comm. PDEs, 28 (2003), 381-408. doi: 10.1081/PDE-120019387
    [35] E. Rouvre and G. Gagneux, Formulation forte entropique de lois scalaires hyperboliques-paraboliques dégénérées, An. Fac. Sci. Toulouse, 10 (2001), 163-183. doi: 10.5802/afst.987
    [36] T. Tassa, Regularity of weak solutions of the nonlinear Fokker-Planck equation, Math. Res. Lett., 3 (1996), 475-490. doi: 10.4310/MRL.1996.v3.n4.a6
    [37] G. Vallet, Dirichlet problem for a degenerated hyperbolic-parabolic equation, Advance in Math. Sci. Appl., 15 (2005), 423-450.
    [38] A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193. doi: 10.1007/s002050100157
    [39] A. I. Vol'pert and S. I. Hudjaev, Cauchy problem for degenerate second order quasilinear parabolic equations, Math. USSR Sbornik, 78 (1969), 374-396.
    [40] J. Vovelle, Convergence of finite volume monotones schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596. doi: 10.1007/s002110100307
  • This article has been cited by:

    1. Edwige Godlewski, Pierre-Arnaud Raviart, 2021, Chapter 6, 978-1-0716-1342-9, 581, 10.1007/978-1-0716-1344-3_6
    2. Mohamed Karimou Gazibo, Degenerate Parabolic Equation with Zero-flux Boundary Condition and its Approximations, 2024, 23, 2224-2880, 682, 10.37394/23206.2024.23.71
    3. Mohamed Karimou Gazibo, A New Approach for Existence of Strong Trace of Entropy Solution for Degenerate Parabolic Equation, 2025, 24, 2224-2880, 16, 10.37394/23206.2025.24.3
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4909) PDF downloads(136) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog