Krishnamurthy et al. investigated the adaptive output feedback control for prescribed-time stability (PTS) of nonlinear uncertain systems on $ [0, T) $, where $ T > 0 $. However, there are special constraints on system structure, and the PTS issue is considered on a finite interval $ [0, T) $. For systems without required constraints, the existing adaptive output feedback control seems not to be applicable; the PTS issue on $ [0, \infty) $ is more practical than that on $ [0, T) $. Motivated by the above, an improved observer and controller were proposed to achieve PTS for nonlinearly uncertain systems with lower-triangular linear growth condition on uncertainties. Compared with the existing work, we emphasized the subsequent contributions: 1) Relax the original structure constraint of objective system; 2) achieve PTS on $ [T, \infty) $; and 3) keep the proposed controller bounded. The effectiveness of the controller was verified by numerical simulations across varying initial conditions and prescribed times.
Citation: Mengyuan Dai, Chunyan Zhang, Yingli Zhang, Lichao Feng. Note on adaptive prescribed-time stabilization of nonlinear systems with uncertainty[J]. Networks and Heterogeneous Media, 2025, 20(3): 798-817. doi: 10.3934/nhm.2025034
Krishnamurthy et al. investigated the adaptive output feedback control for prescribed-time stability (PTS) of nonlinear uncertain systems on $ [0, T) $, where $ T > 0 $. However, there are special constraints on system structure, and the PTS issue is considered on a finite interval $ [0, T) $. For systems without required constraints, the existing adaptive output feedback control seems not to be applicable; the PTS issue on $ [0, \infty) $ is more practical than that on $ [0, T) $. Motivated by the above, an improved observer and controller were proposed to achieve PTS for nonlinearly uncertain systems with lower-triangular linear growth condition on uncertainties. Compared with the existing work, we emphasized the subsequent contributions: 1) Relax the original structure constraint of objective system; 2) achieve PTS on $ [T, \infty) $; and 3) keep the proposed controller bounded. The effectiveness of the controller was verified by numerical simulations across varying initial conditions and prescribed times.
| [1] | M. B. Brilliant, Theory of the Analysis of Nonlinear Systems, Technical report, Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, 1958. https://doi.org/10.21236/ad0216209 |
| [2] | S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer Science & Business Media, New York, 1999. https://doi.org/10.1007/978-1-4757-3108-8 |
| [3] |
J. Tsinias, A theorem on global stabilization of nonlinear systems by linear feedback, Syst. Control Lett., 17 (1991), 357–362. https://doi.org/10.1016/0167-6911(91)90135-2 doi: 10.1016/0167-6911(91)90135-2
|
| [4] |
W. Yu, S. Liu, F. Zhang, Adaptive output feedback regulation for a class of uncertain nonlinear systems, Int. J. Robust Nonlinear Control, 25 (2015), 2241–2253. https://doi.org/10.1002/rnc.3192 doi: 10.1002/rnc.3192
|
| [5] |
L. Xing, C. Wen, Y. Zhu, H. Su, Z. Liu, Output feedback control for uncertain nonlinear systems with input quantization, Automatica, 65 (2016), 191–202. https://doi.org/10.1016/j.automatica.2015.11.028 doi: 10.1016/j.automatica.2015.11.028
|
| [6] |
J. Zhai, W. Ai, S. Fei, Global output feedback stabilisation for a class of uncertain nonlinear systems, IET Control Theory Appl., 7 (2013), 305–313. https://doi.org/10.1049/iet-cta.2011.0505 doi: 10.1049/iet-cta.2011.0505
|
| [7] |
Y. Liu, Global asymptotic regulation via time-varying output feedback for a class of uncertain nonlinear systems, SIAM J. Control Optim., 51 (2013), 4318–4342. https://doi.org/10.1137/120862570 doi: 10.1137/120862570
|
| [8] | X. Zhang, W. Lin, C. Qian, Universal adaptive control via output feedback for nonlinear systems with parametric and measurement uncertainty, in 2018 IEEE Conference on Decision and Control (CDC), (2018), 5530–5535. https://doi.org/10.1109/CDC.2018.8619162 |
| [9] |
H. Li, X. Zhang, L. Chang, Output feedback regulation of a class of triangular structural nonlinear systems with unknown measurement sensitivity, Int. J. Syst. Sci., 50 (2019), 2486–2496. https://doi.org/10.1080/00207721.2019.1671529 doi: 10.1080/00207721.2019.1671529
|
| [10] |
C. Qian, W. Lin, Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm, IEEE Trans. Autom. Control, 47 (2002), 1710–1715. https://doi.org/10.1109/TAC.2002.803542 doi: 10.1109/TAC.2002.803542
|
| [11] |
C. Qian, H. Du, Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control, IEEE Trans. Autom. Control, 57 (2012), 2934–2939. https://doi.org/10.1109/TAC.2012.2193707 doi: 10.1109/TAC.2012.2193707
|
| [12] |
A. A. Prasov, H. K. Khalil, A nonlinear high-gain observer for systems with measurement noise in a feedback control framework, IEEE Trans. Autom. Control, 58 (2012), 569–580. https://doi.org/10.1109/TAC.2012.2218063 doi: 10.1109/TAC.2012.2218063
|
| [13] |
C. C. Chen, C. Qian, Z. Y. Sun, Y. W. Liang, Global output feedback stabilization of a class of nonlinear systems with unknown measurement sensitivity, IEEE Trans. Autom. Control, 63 (2017), 2212–2217. https://doi.org/10.1109/TAC.2017.2759274 doi: 10.1109/TAC.2017.2759274
|
| [14] |
L. Liang, X. Yan, T. Shen, Global output-feedback adaptive stabilization for uncertain nonlinear systems with polynomial growth nonlinearities, Syst. Control Lett., 165 (2022), 105269. https://doi.org/10.1016/j.sysconle.2022.105269 doi: 10.1016/j.sysconle.2022.105269
|
| [15] |
X. Huang, W. Lin, B. Yang, Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica, 41 (2005), 881–888. https://doi.org/10.1016/j.automatica.2004.11.036 doi: 10.1016/j.automatica.2004.11.036
|
| [16] |
Y. Shen, Y. Huang, Global finite-time stabilisation for a class of nonlinear systems, Int. J. Syst. Sci., 43 (2012), 73–78. https://doi.org/10.1080/00207721003770569 doi: 10.1080/00207721003770569
|
| [17] |
Z. Y. Sun, L. R. Xue, K. Zhang, A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system, Automatica, 58 (2015), 60–66. https://doi.org/10.1016/j.automatica.2015.05.005 doi: 10.1016/j.automatica.2015.05.005
|
| [18] |
S. Ding, A. Levant, S. Li, Simple homogeneous sliding-mode controller, Automatica, 67 (2016), 22–32. https://doi.org/10.1016/j.automatica.2016.01.017 doi: 10.1016/j.automatica.2016.01.017
|
| [19] |
Z. Y. Sun, Y. Shao, C. C. Chen, Fast finite-time stability and its application in adaptive control of high-order nonlinear system, Automatica, 106 (2019), 339–348. https://doi.org/10.1016/j.automatica.2019.05.018 doi: 10.1016/j.automatica.2019.05.018
|
| [20] |
A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57 (2011), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869
|
| [21] |
C. Hu, J. Yu, Z. Chen, H. Jiang, T. Huang, Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Networks, 89 (2017), 74–83. https://doi.org/10.1016/j.neunet.2017.02.001 doi: 10.1016/j.neunet.2017.02.001
|
| [22] |
Z. Zuo, Q. L. Han, B. Ning, X. Ge, X. M. Zhang, An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans. Ind. Inf., 14 (2018), 2322–2334. https://doi.org/10.1109/TII.2018.2817248 doi: 10.1109/TII.2018.2817248
|
| [23] |
B. Ning, Q. L. Han, Z. Zuo, L. Ding, Q. Lu, X. Ge, Fixed-time and prescribed-time consensus control of multiagent systems and its applications: A survey of recent trends and methodologies, IEEE Trans. Ind. Inf., 19 (2022), 1121–1135. https://doi.org/10.1109/TII.2022.3201589 doi: 10.1109/TII.2022.3201589
|
| [24] |
Y. Song, Y. Wang, J. Holloway, M. Krstic, Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83 (2017), 243–251. https://doi.org/10.1016/j.automatica.2017.06.008 doi: 10.1016/j.automatica.2017.06.008
|
| [25] |
Y. Song, Y. Wang, M. Krstic, Time-varying feedback for stabilization in prescribed finite time, Int. J. Robust Nonlinear Control, 29 (2019), 618–633. https://doi.org/10.1002/rnc.4084 doi: 10.1002/rnc.4084
|
| [26] |
W. Li, M. Krstic, Stochastic nonlinear prescribed-time stabilization and inverse optimality, IEEE Trans. Autom. Control, 67 (2021), 1179–1193. https://doi.org/10.1109/TAC.2021.3061646 doi: 10.1109/TAC.2021.3061646
|
| [27] |
F. Gao, Y. Wu, Z. Zhang, Global fixed-time stabilization of switched nonlinear systems: A time-varying scaling transformation approach, IEEE Trans. Circuits Syst. II Express Briefs, 66 (2019), 1890–1894. https://doi.org/10.1109/TCSII.2018.2890556 doi: 10.1109/TCSII.2018.2890556
|
| [28] |
H. Ye, Y. Song, Prescribed-time control for linear systems in canonical form via nonlinear feedback, IEEE Trans. Syst. Man Cyber.: Syst., 53 (2022), 1126–1135. https://doi.org/10.1109/TSMC.2022.3194908 doi: 10.1109/TSMC.2022.3194908
|
| [29] |
J. Holloway, M. Krstic, Prescribed-time output feedback for linear systems in controllable canonical form, Automatica, 107 (2019), 77–85. https://doi.org/10.1016/j.automatica.2019.05.027 doi: 10.1016/j.automatica.2019.05.027
|
| [30] | P. Krishnamurthy, F. Khorrami, M. Krstic, Prescribed-time stabilization of nonlinear strict-feedback-like systems, in 2019 American Control Conference (ACC), (2019), 3081–3086. https://doi.org/10.23919/ACC.2019.8815272 |
| [31] |
P. Krishnamurthy, F. Khorrami, M. Krstic, Robust adaptive prescribed-time stabilization via output feedback for uncertain nonlinear strict-feedback-like systems, Eur. J. Control, 55 (2020), 14–23. https://doi.org/10.1016/j.ejcon.2019.09.005 doi: 10.1016/j.ejcon.2019.09.005
|
| [32] |
B. Zhou, Y. Shi, Prescribed-time stabilization of a class of nonlinear systems by linear time-varying feedback, IEEE Trans. Autom. Control, 66 (2021), 6123–6130. https://doi.org/10.1109/TAC.2021.3061645 doi: 10.1109/TAC.2021.3061645
|
| [33] |
C. Hua, P. Ning, K. Li, Adaptive prescribed-time control for a class of uncertain nonlinear systems, IEEE Trans. Autom. Control, 67 (2021), 6159–6166. https://doi.org/10.1109/TAC.2021.3130883 doi: 10.1109/TAC.2021.3130883
|
| [34] |
P. Krishnamurthy, F. Khorrami, Dynamic high-gain scaling: state and output feedback with application to systems with ISS appended dynamics driven by all states, IEEE Trans. Autom. Control, 49 (2004), 2219–2239. https://doi.org/10.1109/TAC.2004.839235 doi: 10.1109/TAC.2004.839235
|
| [35] |
H. Ye, Y. Song, Prescribed-time control of uncertain strict-feedback-like systems, Int. J. Robust Nonlinear Control, 31 (2021), 5281–5297. https://doi.org/10.1002/rnc.5541 doi: 10.1002/rnc.5541
|
| [36] |
L. Feng, M. Dai, N. Ji, Y. Zhang, L. Du, Prescribed-time stabilization of nonlinear systems with uncertainties/disturbances by improved time-varying feedback control, AIMS Math., 9 (2024), 23859–23877. https://doi.org/10.3934/math.20241159 doi: 10.3934/math.20241159
|
| [37] |
P. Ning, C. Hua, K. Li, R. Meng, Event-triggered control for nonlinear uncertain systems via a prescribed-time approach, IEEE Trans. Autom. Control, 68 (2023), 6975–6981. https://doi.org/10.1109/TAC.2023.3243863 doi: 10.1109/TAC.2023.3243863
|