Research article Special Issues

The low inter-radiator transmittance MIMO antenna with DGS and parasitic elements for Ku-Band application

  • Received: 07 April 2025 Revised: 30 May 2025 Accepted: 06 June 2025 Published: 07 July 2025
  • This article presents a four-port multiple-input multiple-output (MIMO) antenna using double-sided decoupling techniques. The size of the quad-element MIMO antenna is 36 mm × 36 mm × 1.6 mm. The reflection coefficient is <−10 dB and the transmittance is <−27 dB in the range of 14 to 18 GHz, with a total impedance bandwidth of 4 GHz. Parasitic elements and a defected ground structure (DGS) are used to reduce the inter-radiator transmittance. Parasitic elements are used on the top side of the antenna to minimize transmittance between neighboring elements. DGS is used on the back side to minimize transmittance in both neighboring elements and diagonal elements. The envelope correlation coefficient (ECC) is <0.0075, the diversity gain (DG) is >9.96 dB, and the peak gain is 5.75 dBi. The presented antenna was analyzed in terms of the reflection coefficients (Sij ∈ i = j), transmittance (Sij ∈ i ≠ j), ECC, multiplexing efficiency, DG, and peak gain. Additionally, the design was tested in an anechoic chamber. The proposed design is an acceptable candidate for Ku-band applications after experimental investigations.

    Citation: Muhammad Irshad Khan, Muhammad Kabir Khan, Saeed Ur Rahman, Ahmad Mubarak, Abdul Basit, Ehab Seif Ghith, Shimaa A. Hussien, Mostafa Rashdan, Mohammad Salman. The low inter-radiator transmittance MIMO antenna with DGS and parasitic elements for Ku-Band application[J]. Networks and Heterogeneous Media, 2025, 20(3): 782-797. doi: 10.3934/nhm.2025033

    Related Papers:

  • This article presents a four-port multiple-input multiple-output (MIMO) antenna using double-sided decoupling techniques. The size of the quad-element MIMO antenna is 36 mm × 36 mm × 1.6 mm. The reflection coefficient is <−10 dB and the transmittance is <−27 dB in the range of 14 to 18 GHz, with a total impedance bandwidth of 4 GHz. Parasitic elements and a defected ground structure (DGS) are used to reduce the inter-radiator transmittance. Parasitic elements are used on the top side of the antenna to minimize transmittance between neighboring elements. DGS is used on the back side to minimize transmittance in both neighboring elements and diagonal elements. The envelope correlation coefficient (ECC) is <0.0075, the diversity gain (DG) is >9.96 dB, and the peak gain is 5.75 dBi. The presented antenna was analyzed in terms of the reflection coefficients (Sij ∈ i = j), transmittance (Sij ∈ i ≠ j), ECC, multiplexing efficiency, DG, and peak gain. Additionally, the design was tested in an anechoic chamber. The proposed design is an acceptable candidate for Ku-band applications after experimental investigations.



    加载中


    [1] T. S. P. See, Z. N. Chen, An ultrawide band diversity antenna, IEEE Trans. Antennas Propag., 57 (2009), 1597–1605. https://doi.org/10.1109/TAP.2009.2019908 doi: 10.1109/TAP.2009.2019908
    [2] M. Sharma, A. K. Gautam, N. Agrawal, N. Singh, Design of MIMO planar antenna at 24 GHz band for radar, communication and sensors applications, AEU Int. J. Electron. Commun., 136 (2021), 153747. https://doi.org/10.1016/j.aeue.2021.153747 doi: 10.1016/j.aeue.2021.153747
    [3] M. I. Khan, M. I. Khattak, S. U. Rahman, A. B. Qazi, A. A. Telba, A. Sebak, Design and investigation of modern UWB-MIMO antenna with optimized isolation, Micromachines, 11 (2020), 432. https://doi.org/10.3390/mi11040432 doi: 10.3390/mi11040432
    [4] J. Joseph, G. S. Let, C. B. Pratap, A compact wideband self-isolated uniplanar quad MIMO antenna for C-band applications, Phys. Scr., 99 (2024), 045513. https://doi.org/10.1088/1402-4896/ad302e doi: 10.1088/1402-4896/ad302e
    [5] P. Kansal, A. K. Mandpura, N. Kumar, Investigation of circularly polarized MIMO antenna with enhanced isolation for sub-6 GHz application, Phys. Scr., 99 (2024), 105536. https://doi.org/10.1088/1402-4896/ad7651 doi: 10.1088/1402-4896/ad7651
    [6] Y. Li, H. Yang, H. Cheng, J. Wu, Y. Yang, S. Li, et al., Design and analysis of metasurface-based CPW-Fed UWB MIMO antenna for wireless communication systems, Phys. Scr., 98 (2023), 095510. https://doi.org/10.1088/1402-4896/acec1e doi: 10.1088/1402-4896/acec1e
    [7] Y. Rai, A. Sharma, S. Agarwal, R. Gupta, Circularly polarized dielectric resonator based MIMO antenna for sub-6 GHz 5G cognitive radio applications, Phys. Scr., 99 (2024), 065547. https://doi.org/10.1088/1402-4896/ad4ad4 doi: 10.1088/1402-4896/ad4ad4
    [8] M. H. Reddy, D. Sheela, A. Swaminath, A four port circularly polarized printed multiple input multiple-output antenna with enhanced isolation, Int. J. Commun. Syst., 35 (2022), e5061. https://doi.org/10.1002/dac.5061 doi: 10.1002/dac.5061
    [9] R. N. Tiwari, P. Singh, B. K. Kanaujia, A compact UWB MIMO antenna with neutralization line for WLAN/ISM/mobile applications, Int. J. RF Microwave Comput. Aided Eng., 29 (2019), e21907. https://doi.org/10.1002/mmce.21907 doi: 10.1002/mmce.21907
    [10] A. Ramachandran, S. V. Pushpakaran, M. Pezholil, V. Kesavath, A four-port MIMO antenna using concentric square-ring patches loaded with CSRR for high isolation, IEEE Antennas Wirel. Propag. Lett., 15 (2015), 1196–1199. https://doi.org/10.1109/LAWP.2015.2499322 doi: 10.1109/LAWP.2015.2499322
    [11] M. A. Sufian, N. Hussain, A. Abbas, J. Lee, S. G. Park, N. Kim, Mutual coupling reduction of a circularly polarized MIMO antenna using parasitic elements and DGS for V2X communications, IEEE Access, 25 (2022), 56388–56400. https://doi.org/10.1109/ACCESS.2022.3177886 doi: 10.1109/ACCESS.2022.3177886
    [12] D. Sarkar, A. Singh, K. Saurav, K. V. Srivastava, Four element quad-band multiple-input-multiple-output antenna employing split-ring resonator and inter-digital capacitor, IET Microw. Antennas Propag., 9 (2015), 1453–1460. https://doi.org/10.1049/iet-map.2015.0189 doi: 10.1049/iet-map.2015.0189
    [13] T. Addepalli, V. R. Anitha, Compact two-port MIMO antenna with high isolation using parasitic reflectors for UWB, X and Ku band applications, Prog. Electromagn. Res. C., 102 (2020), 63–77. https://doi.org/10.2528/PIERC20030402 doi: 10.2528/PIERC20030402
    [14] W. J. Wu, Y. F. Cheng, G. Wang, Isolation enhancement for four-element MIMO antenna by using novel meandering technique, Microw. Opt. Technol. Lett., 64 (2022), 1434–1441. https://doi.org/10.1002/mop.33296 doi: 10.1002/mop.33296
    [15] M. I. Khan, M. I. Khattak, M. I. Al-Hasan, Miniaturized MIMO antenna with low inter-radiator transmittance and band rejection features, J. Electromagn. Eng. Sci., 21 (2021), 307–315. https://doi.org/10.26866/jees.2021.4.r.38 doi: 10.26866/jees.2021.4.r.38
    [16] Y. Liu, A novel four-port high isolation MIMO antenna design for high-capacity wireless applications, Microw. Opt. Technol. Lett., 60 (2018), 1476–1481. https://doi.org/10.1002/mop.31189 doi: 10.1002/mop.31189
    [17] P. B. Saha, R. K. Dash, D. Ghoshal, Triple-band four-port MIMO antenna with reduced mutual coupling using Minkowiski-modified novel fractal loop, Wirel. Pers. Commun., 117 (2021), 2253–2271. https://doi.org/10.1007/s11277-020-07970-3 doi: 10.1007/s11277-020-07970-3
    [18] G. N. J. Sree, S. Nelaturi, Opportunistic control of fractal-based MIMO antenna for sub-6-GHz 5G applications, Int. J. Commun. Syst., 34 (2021), e4991. https://doi.org/10.1002/dac.4991 doi: 10.1002/dac.4991
    [19] M. I. Khan, M. I. Khattak. Designing and analyzing a modern MIMO-UWB antenna with a novel stub for stop band characteristics and reduced mutual coupling, Microw. Opt. Technol. Lett., 62 (2020), 3209–3214. https://doi.org/10.1002/mop.32425 doi: 10.1002/mop.32425
    [20] M. I. Khattak, M. I. Khan, M. A. Anab, M. Al-Hasan, J. Nebhen, Miniaturized CPW-fed UWB-MIMO antennas with decoupling stub and enhanced isolation, Int. J. Microw. Wirel. Technol., 14 (2021), 456–464. https://doi.org/10.1017/S1759078721000556 doi: 10.1017/S1759078721000556
    [21] L. Ma, Z. Shao, J. Lai, C. Gu, J. Mao, Bandwidth enhancement of H-plane MIMO patch antennas in integrated sensing and communication applications, IEEE Open J. Antennas Propag., 5 (2023), 90–103. https://doi.org/10.1109/OJAP.2023.3334219 doi: 10.1109/OJAP.2023.3334219
    [22] L. Ma, Z. Shao, J. Lai, C. Gu, J. Mao, A compact dual-decoupling scheme for aperture-coupled and probe-fed closely spaced wideband microstrip antennas, IEEE Trans. Antennas Propag., 71 (2023), 9072–9077. https://doi.org/10.1109/TAP.2023.3306637 doi: 10.1109/TAP.2023.3306637
    [23] M. I. Khan, M. K. Khan, S. U. Rahman, M. Anab, A. Basit, Quad ports millimeter-wave MIMO antenna with parasitic element and defected ground structure for radar sensing application, Radio Sci., 60 (2025), e2024RS008174. https://doi.org/10.1029/2024RS008174 doi: 10.1029/2024RS008174
    [24] M. I. Khan, S. Liu, S. U. Rahman, M. K. Khan, M. Sajjad, A. Basit, et al., Electromagnetic coupling suppression of circularly polarized mimo antenna with novel loop parasitic for UWB communication, Analog Integr. Circ. Sig. Process., 118 (2024), 577–588. https://doi.org/10.1007/s10470-024-02256-1 doi: 10.1007/s10470-024-02256-1
    [25] K. P. Shobhit, D. Jansari, H. M. Almawgani, Design and optimization of meandered plasmonic MIMO antenna with defected ground structure showing ultra-wideband response and high isolation for 6G/TWPAN communication, Opt. Quantum Electron., 56 (2024), 86. https://doi.org/10.1007/s11082-023-05633-8 doi: 10.1007/s11082-023-05633-8
    [26] K. N. Devi, C. Annadurai, I. Nelson, S. Lavadiya, Novel-shaped expandable quad-port MIMO antenna using FR4 material with features of high isolation and band width for 5G networks, Wi-Fi, and satellite communication applications, Opt. Quantum Electron., 56 (2024), 1272. https://doi.org/10.1007/s11082-024-07232-7 doi: 10.1007/s11082-024-07232-7
    [27] G. Dhandapani, S. Lavadiya, S. Aldosary, Fractal-shaped super UWB (96 THz) of quadpot MIMO antenna for 6G communication, Opt. Quantum Electron., 56 (2024), 1613. https://doi.org/10.1007/s11082-024-07416-1 doi: 10.1007/s11082-024-07416-1
    [28] S. Lavadiya, T. Kamani, D. Jansari, Plasmonics antenna design using a metamaterial-based resonating structure with I-shaped ground for 5G communication, Plasmonics, 19 (2024), 3101–3118. https://doi.org/10.1007/s11468-024-02222-7 doi: 10.1007/s11468-024-02222-7
    [29] J. P. Siyara, M. N Jiyani, O. Alsalman, S. P Lavadiya, Novel metamaterial array-based dual port MIMO antenna using low profile substrate with feature multiband, and high isolation for sub-6G, IoT, and WiMAX applications, Phys. Scr., 99 (2024), 095531. https://doi.org/10.1088/1402-4896/ad6b59 doi: 10.1088/1402-4896/ad6b59
    [30] C. Prashant, K. Ravi, K. Ashwani, P. Kamlesh, K. Anand, High isolation pattern diversity multiband MIMO antenna using ring and stub with bandstop filter, Int. J. Electron., 110 (2023), 2064–2084. https://doi.org/10.1080/00207217.2022.2129814 doi: 10.1080/00207217.2022.2129814
    [31] V. Puri, H. S. Singh, Design of an isolation improved MIMO antenna using metasurface based absorber for wireless applications, Optik, 259 (2022), 168963. https://doi.org/10.1016/j.ijleo.2022.168963 doi: 10.1016/j.ijleo.2022.168963
    [32] S. Kareemulla, V. Kumar, Diversity performance of band notched ultra-wideband MIMO antenna. Optik, 272 (2023), 170128. https://doi.org/10.1016/j.ijleo.2022.170128 doi: 10.1016/j.ijleo.2022.170128
    [33] D. K. Raheja, B. K Kanaujia, S. Kumar, Low profile four-port super-wideband multiple-input-multiple-output antenna with triple band rejection characteristics, Int. J. RF Microwave Comput. Aided Eng., 29 (2019), e21831. https://doi.org/10.1002/mmce.21831 doi: 10.1002/mmce.21831
    [34] K. S. Banerjee, S. Mandal, S. Banerjee, Reduction of mutual coupling and cross-polarization of microstrip MIMO antenna using Electromagnetic Soft Surface (EMSS), Radio Sci., 57 (2022), e2021RS007377. https://doi.org/10.1029/2021RS007377 doi: 10.1029/2021RS007377
    [35] H. H. Tran, N. Hussain, H. C. Park, N. T. Nguyen, Isolation in dual-sense CP MIMO antennas and role of decoupling structures, IEEE Antennas Wirel. Propag. Lett., 21 (2022), 1203–1207. https://doi.org/10.1109/LAWP.2022.3161669 doi: 10.1109/LAWP.2022.3161669
    [36] X. Cao, Y. Xia, L. Wu, H. Zhang, Q. Zeng, Two-port ring shaped MIMO antenna with quad-band, Int. J. RF Microwave Comput. Aided Eng. , 31 (2021), e22782. https://doi.org/10.1002/mmce.22782 doi: 10.1002/mmce.22782
    [37] T. Doloi, Trishna, G. S. Das, P. P. Kalita, A. Buragohain, A novel 4-port MIMO antenna with chamfered edge for 5G NR n77/n78/n79 bands and WLAN applications, Phys. Scr., 99 (2024), 105013. https://doi.org/10.1088/1402-4896/ad723e doi: 10.1088/1402-4896/ad723e
    [38] R. K. Mistri, S. K. Mahto, A. K. Singh, R. Sinha, Quad element MIMO antenna for C, X, Ku, and Ka-band applications, Sensors, 23 (2023), 8563. https://doi.org/10.3390/s23208563 doi: 10.3390/s23208563
    [39] C. A. Balanis, Antenna theory: Analysis and design, 3rd ed. Hoboken, NJ, USA: Wiley, 2005,811–820. Available from: https://bcs.wiley.com/he-bcs/Books?action = index & bcsId = 8129 & itemId = 047166782X.
    [40] S. Blanch, J. Romeu, I. Corbella, Exact representation of antenna system diversity performance from input parameter description, Electron. Lett., 39 (2003), 705–707. https://doi.org/10.1049/el:20030495 doi: 10.1049/el:20030495
    [41] M. Manteghi, Y. R. Samii, Multiport characteristics of a wideband cavity backed annular patch antenna for multi polarization operations, IEEE Trans. Antennas Propag., 53 (2005), 466–74. https://doi.org/10.1109/TAP.2004.838794 doi: 10.1109/TAP.2004.838794
    [42] A. A. Megahed, M. Abdelazim, E. H. Abdelhay, H. Y. M. Soliman, Sub-6 GHz highly isolated wideband MIMO antenna arrays, IEEE Access, 10 (2022), 19875–19889. https://doi.org/10.1109/ACCESS.2022.3150278 doi: 10.1109/ACCESS.2022.3150278
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(786) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(16)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog