Research article Special Issues

The space-time generalized finite difference method for the time fractional mobile/immobile diffusion equation

  • Received: 01 April 2025 Revised: 22 May 2025 Accepted: 23 June 2025 Published: 16 July 2025
  • The space-time generalized finite difference method was used to solve the time fractional mobile/immobile diffusion equation. Traditionally, partial differential equations are solved by separating time and space dimensions, and applying distinct numerical methods to each. Here, the time dimension was treated as an additional spatial dimension, thus transforming the $ d $-dimensional spatial problem into a new $ (d+1) $-dimensional problem in the space-time domain. In the space-time generalized finite difference method, the complexity of the numerical solution of the problem was effectively reduced by simultaneously discretizing the space and time dimensions in the space-time domain, while retaining all the advantages of the generalized finite difference method. We took the second-order Taylor series expansion as an example to show the numerical algorithm of the 2D time fractional mobile/immobile diffusion equation, and numerically simulated the one- and two-dimensional problems where the solution was a sufficiently smooth or weak singularity at the initial moment, thereby verifying the effectiveness of the algorithm.

    Citation: Haili Qiao. The space-time generalized finite difference method for the time fractional mobile/immobile diffusion equation[J]. Networks and Heterogeneous Media, 2025, 20(3): 818-843. doi: 10.3934/nhm.2025035

    Related Papers:

  • The space-time generalized finite difference method was used to solve the time fractional mobile/immobile diffusion equation. Traditionally, partial differential equations are solved by separating time and space dimensions, and applying distinct numerical methods to each. Here, the time dimension was treated as an additional spatial dimension, thus transforming the $ d $-dimensional spatial problem into a new $ (d+1) $-dimensional problem in the space-time domain. In the space-time generalized finite difference method, the complexity of the numerical solution of the problem was effectively reduced by simultaneously discretizing the space and time dimensions in the space-time domain, while retaining all the advantages of the generalized finite difference method. We took the second-order Taylor series expansion as an example to show the numerical algorithm of the 2D time fractional mobile/immobile diffusion equation, and numerically simulated the one- and two-dimensional problems where the solution was a sufficiently smooth or weak singularity at the initial moment, thereby verifying the effectiveness of the algorithm.



    加载中


    [1] R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, Water. Resour. Res., 39 (2003), 1296. https://doi.org/10.1029/2003WR002141 doi: 10.1029/2003WR002141
    [2] Y. Zhang, D. A. Benson, D. M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Adv. Water. Resour., 32 (2009), 561–581. https://doi.org/10.1016/j.advwatres.2009.01.008 doi: 10.1016/j.advwatres.2009.01.008
    [3] D. A. Benson, M. M. Meerschaert, A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations, Adv. Water. Resour., 32 (2009), 532–539. https://doi.org/10.1016/j.advwatres.2009.01.002 doi: 10.1016/j.advwatres.2009.01.002
    [4] S. K. Hansen, B. Berkowitz, Modeling non-Fickian solute transport due to mass transfer and physical heterogeneity on arbitrary groundwater velocity fields, Water. Resour. Res., 56 (2020), e2019WR026868. https://doi.org/10.1029/2019WR026868 doi: 10.1029/2019WR026868
    [5] Y. Zhang, D. Zhou, M. Yin, H. Sun, W. Wei, S. Li, et al., Nonlocal transport models for capturing solute transport in one-dimensional sand columns: Model review, applicability, limitations and improvement, Hydrol. Processes, 34 (2020), 5104–5122. https://doi.org/10.1002/hyp.13930 doi: 10.1002/hyp.13930
    [6] Z. Zheng, Y. Wang, An averaged L1-type compact difference method for time-fractional mobile/immobile diffusion equations with weakly singular solutions, Appl. Math. Lett., 131 (2022), 108076. https://doi.org/10.1016/j.aml.2022.108076 doi: 10.1016/j.aml.2022.108076
    [7] M. Fardi, M. Ghasemi, A numerical solution strategy based on error analysis for time-fractional mobile/immobile transport model, Soft. Comput., 25 (2021), 11307–11331. https://doi.org/10.1007/s00500-021-05914-y doi: 10.1007/s00500-021-05914-y
    [8] H. Zhang, X. Jiang, F. Liu, Error analysis of nonlinear time fractional mobile/immobile advection-diffusion equation with weakly singular solutions, Fract. Calc. Appl. Anal., 24 (2021), 202–224. https://doi.org/10.1515/fca-2021-0009 doi: 10.1515/fca-2021-0009
    [9] O. Nikan, J. T. Machado, A. Golbabai, T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat. Mass., 111 (2020), 104443. https://doi.org/10.1016/j.icheatmasstransfer.2019.104443 doi: 10.1016/j.icheatmasstransfer.2019.104443
    [10] J. Zhao, Z. Fang, H. Li, Y. Liu, Finite volume element method with the WSGD formula for nonlinear fractional mobile/immobile transport equations, Adv. Differ. Equ., 2020 (2020), 1–20. https://doi.org/10.1186/s13662-020-02786-8 doi: 10.1186/s13662-020-02786-8
    [11] H. Jiang, D. Xu, W. Qiu, J. Zhou, An ADI compact difference scheme for the two-dimensional semilinear time-fractional mobile-immobile equation, Comput. Appl. Math., 39 (2020), 1–17. https://doi.org/10.1007/s40314-020-01345-x doi: 10.1007/s40314-020-01345-x
    [12] W. Qiu, D. Xu, J. Guo, J. Zhou, A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model, Numer. Algor., 85 (2020), 39–58. https://doi.org/10.1007/s11075-019-00801-y doi: 10.1007/s11075-019-00801-y
    [13] Q. Qin, L. Song, F. Liu, A meshless method based on the generalized finite difference method for three-dimensional elliptic interface problems, Comput. Math. Appl., 131 (2023), 26–34. https://doi.org/10.1016/j.camwa.2022.11.020 doi: 10.1016/j.camwa.2022.11.020
    [14] Y. Gu, W. Qu, W. Chen, L. Song, C. Zhang, The generalized finite difference method for long-time dynamic modeling of three-dimensional coupled thermoelasticity problems, J. Comput. Phys., 384 (2019), 42–59. https://doi.org/10.1016/j.jcp.2019.01.027 doi: 10.1016/j.jcp.2019.01.027
    [15] Y. Gu, J. Lei, C. Fan, X. He, The generalized finite difference method for an inverse time-dependent source problem associated with three-dimensional heat equation, Eng. Anal. Bound. Elem., 91 (2018), 73–81. https://doi.org/10.1016/j.enganabound.2018.03.013 doi: 10.1016/j.enganabound.2018.03.013
    [16] L. Song, P. Li, Y. Gu, C. Fan, Generalized finite difference method for solving stationary 2D and 3D Stokes equations with a mixed boundary condition, Comput. Math. Appl., 80 (2020), 1726–1743. https://doi.org/10.1016/j.camwa.2020.08.004 doi: 10.1016/j.camwa.2020.08.004
    [17] F. Ureña, L. Gavete, A. Garcia, J. J. Benito, A. M. Vargas, Solving second order non-linear parabolic PDEs using generalized finite difference method (GFDM), J. Comput. Appl. Math., 354 (2019), 221–241. https://doi.org/10.1016/j.cam.2018.02.016 doi: 10.1016/j.cam.2018.02.016
    [18] X. Rao, H. Zhao, Y. Liu, A novel meshless method based on the virtual construction of node control domains for porous flow problems, Eng. Comput., 40 (2024), 171–211. https://doi.org/10.1007/s00366-022-01776-6 doi: 10.1007/s00366-022-01776-6
    [19] W. Zhan, H. Zhao, X. Rao, Y. Liu, Generalized finite difference method-based numerical modeling of oil-water two-phase flow in anisotropic porous media, Phys. Fluids, 35 (2023), 103317. https://doi.org/10.1063/5.0166530 doi: 10.1063/5.0166530
    [20] X. Rao, Y. Liu, H. Zhao, An upwind generalized finite difference method for meshless solution of two-phase porous flow equations, Eng. Anal. Bound. Elem., 137 (2022), 105–118. https://doi.org/10.1016/j.enganabound.2022.01.013 doi: 10.1016/j.enganabound.2022.01.013
    [21] H. G. Sun, Z. Wang, J. Nie, Y. Zhang, R. Xiao, Generalized finite difference method for a class of multidimensional space-fractional diffusion equations, Comput. Mech., 67 (2021), 17–32. https://doi.org/10.1007/s00466-020-01917-y doi: 10.1007/s00466-020-01917-y
    [22] W. Hu, Z. Fu, Z. Tang, Y. Gu, A meshless collocation method for solving the inverse cauchy problem associated with the variable-order fractional heat conduction model under functionally graded materials, Eng. Anal. Bound. Elem., 140 (2022), 132–144. https://doi.org/10.1016/j.enganabound.2022.04.007 doi: 10.1016/j.enganabound.2022.04.007
    [23] V. R. Hosseini, A. A. Mehrizi, H. Karimi-Maleh, M. Naddafi, A numerical solution of fractional reaction-convection-diffusion for modeling PEM fuel cells based on a meshless approach, Eng. Anal. Bound. Elem., 155 (2023), 707–716. https://doi.org/10.1016/j.enganabound.2023.06.016 doi: 10.1016/j.enganabound.2023.06.016
    [24] W. Z. Qu, H. He, A spatial-temporal GFDM with an additional condition for transient heat conduction analysis of FGMs, Appl. Math. Lett., 110 (2020), 106579. https://doi.org/10.1016/j.aml.2020.106579 doi: 10.1016/j.aml.2020.106579
    [25] P. Li, Space-time generalized finite difference nonlinear model for solving unsteady Burger' equations, Appl. Math. Lett., 114 (2021), 106896. https://doi.org/10.1016/j.aml.2020.106896 doi: 10.1016/j.aml.2020.106896
    [26] F. Liu, L. Song, M. Jiang, Space-time generalized finite difference method for solving the thin elastic plate bending under dynamic loading, Eng. Anal. Bound. Elem., 143 (2022), 632–638. https://doi.org/10.1016/j.enganabound.2022.07.015 doi: 10.1016/j.enganabound.2022.07.015
    [27] F. Zhang, P. Li, Y. Gu, C. Fan, A space-time generalized finite difference scheme for long wave propagation based on high-order Korteweg-de Vries type equations, Math. Comput. Simulat., 228 (2025), 298–312. https://doi.org/10.1016/j.matcom.2024.09.012 doi: 10.1016/j.matcom.2024.09.012
    [28] J. Benito, A. García, M. Negreanu, F. Ureña, A. Vargas, Two finite difference methods for solving the Zakharov-Kuznetsov-Modified Equal-Width equation, Eng. Anal. Bound. Elem., 153 (2023), 213–225. https://doi.org/10.1016/j.enganabound.2023.05.003 doi: 10.1016/j.enganabound.2023.05.003
    [29] P. Li, S. Hu, M. Zhang, Numerical solutions of the nonlinear dispersive shallow water wave equations based on the space–time coupled generalized finite difference scheme, Appl. Sci., 13 (2023), 8504. https://doi.org/10.3390/app13148504 doi: 10.3390/app13148504
    [30] J. J. Benito, Á. García, M. Negreanu, F. Ureña, A. M. Vargas, A novel spatio-temporal fully meshless method for parabolic PDEs, Mathematics, 10 (2022), 1870. https://doi.org/10.3390/math10111870 doi: 10.3390/math10111870
    [31] P. Li, J. K. Grabski, C. Fan, F. Wang, A space-time generalized finite difference method for solving unsteady double-diffusive natural convection in fluid-saturated porous media, Eng. Anal. Bound. Elem., 142 (2022), 138–152. https://doi.org/10.1016/j.enganabound.2022.04.038 doi: 10.1016/j.enganabound.2022.04.038
    [32] J. Benito, F. Urena, L. Gavete, Influence of several factors in the generalized finite difference method, Appl. Math. Model., 25 (2001), 1039–1053. https://doi.org/10.1016/S0307-904X(01)00029-4 doi: 10.1016/S0307-904X(01)00029-4
    [33] C. Fan, P. Li, Generalized finite difference method for solving two-dimensional Burgers' equations, Procedia Eng., 79 (2014), 55–60. https://doi.org/10.1016/j.proeng.2014.06.310 doi: 10.1016/j.proeng.2014.06.310
    [34] H. Qiao, A. Cheng, A fast finite difference method for 2D time fractional mobile/immobile equation with weakly singular solution, Fractal. Fract., 9 (2025), 204. https://doi.org/10.3390/fractalfract9040204 doi: 10.3390/fractalfract9040204
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(731) PDF downloads(44) Cited by(1)

Article outline

Figures and Tables

Figures(9)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog