Research article

Collisionless and decentralized formation control for strings

  • Received: 31 March 2025 Revised: 02 July 2025 Accepted: 09 July 2025 Published: 18 July 2025
  • A decentralized feedback controller for multi-agent systems, inspired by vehicle platooning, is proposed. The closed loop resulting from the decentralized control action has three distinctive features: The generation of collision-free trajectories, flocking of the system towards a consensus state in velocity, and asymptotic convergence to a prescribed pattern of distances between agents. For each feature, a rigorous dynamical analysis is provided, yielding a characterization of the set of parameters and initial configurations where collision avoidance, flocking, and pattern formation are guaranteed. Numerical tests assess the theoretical results presented.

    Citation: Young-Pil Choi, Dante Kalise, Andrés A. Peters. Collisionless and decentralized formation control for strings[J]. Networks and Heterogeneous Media, 2025, 20(3): 844-867. doi: 10.3934/nhm.2025036

    Related Papers:

  • A decentralized feedback controller for multi-agent systems, inspired by vehicle platooning, is proposed. The closed loop resulting from the decentralized control action has three distinctive features: The generation of collision-free trajectories, flocking of the system towards a consensus state in velocity, and asymptotic convergence to a prescribed pattern of distances between agents. For each feature, a rigorous dynamical analysis is provided, yielding a characterization of the set of parameters and initial configurations where collision avoidance, flocking, and pattern formation are guaranteed. Numerical tests assess the theoretical results presented.



    加载中


    [1] R. Olfati-Saber, J. A. Fax, R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. IEEE, 95 (2007), 215–233. https://doi.org/10.1109/JPROC.2006.887293 doi: 10.1109/JPROC.2006.887293
    [2] T. Balch, R. C. Arkin, Communication in reactive multiagent robotic systems, Auton. Rob., 1 (1994), 27–52. https://doi.org/10.1007/BF00735341 doi: 10.1007/BF00735341
    [3] B. Piccoli, A. Tosin, M. Zanella, Model-based assessment of the impact of driver-assist vehicles using kinetic theory, Z. Angew. Math. Phys., 71 (2020), 1–25. https://doi.org/10.1007/s00033-020-01383-9 doi: 10.1007/s00033-020-01383-9
    [4] D. J. Sumpter, J. Krause, R. James, I. D. Couzin, A. J. Ward, Consensus decision making by fish, Curr. Biol., 18 (2008), 1773–1777. https://doi.org/10.1016/j.cub.2008.09.064 doi: 10.1016/j.cub.2008.09.064
    [5] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226. https://doi.org/10.1103/PhysRevLett.75.1226 doi: 10.1103/PhysRevLett.75.1226
    [6] G. Albi, N. Bellomo, L. Fermo, S. Y. Ha, J. Kim, L. Pareschi, et al., Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901–2005. https://doi.org/10.1142/S0218202519500374 doi: 10.1142/S0218202519500374
    [7] L. E. Beaver, A. A. Malikopoulos, An overview on optimal flocking, Annu. Rev. Control, 51 (2021), 88–99. https://doi.org/10.1016/j.arcontrol.2021.03.004 doi: 10.1016/j.arcontrol.2021.03.004
    [8] D. Helbing, P. Molnar, Social force model for pedestrian dynamics, Phys. Rev. E, 51 (1995), 4282. https://doi.org/10.1103/PhysRevE.51.4282 doi: 10.1103/PhysRevE.51.4282
    [9] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842
    [10] J. M. Lasry, P. L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229–260. https://doi.org/10.1007/s11537-007-0657-8 doi: 10.1007/s11537-007-0657-8
    [11] M. Huang, P. E. Caines, R. P. Malhame, Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and nash equilibrium solutions, in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), IEEE, Maui, (2003), 98–103. https://doi.org/10.1109/CDC.2003.1272542
    [12] P. Seiler, A. Pant, K. Hedrick, Disturbance propagation in vehicle strings, IEEE Transactions on automatic control, 49 (2004), 1835–1842. https://doi.org/10.1109/TAC.2004.835586 doi: 10.1109/TAC.2004.835586
    [13] Z. Wang, Y. Bian, S. E. Shladover, G. Wu, S. E. Li, M. J. Barth, A survey on cooperative longitudinal motion control of multiple connected and automated vehicles, IEEE Intell. Transp. Syst. Mag., 12 (2019), 4–24. https://doi.org/10.1109/MITS.2019.2953562 doi: 10.1109/MITS.2019.2953562
    [14] F. Cucker, C. Huepe, Flocking with informed agents, Math. Action, 1 (2008), 1–25. https://doi.org/10.5802/msia.1 doi: 10.5802/msia.1
    [15] S. Y. Ha, T. Ha, J. H. Kim, Asymptotic dynamics for the Cucker–Smale-type model with the Rayleigh friction, J. Phys. A: Math. Theor., 43 (2010), 315201. https://doi.org/10.1088/1751-8113/43/31/315201 doi: 10.1088/1751-8113/43/31/315201
    [16] M. Caponigro, M. Fornasier, B. Piccoli, E. Trélat, Sparse stabilization and control of alignment models, Math. Models Methods Appl. Sci., 25 (2015), 521–564. https://doi.org/10.1142/S0218202515400059 doi: 10.1142/S0218202515400059
    [17] M. Bongini, M. Fornasier, Sparse stabilization of dynamical systems driven by attraction and avoidance forces, Netw. Heterog. Media, 9 (2014), 1–31. https://doi.org/10.3934/nhm.2014.9.1 doi: 10.3934/nhm.2014.9.1
    [18] R. Bailo, M. Bongini, J. A. Carrillo, D. Kalise, Optimal consensus control of the Cucker-Smale model, IFAC-PapersOnLine, 51 (2018), 1–6. https://doi.org/10.1016/j.ifacol.2018.07.245 doi: 10.1016/j.ifacol.2018.07.245
    [19] M. Bongini, M. Fornasier, D. Kalise, (Un)conditional consensus emergence under perturbed and decentralized feedback controls, Discrete Contin. Dyn. Syst., 35 (2015), 4071–4094. https://doi.org/10.3934/dcds.2015.35.4071 doi: 10.3934/dcds.2015.35.4071
    [20] B. Azmi, D. Kalise, K. Kunisch, Optimal feedback law recovery by gradient-augmented sparse polynomial regression, J. Mach. Learn. Res., 22 (2021), 1–32. https://doi.org/10.5555/3546258.3546306 doi: 10.5555/3546258.3546306
    [21] M. Herty, D. Kalise, Suboptimal nonlinear feedback control laws for collective dynamics, in 2018 IEEE 14th International Conference on Control and Automation (ICCA), IEEE, Anchorage, (2018), 556–561. https://doi.org/10.1109/ICCA.2018.8444303
    [22] J. Park, H. J. Kim, S. Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Autom. Control, 55 (2010), 2617–2623. https://doi.org/10.1109/TAC.2010.2061070 doi: 10.1109/TAC.2010.2061070
    [23] L. Perea, G. Gómez, P. Elosegui, Extension of the Cucker-Smale control law to space flight formations, J. Guid. Control Dyn., 32 (2009), 527–537. https://doi.org/10.2514/1.36269 doi: 10.2514/1.36269
    [24] Y. P. Choi, D. Kalise, J. Peszek, A. A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn. Syst., 18 (2019), 1954–1981. https://doi.org/10.1137/19M1241799 doi: 10.1137/19M1241799
    [25] Y. Zhang, Pattern formation in the Cucker-Smale model, J. Differ. Equations, 376 (2023), 204–234. https://doi.org/10.1016/j.jde.2023.08.027 doi: 10.1016/j.jde.2023.08.027
    [26] F. Dalmao, E. Mordecki, Cucker–Smale flocking under hierarchical leadership and random interactions, SIAM J. Appl. Math., 71 (2011), 1307–1316. https://doi.org/10.1137/100785910 doi: 10.1137/100785910
    [27] S. Y. Ha, Z. Li, X. Zhang, On the critical exponent of the one-dimensional Cucker–Smale model on a general graph, Math. Models Methods Appl. Sci., 30 (2020), 1653–1703. https://doi.org/10.1142/S0218202520500335 doi: 10.1142/S0218202520500335
    [28] Q. Huang, X. Zhang, On the stochastic singular Cucker–Smale model: Well-posedness, collision-avoidance and flocking, Math. Models Methods Appl. Sci., 32 (2022), 43–99. https://doi.org/10.1142/S0218202522500026 doi: 10.1142/S0218202522500026
    [29] L. Shi, Z. Ma, S. Yan, Y. Zhou, Cucker-Smale flocking behavior for multiagent networks with coopetition interactions and communication delays, IEEE Trans. Syst. Man Cybern.: Syst., 54 (2024), 5824–5833. https://doi.org/10.1109/TSMC.2024.3409700 doi: 10.1109/TSMC.2024.3409700
    [30] L. Shi, Z. Ma, S. Yan, T. Ao, Flocking dynamics for cooperation-antagonism multi-agent networks subject to limited communication resources, IEEE Trans. Circuits Syst. I Regul. Pap., 71 (2024), 1396–1405. https://doi.org/10.1109/TCSI.2023.3347073 doi: 10.1109/TCSI.2023.3347073
    [31] X. Yin, Z. Gao, Z. Chen, Y. Fu, Nonexistence of the asymptotic flocking in the Cucker$-$Smale model with short range communication weights, IEEE Trans. Autom. Control, 67 (2022), 1067–1072. https://doi.org/10.1109/TAC.2021.3063951 doi: 10.1109/TAC.2021.3063951
    [32] J. Byeon, S. Y. Ha, J. Kim, Asymptotic flocking dynamics of a relativistic cucker–smale flock under singular communications, J. Math. Phys., 63 (2022), 012702. https://doi.org/10.1063/5.0062745 doi: 10.1063/5.0062745
    [33] F. Cucker, J. G. Dong, Avoiding collisions in flocks, IEEE Trans. Autom. Control, 55 (2010), 1238–1243. https://doi.org/10.1109/TAC.2010.2042355 doi: 10.1109/TAC.2010.2042355
    [34] S. M. Ahn, H. Choi, S. Y. Ha, H. Lee, On collision-avoiding initial configurations to Cucker-Smale type flocking models, Commun. Math. Sci., 10 (2012), 625–643. https://doi.org/10.4310/CMS.2012.v10.n2.a10 doi: 10.4310/CMS.2012.v10.n2.a10
    [35] X. Yin, D. Yue, Z. Chen, Asymptotic behavior and collision avoidance in the Cucker–Smale model, IEEE Trans. Autom. Control, 65 (2019), 3112–3119. https://doi.org/10.1109/TAC.2019.2948473 doi: 10.1109/TAC.2019.2948473
    [36] J. Cheng, L. Ru, X. Wang, Y. Liu, Collision-avoidance, aggregation and velocity-matching in a Cucker–Smale-type model, Appl. Math. Lett., 123 (2022), 107611. https://doi.org/10.1016/j.aml.2021.107611 doi: 10.1016/j.aml.2021.107611
    [37] H. Su, Y. Yu, W. X. Zheng, Flocking behaviors of a modified Cucker–Smale model on riemannian manifolds with attractive–repulsive force, IEEE Trans. Autom. Control, 70 (2025), 1809–1823. https://doi.org/10.1109/TAC.2024.3466870 doi: 10.1109/TAC.2024.3466870
    [38] A. A. Peters, R. H. Middleton, O. Mason, Leader tracking in homogeneous vehicle platoons with broadcast delays, Automatica, 50 (2014), 64–74. https://doi.org/10.1016/j.automatica.2013.09.034 doi: 10.1016/j.automatica.2013.09.034
    [39] S. Feng, Y. Zhang, S. E. Li, Z. Cao, H. X. Liu, L. Li, String stability for vehicular platoon control: Definitions and analysis methods, Annu. Rev. Control, 47 (2019), 81–97. https://doi.org/10.1016/j.arcontrol.2019.03.001 doi: 10.1016/j.arcontrol.2019.03.001
    [40] J. A. Carrillo, Y. P. Choi, M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels, ESAIM: Proc. Surv., 47 (2014), 17–35. https://doi.org/10.1051/proc/201447002 doi: 10.1051/proc/201447002
    [41] J. A. Carrillo, Y. P. Choi, P. B. Mucha, J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317–328. https://doi.org/10.1016/j.nonrwa.2017.02.017 doi: 10.1016/j.nonrwa.2017.02.017
    [42] P. B. Mucha, J. Peszek, The Cucker–Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273–308. https://doi.org/10.1007/s00205-017-1160-x doi: 10.1007/s00205-017-1160-x
    [43] Y. P. Choi, X. Zhang, One dimensional singular Cucker–Smale model: Uniform-in-time mean-field limit and contractivity, J. Differ. Equations, 287 (2021), 428–459. https://doi.org/10.1016/j.jde.2021.04.002 doi: 10.1016/j.jde.2021.04.002
    [44] B. Piccoli, F. Rossi, E. Trélat, Control of the 1d continuous version of the Cucker-Smale model, in 2015 American Control Conference (ACC), IEEE, Chicago, (2015), 1264–1269. https://doi.org/10.1109/ACC.2015.7170907
    [45] S. Y. Ha, J. Park, X. Zhang, A first-order reduction of the Cucker–Smale model on the real line and its clustering dynamics, Commun. Math. Sci., 16 (2018), 1907–1931. https://doi.org/10.4310/CMS.2018.V16.N7.A8 doi: 10.4310/CMS.2018.V16.N7.A8
    [46] J. Kim, First-order reduction and emergent behavior of the one-dimensional kinetic Cucker-Smale equation, J. Differ. Equations, 302 (2021), 496–532. https://doi.org/10.1016/j.jde.2021.09.003 doi: 10.1016/j.jde.2021.09.003
    [47] X. Zhang, T. Zhu, Complete classification of the asymptotical behavior for singular CS model on the real line, J. Differ. Equations, 269 (2020), 201–256. https://doi.org/10.1016/j.jde.2019.12.004 doi: 10.1016/j.jde.2019.12.004
    [48] J. Byeon, S. Y. Ha, J. Kim, Emergence of state-locking for the first-order nonlinear consensus model on the real line, Kinet. Rel. Models, 16 (2023). https://doi.org/10.3934/krm.2022034 doi: 10.3934/krm.2022034
    [49] T. M. Leslie, C. Tan, Finite-and infinite-time cluster formation for alignment dynamics on the real line, J. Evol. Equ., 24 (2024), 8. https://doi.org/10.1007/s00028-023-00939-2 doi: 10.1007/s00028-023-00939-2
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(742) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog