Research article

Generalized fractional derivatives and fourier transforms in tempered distributions with applications

  • Received: 07 April 2025 Revised: 29 May 2025 Accepted: 05 June 2025 Published: 18 July 2025
  • The purpose of this paper is to define and prove that the Riemann–Liouville and Caputo fractional derivatives can be computed for tempered distributions, such that the fractional derivative of a tempered distribution remains a tempered distribution. The fact that the Fourier transform operator is an isomorphism in the dual of the Schwartz space is used, and we found that the fractional Riemann–Liouville and Caputo derivatives can be written as a Fourier transform composition and inverse. In this way, we are able to generalize both fractional Riemann–Liouville and Caputo derivatives for the tempered distributions. Moreover, certain examples of fractional derivatives for some tempered distributions are provided, such as the distribution of Dirac, the distribution of Heaviside, and the distribution of principal value.

    Citation: Amin Benaissa Cherif, Fatima Zohra Ladrani, Dalal Alhwikem, Ahmed Hammoudi, Khaled Zennir, Keltoum Bouhali. Generalized fractional derivatives and fourier transforms in tempered distributions with applications[J]. Networks and Heterogeneous Media, 2025, 20(3): 868-884. doi: 10.3934/nhm.2025037

    Related Papers:

  • The purpose of this paper is to define and prove that the Riemann–Liouville and Caputo fractional derivatives can be computed for tempered distributions, such that the fractional derivative of a tempered distribution remains a tempered distribution. The fact that the Fourier transform operator is an isomorphism in the dual of the Schwartz space is used, and we found that the fractional Riemann–Liouville and Caputo derivatives can be written as a Fourier transform composition and inverse. In this way, we are able to generalize both fractional Riemann–Liouville and Caputo derivatives for the tempered distributions. Moreover, certain examples of fractional derivatives for some tempered distributions are provided, such as the distribution of Dirac, the distribution of Heaviside, and the distribution of principal value.



    加载中


    [1] J. Machado, V. S. Kiryakova, F. Mainardi, A poster about the old history of fractional calculus, Fract. Calc. Appl. Anal., 13 (2010), 447–454. Available from: http://hdl.handle.net/10525/1666.
    [2] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
    [3] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.
    [4] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer Science & Business Media, Dordrecht, 2011.
    [5] T. Kaczorek, D. Idczak, Cauchy formula for the time-varying linear systems with Caputo derivative, Fract. Calc. Appl. Anal., 20 (2017), 494–505. https://doi.org/10.1515/fca-2017-0025 doi: 10.1515/fca-2017-0025
    [6] D. Idczak, Riemann–Liouville derivatives of abstract functions and Sobolev spaces, Fract. Calc. Appl. Anal., 25 (2022), 1260–1293. https://doi.org/10.1007/s13540-022-00058-8 doi: 10.1007/s13540-022-00058-8
    [7] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Diff. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [8] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [9] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-Order Systems and Controls: Fundamentals and Applications, London: Springer London, 2010.
    [10] J. Dziubański, M. Preisner, Tempered fractional calculus and applications to harmonic analysis, J. Funct. Anal., 270 (2016), 3747–3776.
    [11] S. Albeverio, R. Høegh-Krohn, Fractional powers of self-adjoint operators and tempered distributions, Potential Anal., 26 (2007), 33–52.
    [12] G. Hörmann, M. Oberguggenberger, Microlocal analysis of tempered distributions with applications, J. Fourier Anal. Appl., 13 (2007), 563–594.
    [13] M. W. Wong, Introduction to Pseudo-Differential Operators, World Scientific Publishing Company, 2014.
    [14] R. S. Pathak, Akhilesh Prasad, Manish Kumar, Fractional Fourier transform of tempered distributions and generalized pseudo-differential operator, J. Pseudo-Differ. Oper. Appl., 3 (2012), 239–254. https://doi.org/10.1007/s11868-012-0047-8 doi: 10.1007/s11868-012-0047-8
    [15] D. M. Ashwini, D. K. Kishor, A. Fernandez, H. M. Fahad, On tempered fractional calculus with respect to functions and the associated fractional differential equations, Math. Meth. Appl. Sci., 45, (2022), 11134–11157. https://doi.org/10.1002/mma.8441
    [16] R. A. Adams, J. J. F. Fournier, Pure and Applied Mathematics, Elsevier/Academic Press, Amsterdam, 2003.
    [17] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, 1st edition, Springer, New York, 2011. https://doi.org/10.1007/978-0-387-70914-7
    [18] R. Picard, Hilbert Space Approach to Some Classical Transforms, Pitman Research Notes in Mathematics Series, Harlow and New York: Longman Scientific & Technical and Wiley, 1989.
    [19] R. Picard, S. Trostorff, M. Waurick, On evolutionary equations with material laws containing fractional integrals, Math. Methods Appl. Sci., 38 (2015), 3141–3154. https://doi.org/10.1002/mma.3286 doi: 10.1002/mma.3286
    [20] K. Diethelm, K. Kitzing, R. Picard, S. Siegmund, S. Trostorff, M. Waurick, A hilbert space approach to fractional differential equations, J. Dyn. Diff. Equat., 34 (2022), 481–504. https://doi.org/10.1007/s10884-020-09932-6 doi: 10.1007/s10884-020-09932-6
    [21] R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcial. Ekvac., 52 (2009), 1–18. https://doi.org/10.1619/fesi.52.1 doi: 10.1619/fesi.52.1
    [22] R. Gorenflo, Y. Luchko, M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal., 18 (2015), 799–820. https://doi.org/10.1515/fca-2015-0048 doi: 10.1515/fca-2015-0048
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(892) PDF downloads(39) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog