Research article Special Issues

Boundary layer flow and heat transfer of viscoelastic fluid embedded in a non-Darcy porous medium with double fractional Maxwell model

  • Received: 21 May 2025 Revised: 29 June 2025 Accepted: 10 July 2025 Published: 25 July 2025
  • A novel numerical simulation was conducted for boundary layer flow and heat transfer of viscoelastic fluid in a non-Darcy porous medium. The double fractional Maxwell model and generalized Fourier's law were employed in constitutive relation and heat transport, respectively. The strongly coupled and nonlinear fractional governing equations were formulated, which were solved and validated by the finite volume method combined with the fractional L1 scheme. The influences of fractional derivative parameters, Darcy number, porosity, and inertial parameter on the transport fields are discussed. Our results demonstrated that the different fractional derivative parameters exhibit opposite influences on velocity/temperature distributions. Moreover, the inertial effects induce velocity profile crossover that marks the transition between viscous and inertial dominance. These findings redefine our understanding of energy transport in complex porous systems.

    Citation: Jinhu Zhao. Boundary layer flow and heat transfer of viscoelastic fluid embedded in a non-Darcy porous medium with double fractional Maxwell model[J]. Networks and Heterogeneous Media, 2025, 20(3): 885-902. doi: 10.3934/nhm.2025038

    Related Papers:

  • A novel numerical simulation was conducted for boundary layer flow and heat transfer of viscoelastic fluid in a non-Darcy porous medium. The double fractional Maxwell model and generalized Fourier's law were employed in constitutive relation and heat transport, respectively. The strongly coupled and nonlinear fractional governing equations were formulated, which were solved and validated by the finite volume method combined with the fractional L1 scheme. The influences of fractional derivative parameters, Darcy number, porosity, and inertial parameter on the transport fields are discussed. Our results demonstrated that the different fractional derivative parameters exhibit opposite influences on velocity/temperature distributions. Moreover, the inertial effects induce velocity profile crossover that marks the transition between viscous and inertial dominance. These findings redefine our understanding of energy transport in complex porous systems.



    加载中


    [1] D. A. Nield, A. Bejan, Convection in Porous Media, 4th Edition, Springer-Verlag, New-York, 2013.
    [2] K. Vafai, C. L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat Mass Transfer, 24 (1981), 195–203. https://doi.org/10.1016/0017-9310(81)90027-2 doi: 10.1016/0017-9310(81)90027-2
    [3] M. F. El-Amin, Double dispersion effects on natural convection heat and mass transfer in non-Darcy porous medium, Appl. Math. Comput., 156 (2004), 1–17. https://doi.org/10.1016/j.amc.2003.07.001 doi: 10.1016/j.amc.2003.07.001
    [4] P. Narayana, P. Murthy, Free convective heat and mass transfer in a doubly stratified non-darcy porous medium, J. Heat Transfer, 128 (2006), 1204–1212. https://doi.org/10.1115/1.2352788 doi: 10.1115/1.2352788
    [5] D. Pal, H. Mondal, Effect of variable viscosity on MHD non-Darcy mixed convective heat transfer over a stretching sheet embedded in a porous medium with non-uniform heat source/sink, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1553–1564. https://doi.org/10.1016/j.cnsns.2009.07.002 doi: 10.1016/j.cnsns.2009.07.002
    [6] A. A. El-Zehairy, M. M. Nezhad, V. Joekar-Niasar, I. Guymer, N. Kourra, M. A. Williams, Pore-network modelling of non-Darcy flow through heterogeneous porous media, Adv. Water Resour., 131 (2019), 103378. https://doi.org/10.1016/j.advwatres.2019.103378 doi: 10.1016/j.advwatres.2019.103378
    [7] D. Y. Song, X. F. Song, T. Q. Jiang, Study of rheological characterization of Fenugreek gum with modified Maxwell model, Chin. J. Chem. Eng., 8 (2000), 85–88.
    [8] Z. Xu, W. Chen, A fractional-order model on new experiments of linear viscoelastic creep of Hami Melon, Comput. Math. Appl., 66 (2013), 677–681.https://doi.org/10.1016/j.camwa.2013.01.033 doi: 10.1016/j.camwa.2013.01.033
    [9] X. Yang, X. Jiang, J. Kang, Parameter identification for fractional fractal diffusion model based on experimental data, Chaos, 29 (2019), 083134. https://doi.org/10.1063/1.5111832 doi: 10.1063/1.5111832
    [10] D. G. Yao, A fractional dashpot for nonlinear viscoelastic fluids, J. Rheol., 62 (2018), 619–629. https://doi.org/10.1122/1.5012504 doi: 10.1122/1.5012504
    [11] X. L. Su, W. X. Xu, W. Chen, H. X. Yang, Fractional creep and relaxation models of viscoelastic materials via a non-Newtonian time-varying viscosity: Physical interpretation, Mech. Mater., 140 (2020), 103222. https://doi.org/10.1016/j.mechmat.2019.103222 doi: 10.1016/j.mechmat.2019.103222
    [12] W. Tan, W. Pan, M. Xu, A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Int. J. Non-Linear Mech., 38 (2003), 645–650. https://doi.org/10.1016/S0020-7462(01)00121-4 doi: 10.1016/S0020-7462(01)00121-4
    [13] L. Wei, Y. F. Yang, Optimal order finite difference/local discontinuous Galerkin method for variable-order time-fractional diffusion equation, J. Comput. Appl. Math., 383 (2021), 113129. https://doi.org/10.1016/j.cam.2020.113129 doi: 10.1016/j.cam.2020.113129
    [14] Y. L. Feng, X. D. Zhang, Y. Chen, L. Wei, A compact finite difference scheme for solving fractional Black-Scholes option pricing model, J. Inequal. Appl., 2025 (2025), 36. https://doi.org/10.1186/s13660-025-03261-2 doi: 10.1186/s13660-025-03261-2
    [15] X. D. Zhang, L. Wei, J. Liu, Application of the LDG method using generalized alternating numerical flux to the fourth-order time-fractional sub-diffusion model, Appl. Math. Lett., 168 (2025), 109580. https://doi.org/10.1016/j.aml.2025.109580 doi: 10.1016/j.aml.2025.109580
    [16] K. J. Wang, H. W. Zhu, S. Li, F. Shi, G. Li, X. L. Liu, Bifurcation analysis, chaotic behaviors, variational principle, Hamiltonian and diverse optical solitons of the fractional complex Ginzburg–Landau model, Int. J. Theor. Phys., 64 (2025), 134. https://doi.org/10.1007/s10773-025-05977-9 doi: 10.1007/s10773-025-05977-9
    [17] K. J. Wang, An effective computational approach to the local fractional low-pass electrical transmission lines model, Alexandria Eng. J., 110 (2025), 629–635. https://doi.org/10.1016/j.aej.2024.07.021 doi: 10.1016/j.aej.2024.07.021
    [18] K. J. Wang, M. Li, Variational principle of the unstable nonlinear Schrö dinger equation with fractal derivatives, Axioms, 14 (2025), 376. https://doi.org/10.3390/axioms14050376 doi: 10.3390/axioms14050376
    [19] T. Hayat, S. Nadeem, S. Asghar, Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model, Appl. Math. Comput., 151 (2004), 153–161. https://doi.org/10.1016/S0096-3003(03)00329-1 doi: 10.1016/S0096-3003(03)00329-1
    [20] Y. Yin, K. Zhu, Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model, Appl. Math. Comput., 173 (2006), 231–242. https://doi.org/10.1016/j.amc.2005.04.001 doi: 10.1016/j.amc.2005.04.001
    [21] X. H. Chen, W. D. Yang, X. R. Zhang, F. W. Liu, Unsteady boundary layer flow of viscoelastic MHD fluid with a double fractional Maxwell model, Appl. Math. Lett., 95 (2019), 143–149. https://doi.org/10.1016/j.aml.2019.03.036 doi: 10.1016/j.aml.2019.03.036
    [22] W. D. Yang, X. H. Chen, X. R. Zhang, L. C. Zheng, F. W. Liu, Flow and heat transfer of double fractional Maxwell fluids over a stretching sheet with variable thickness, Appl. Math. Modell., 80 (2020), 204–216. https://doi.org/10.1016/j.apm.2019.11.017 doi: 10.1016/j.apm.2019.11.017
    [23] W. D. Yang, J. W. Zhao, X. H. Chen, K. Fang, Z. Y. Jiang, Z. Lin, et al., Aortic aneurysm hemodynamics based on a double fractional Maxwell arterial model, Phys. Fluids, 37 (2025), 013117. https://doi.org/10.1063/5.0246815 doi: 10.1063/5.0246815
    [24] M. Caputo, W. Plastino, Diffusion in porous layers with memory, Geophys. J. Int., 158 (2004), 385–396. https://doi.org/10.1111/j.1365-246x.2004.02290.x doi: 10.1111/j.1365-246x.2004.02290.x
    [25] M. Hashan, L. N. Jahan, T. Zaman, S. Imtiaz, M. E. Hossain, Modelling of fluid flow through porous media using memory approach: A review, Math. Comput. Simul., 177 (2020), 643–673. https://doi.org/10.1016/j.matcom.2020.05.026 doi: 10.1016/j.matcom.2020.05.026
    [26] H.W. Zhou, S. Yang, Fractional derivative approach to non-Darcian flow in porous media, J. Hydrol., 566 (2018), 910–918. https://doi.org/10.1016/j.jhydrol.2018.09.039 doi: 10.1016/j.jhydrol.2018.09.039
    [27] H. W. Zhou, S. Yang, S. Q. Zhang, Modeling non-Darcian flow and solute transport in porous media with the Caputo-Fabrizio derivative, Appl. Math. Modell., 68 (2019), 603–615. https://doi.org/10.1016/j.apm.2018.09.042 doi: 10.1016/j.apm.2018.09.042
    [28] S. Yang, L. P. Wang, S. Q. Zhang, Conformable derivative: Application to non-Darcian flow in low-permeability porous media, Appl. Math. Lett., 79 (2017), 105–110. https://doi.org/10.1016/j.aml.2017.12.006 doi: 10.1016/j.aml.2017.12.006
    [29] G. Alaimo, V. Piccolo, A. Cutolo, L. Deseri, M. Fraldi, M. Zingales, A fractional order theory of poroelasticity, Mech. Res. Commun., 100 (2019), 103395. https://doi.org/10.1016/j.mechrescom.2019.103395 doi: 10.1016/j.mechrescom.2019.103395
    [30] Q. Wei, H. W. Zhou, S. Yang, Non-Darcy flow models in porous media via Atangana-Baleanu derivative, Chaos Solitons Fractals, 141 (2020), 110335. https://doi.org/10.1016/j.chaos.2020.110335 doi: 10.1016/j.chaos.2020.110335
    [31] K. J. Wang, F. Shi, A new fractal model of the convective-radiative fins with temperature-dependent thermal conductivity, Therm. Sci., 27 (2023), 2831–2837. https://doi.org/10.2298/TSCI220917207W doi: 10.2298/TSCI220917207W
    [32] K. J. Wang, Variational approach for the fractional exothermic reactions model with constant heat source in porous medium, Therm. Sci., 27 (2023), 2879–2885. https://doi.org/10.2298/TSCI220922211W doi: 10.2298/TSCI220922211W
    [33] D. Parmar, S. Murthy, B. Kumar, S. Kumar, Numerical simulation of fractional order double diffusive convective nanofluid flow in a wavy porous enclosure, Int. J. Heat Fluid Flow, 112 (2025), 109749. https://doi.org/10.1016/j.ijheatfluidflow.2025.109749 doi: 10.1016/j.ijheatfluidflow.2025.109749
    [34] A. Haider, M. S. Anwar, Y. F. Nie, T. Muhammad, Numerical simulations of heat and mass transfer in Sutterby fluid within porous media using Caputo fractional derivative, Int. Commun. Heat Mass Transfer, 164 (2025), 108850. https://doi.org/10.1016/j.icheatmasstransfer.2025.108850 doi: 10.1016/j.icheatmasstransfer.2025.108850
    [35] C. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 30 (1991), 151–158.
    [36] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999), 78–85.
    [37] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space time fractional advection diffusion equation, Appl. Math. Comput., 191 (2007), 12–20. https://doi.org/10.1016/j.amc.2006.08.162 doi: 10.1016/j.amc.2006.08.162
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(708) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog