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Abstract: The purpose of this paper is to define and prove that the Riemann–Liouville and Caputo
fractional derivatives can be computed for tempered distributions, such that the fractional derivative of
a tempered distribution remains a tempered distribution. The fact that the Fourier transform operator is
an isomorphism in the dual of the Schwartz space is used, and we found that the fractional Riemann–
Liouville and Caputo derivatives can be written as a Fourier transform composition and inverse. In
this way, we are able to generalize both fractional Riemann–Liouville and Caputo derivatives for
the tempered distributions. Moreover, certain examples of fractional derivatives for some tempered
distributions are provided, such as the distribution of Dirac, the distribution of Heaviside, and the
distribution of principal value.
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1. Introduction

Fractional analysis has a long history and extremely rich content. The ideas of fractional calculus
have occupied many prominent scientists. The fractional operators are indispensable for describing
and studying physical fractal problems and stochastic transfer processes. Work in this direction is
only just beginning and is apparently restrained only by the exotic nature of fractional derivatives and
fractional integrals. In a series of works by J. Liouville (1832–1835), using the expansion of functions
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into power series, he defined the fractional derivative. The author gave the first practical applications
of the theory created for solving systems in mathematical physics. Later, B. Riemann (1847)
considered another solution based on a definite integral, suitable for power series with non-integer
exponents, which was completed by B. Riemann in 1876. The constructions of Liouville and
Riemann are the main forms of fractional integration. Developing Liouville’s idea, A. K.
Grunwald (1867) introduced the concept of a fractional derivative as the limit of difference relations,
and it has been strongly developed to the present day; see [1–3]. In recent years, considerable interest
has been stimulated by its many applications in several fields of science, including physics, chemistry,
aerodynamics, electrodynamics of complex media, signal processing, and optimal control [4–6]. At
present, there is virtually no area of classical analysis that has not been touched on by fractional
analysis. Fractional calculus, which generalizes the classical differentiation and integration to
non-integer orders, was advanced from 2000 to 2025. New fractional derivative definitions were given
in addressing previous limitations by introducing non-singular kernels and enhancing memory effect
modeling in complex systems; see [7–9]. Tempered distributions have been extended to incorporate
fractional and nonlocal operators, allowing the rigorous treatment of fractional derivatives within
generalized function spaces; please see [10,11]. This extension has opened new avenues for fractional
calculus, providing analytical tools to handle functions and distributions with controlled growth at
infinity. Today, significant advances in Fourier analysis of tempered distributions have enhanced the
understanding of singularities and anisotropic phenomena, improving methods in harmonic and
microlocal analysis; see [12, 13]. The theory of tempered distributions allows us to give a rigorous
meaning to the Dirac delta function. It is defined by some special properties. Thus, tempered
distributions are products of polynomials and derivatives of bounded continuous functions. In [14],
the fractional Fourier transform of tempered distributions is considered, and generalized
pseudo-differential operators involving two classes of symbols and fractional Fourier transforms are
investigated. In [15], the theory of tempered fractional integrals and derivatives of a function with
respect to another function is developed, and certain nonlinear fractional differential equations
involving ψ-tempered derivatives are studied. Distributions are usually defined by duality, starting
from a good choice of test functions.

It is well known that not all functions defined from R in R are differentiable on R; on the other hand,
the functions in L1

loc (R) are derivable in the sense of distribution D′ (R). That is to say, for u ∈ L1
loc (R),

the derivative of u in the sense of D′ (R) is given by

⟨u′, ϖ⟩ = − ⟨u, ϖ′⟩ =
∫
R

u (x)ϖ′ (x) dx, for all ϖ ∈ D (R) .

To compute the left Riemann-Liouville functional derivative for the functions defined from R to R,
we need a functional space that guarantees that the derivative exists and is well defined. This space
being smaller, it will be shown that this space is the Sobolev space of order ν (see Lemma 3.3).

The primary aim of this paper is to answer the following question. How does the Riemann-Liouville
fractional derivative work for functions that do not belong to the Sobolev space of order ν ∈ R+? For
example, let H be the Heaviside function given by

H (x) =
{

1, if x ≥ 0,
0, if x < 0,
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we have Iν
−∞+

[
H
x

]
is diverged; that’s to say, the Riemann-Liouville ν-fractional derivatives of x → H

x
do not exist. Here we try to find a suitable space that contains the Sobolev space to calculate the
fractional derivative (Riemann-Liouville or Caputo) in which we can calculate tempered distributions

S ′ (R), which means that we can obtain the fractional derivative of the distribution x →
H
x

,
see [16, 17].

It is known that the weak space properties are based on results in [18] and used for linear fractional
partial differential equations in [19]. Indeed, fractional differential equations in the
Riemann–Liouville type and Caputo type in Hilbert spaces are studied, and the existence and
uniqueness of solutions are obtained in [20], where the main tools are extrapolation- and interpolation
of fractional Sobolev spaces. Based on the exponentially weighted spaces of appropriate functions,
fractional operators by means of a functional calculus using the Fourier transform are introduced.
These results extend those in [21], in which a fractional derivative is defined as a derivative of a
fractional integral, whereas in [22], the fractional derivative of C-valued functions on a bounded
interval and linear fractional differential equations are also studied with a suitable functional analysis
and fractional Sobolev spaces. Since the Sobolev space is of order ν, it is defined by a Fourier
transformation (see Lemma 3.1). The Fourier transform is an isomorphism from S ′ (R) into S ′ (R),
with S ′ (R) a tempered distribution. By these properties, we generalize the Riemann–Liouville
fractional derivative in tempered distributions and prove that this definition makes sense, so that we
can calculate the fractional derivative of Riemann–Liouville for tempered distributions. To the best of
our knowledge, this study represents the first contribution in this area by establishing a sufficient
condition for the existence of fractional derivatives, where the function is required to belong to a
specific subspace. Building upon this foundation, we extend and generalize the concept of fractional
derivatives to the space of tempered distributions. Utilizing the Fourier transform technique

Motivated by the above works, in this article, we set an equivalent condition to obtain the fractional
derivation, that is, a function in the Sobolev space of degree s (to obtain the derivative of degree s),
and we see how to obtain the fractional derivation when it is not a function in the Sobolev space, i.e.,
we derive the fraction as a moderate distribution. We defined it with meaning and generalization and
gave examples of the function not being granted to the Sobolev space, and therefore it is not possible
to obtain the fractional derivation as a function, but we obtain it as a distribution which, actually arises
in the study of differential and integral equations.

2. Preliminary results

A brief introduction to the fractional Fourier transform and tempered distributions is given.

2.1. Tempered distributions

Definition 2.1. The Schwartz space S (R) is the topological vector space of functions u : R→ C, such
that u ∈ C∞ (R) and

lim
|x|→+∞

(
1 + |x|2

)m/2 ∣∣∣u(n) (x)
∣∣∣ = 0, ∀n,m ∈ N.
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Introduce equivalent countable families of semi-norms on S (R),

∥u∥m,n = sup
x∈R

∣∣∣∣(1 + |x|2)m/2
u(n) (x)

∣∣∣∣ , ∀m, n ∈ R.

Example 2.1. We have the tempered distributions, Dirac, Heaviside, and principal value, respectively,
for all ϖ ∈ S (R),

⟨δ,ϖ⟩ = ϖ (0) , ⟨H, ϖ⟩ =
∫ +∞

0
ϖ (x) dx,

〈
vp (1/x) , ϖ

〉
=

∫ +∞

0

1
x

(ϖ (x) −ϖ (−x)) dx.

Definition 2.2. We define the space OM (R) as

OM (R) =
{
u ∈ C∞ (R) : ∀n ∈ N,∃Cn > 0,mn ∈ N,

∣∣∣u(n) (x)
∣∣∣ ≤ Cn ⟨x⟩mn

}
,

we call OM (R) the space of indefinitely differentiable functions with slow growth.

Definition 2.3. A tempered distribution T on R is a continuous linear functional T : S (R) → R. The
topological vector space of tempered distributions is denoted by S ′ (R).

2.2. Fourier Transform

Definition 2.4. The Fourier transform of a function u : R→ C is the function Fu := û : R→ C defined
by

û (x) =
1
√

2π

∫
R

u (ξ) e−iξxdξ.

The inverse Fourier transform of u is the function F−1u := ǔ : R→ C given by

ǔ (x) =
1
√

2π

∫
R

u (ξ) eiξxdξ.

Lemma 2.1. The Fourier transform F : L2 (R) → L2 (R) is a one-to-one, onto bounded linear map. If
u, v ∈ L2 (R), then ∫

u (x) v (x) dx =
∫

û (ξ) v̂ (ξ) dξ.

Lemma 2.2. The Fourier transform F : S (R) → S (R) defined by F : u → û is a continuous, one-to-
one map of S (R) onto itself. The inverse F−1 : S (R) → S (R) is given by F−1 : u → ǔ. If u ∈ S (R),
then

F
(
u(n)

)
= (iξ)n F (u) , F ((−ix)m u) = (Fu)(m) .

Definition 2.5. If T ∈ S ′ (R), then the Fourier transform T̂ ∈ S ′ (R) is the distribution defined by〈
T̂ , ϖ

〉
= ⟨T, ϖ̂⟩ , for all ϖ ∈ S (R) .

The inverse Fourier transform Ť ∈ S ′ (R) is the distribution defined by〈
Ť , ϖ

〉
= ⟨T, ϖ̌⟩ , for all ϖ ∈ S (R) .
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Remark 2.1. For any function u ∈ OM (R), the operator defined by ϖ→ uϖ is continuous from S (R)
into itself.

Definition 2.6. For ν > 0, the Sobolev space Hν (R) consists of all tempered distributions u ∈ S
′ (R)

whose Fourier transform ǔ is a regular distribution such that∫
R

⟨ξ⟩2ν |û (ξ)|2 dξ < ∞.

The inner product and norm of u, v ∈ Hν (R) are defined by

(u, v)Hν(R) =

∫
R

⟨ξ⟩2ν û (ξ)v̂ (ξ) dξ < ∞, ∥u∥Hν(R) =

(∫
R

⟨ξ⟩2ν |û (ξ)|2 dξ
)1/2

.

2.3. Fractional integrals-Fractional derivatives

Definition 2.7. Let u ∈ L1 (I) and ν > 0. The left and right Riemann-Liouville ν-fractional integrals
are defined by

Iνa+ [u] (t) =
1
Γ (ν)

∫ t

a
(t − ξ)ν−1 u (ξ) dξ,

and

Iνb− [u] (t) =
1
Γ (ν)

∫ b

t
(ξ − t)ν−1 u (ξ) dξ,

where Γ (ν) denotes the Euler’s gamma function.

Definition 2.8. Let ν ∈ (0, 1). For any u : I → R sufficiently smooth, so that I1−ν
a+ [u] and I1−ν

b− [u] are
differentiable, the left and right Riemann-Liouville ν-fractional derivatives of u are defined by

Dν
a+ [u] (t) =

d
dt

I1−ν
a+ [u] (t) ,

and
Dν

b− [u] (t) =
d
dt

I1−ν
b− [u] (t) .

Definition 2.9. Let ν ∈ (0, 1). For any u : I → R sufficiently smooth, so that I1−ν
a+ [u] and I1−ν

b− [u] are
differentiable, the left and right Caputo ν-fractional derivatives of u are defined by

Dν
a+ [u] (t) =

d
dt

I1−ν
a+

[
u′

]
(t) ,

and
Dν

b− [u] (t) =
d
dt

I1−ν
b−

[
u′

]
(t) .

Remark 2.2. The left and right Riemann-Liouville derivative Riemann-Liouville derivatives with order
ν > 0 of the given function u : I → R are respectively given as

Dν
a+u (t) =

dn

dt
Dν−n

a+ [u] (t) ,

and
Dν

b− [u] (t) =
dn

dt
Dν−n

b− [u] (t) ,

where n is an integer that satisfies n − 1 ≤ ν < n.
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3. Main results

3.1. Sobolev space of order ν ≥ 0

Lemma 3.1. Let 0 < ν ≤ 1, then

F
(
Dν
−∞ [u]

)
= − (iξ)ν F (u) .

Proof. We have
F

(
Dν
−∞u

)
= −iξF

(
I1−ν
−∞ u

)
,

from Fubini’s theorem, we obtain

F
(
I1−ν
−∞ [u]

)
(x) =

1

Γ (1 − ν)
√

2π

∫
E

(ξ − y)−ν u (y) e−iξxdydξ,

with
E =

{
(y, ξ) ∈ R2 : y ≤ ξ

}
.

Then

F
(
I1−ν
−∞ u

)
(x) =

F (u) (x)
Γ (1 − ν)

∫ +∞

0
η−νe−iξxdξ

=
Λ (ν, x)
−iξΓ (1 − ν)

F (u) (x) ,

where Λ : (0, 1] × R→ C is given by

Λ (ν, ξ) = −iξ
∫ +∞

0
t−νe−itξdt.

For all λ > 0, we have
Λ (ν, λξ) = λνΛ (ν, ξ) ,

and then

Λ (ν, ξ) =
{
ξνΛ (ν, 1) , if ξ ≥ 0,
(−ξ)νΛ (ν, 1), if ξ < 0.

Thus

Λ (ν, 1) = −i
∫ +∞

0
t−νe−itdt = Γ (1 − ν) iν,

what is involved Λ (ν, ξ) = Γ (1 − ν) (ξi)ν. Hence,

F
(
Dν
−∞ [u]

)
= −iξF

(
I1−ν
−∞ u

)
=
Λ (ν, x)
Γ (1 − ν)

F (u) (x)

= − (ξi)ν F (u) (x) . (3.1)
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Lemma 3.2. Let ν > 0 and n are integers that satisfy n − 1 ≤ ν < n, then

F
(
Dν
−∞ [u]

)
= (−1)n+1 (iξ)ν F (u) , (3.2)

Dν
−∞ [u] = (−1)n+1 F−1 (iξ)ν F (u) , (3.3)

F
(
Iν−∞ [u]

)
= (ξi)−ν F (u) . (3.4)

Proof. Let ν > 0; we have

F
(
Dν
−∞ [u]

)
= F

(
dn

dt
(
Dν−n
−∞ [u]

))
= (−iξ)n F

(
Dν−n
−∞ [u]

)
,

as 0 < ν − n ≤ 1, by Lemma 3.2, we have

F
(
Dν
−∞ [u]

)
= (−1)n+1 (iξ)ν F (u) .

Then
F−1F

(
Dν
−∞ [u]

)
= (−1)n+1 F−1 (iξ)ν F (u) .

As F−1F = Id, we deduce equality (3.3).

By Eq (3.1), we have
F

(
I1−ν
−∞ u

)
= (ξi)1−ν F (u) (x) .

The previous lemma allows us to give another description of the Sobolev distances Hν (R) to
include the real positive exponents ν ≥ 0.

Lemma 3.3 provides an alternative definition of the scalar product and norm in a Sobolev space,
proving their equivalence to the classical inner product and norm of that space. This equivalence helps
us find a similar way to calculate the fractional derivative of functions in the Sobolev space, making it
easier to study and analyze their differential properties using Sobolev spaces.

Lemma 3.3. For ν > 0, the Sobolev space Hν (R) consists of all u ∈ L2 (R) where u is ν-fractional
derivative in the Riemann-Liouville sense, such that Dν

−∞ [u] ∈ L2 (R).

The inner product and norm of u, v ∈ Hν (R) are defined by

(u, v)Hν(R) =

∫
R

Dν
−∞ [u] (x) Dν

−∞ [v] (x) dx,

∥u∥Hν(R) =

(∫
R

∣∣∣Dν
−∞ [u] (x)

∣∣∣2 dξ
)1/2

.
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Proof. For all ν > 0, let
Aν (R) =

{
u ∈ L2 (R) : Dν

−∞ [u] ∈ L2 (R)
}
.

Let u ∈ Hν (R); then u ∈ L2 (R) and ξνF (u) ∈ L2 (R). By Lemma 3.2, F
(
Dν
−∞,t [u]

)
∈ L2 (R). Since

the operator F : L2 (R)→ L2 (R) is isometry, it means

F−1 (
F

(
Dν
−∞ [u]

))
= Dν

−∞ [u] ∈ L2 (R) ,

then u ∈ Aν (R).

3.2. Tempered distribution fractional derivative

Lemma 3.4. Let ν, ε ∈ (0, 1); we consider the operator Dν,ε from S (R) to S (R) given by:

Dν,εu = F−1 (ix + ε)ν F (u) ,

then the operator Dν,ε is a bijection of S (R) and

lim
ε→0

Dν,ε = −Dν
−∞.

Proof. Let u ∈ S (R), ε > 0, and the function Qν
ε (x) : R→ C given by: Qν

ε (x) = (ix + ε)ν, then
Qν
ε ∈ C∞ (R,C). As F : S (R)→ S (R) is a bijection, then F (u) ∈ S (R), that means Qν

εF (u) ∈ C∞ (R).
On the other hand, we have

lim
|x|→∞
|x|n

(
Qν
εu

)(n) (x) =
k=n∑
k=0

Lk lim
|x|→∞
|x|n Qν−k

ε u(n−k) (x) = 0,

with

Lk = (i)n Ck
n

k=n−1∏
k=0

(ν − k) ,

then
(
Qν
εu

)(n) is rapidly decreasing, ∀n ∈ N. We conclude Qν
εF (u) ∈ S (R) and further F−1QεF (u) ∈

S (R). As F : S (R)→ S (R) is bijective, then Dν,ε is continuous if and only if FDν,ε is continuous. Let
n,m ∈ N, we have

∣∣∣(FDν,εu
)(n)

∣∣∣ ≤ L̃n

k=n∑
k=0

(
1 + |x|2

) ν−k
2
|x|n−k

|Fu|

≤ L̃n

k=n∑
k=0

(
1 + |x|2

) n+ν−2k
2
|Fu|

≤ CnL̃n

(
1 + |x|2

) n+ν
2
|Fu| , (3.5)

with

L̃n = max
k∈{1,2,..,n}

|Lk| and Cn = sup
x∈R

k=n∑
k=0

(
1 + |x|2

) −k
2
.
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By the last inequality, we get ∥∥∥FDν,εu
∥∥∥

m,n
≤ CnL̃n ∥Fu∥m+n+1,n .

As F is continuous, deduce that FDν,ε is continuous. The operator Dν,ε is bijective and
(
Dν,ε

)−1
=

D−ν,ε, similarly, we find that D−ν,ε is continuous. By (3.5), we have∣∣∣∣(FDν,εu − FDν,0u
)(n)

∣∣∣∣ ≤ ε2L̃nCn

(
1 + |x|2

) n
2
|Fu| ,

which is equivalent to ∥∥∥FDν,εu − FDν,0u
∥∥∥

m,n
≤ ε2CnL̃n ∥Fu∥m+n,n ,

where Dν,ε converges in Dν,0 = −Dν
−∞.

Lemma 3.5. Let ν, ε > 0, we deduce D∗ν,ε : S ′ (R) → S ′ (R) is a bijection, where D∗ν,ε (T ) = T ◦ Dν,ε,
that is to say 〈

D∗ν,ε (T ) , ϖ
〉
=

〈
T,Dν,ε [ϖ]

〉
, for all T ∈ S ′ (R) , ϖ ∈ S (R) .

By the continuity of T , we have

lim
ε→0

〈
D∗ν,ε (T ) , ϖ

〉
= −

〈
T,Dν

−∞ [ϖ]
〉
, for all ϖ ∈ S (R) .

Proof. By Lemma 3.4, we find that limε→0 Dν,ε = −Dν
−∞ in S (R). By passing to duality, we obtain the

new concept we give in the following remark.

Remark 3.1. From Lemma 3.4, we see that to calculate the Riemann-Liouville ν-derivative of a
function, which must be at least in the Sobolev space Hν (R), we would like to generalize the
fractional derivative to tempered distributions. From Lemma 3.5, we can introduce the new concept of
the fractional derivative of the Riemann-Liouville distribution S ′ (R).

Definition 3.1. Let ν ∈ (0, 1), the right Riemann-Liouville ν -fractional derivatives of T ∈ S ′ (R) are
defined by 〈

Dν
−∞T, ϖ

〉
= −

〈
T,Dν

−∞ [ϖ]
〉
, for all ϖ ∈ S (R) . (3.6)

We give the following example.

Example 3.1. Let ν ∈ (0, 1) and u ∈ Hν (R), we have Tu ∈ S ′ (R), by Definition 3.1, we have

〈
Dν
−∞Tu, ϖ

〉
= −

∫
R

u (x) Dν
−∞ϖ (x)dx,

since u ∈ Hν (R), by Lemma 2.1, we give

〈
Dν
−∞Tu, ϖ

〉
=

∫
R

u (x) F−1 (ix)ν F (ϖ) (x)dx

=

∫
R

u (x) F(ix)νF−1 (ϖ) (x) dx

=

∫
R

F (−ix)ν F−1u (x)ϖ (x) dx
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=

∫
R

Dν
−∞u (x)ϖ (x) dx

=
〈
TDν

−∞u, ϖ
〉
, for all ϖ ∈ S (R) .

Then
Dν
−∞Tu = TDν

−∞u.

Remark 3.2. By example 3.1, we conclude that the Riemann-Liouville fractional derivative of order ν
for the functions u in the sense of distribution (by Definition 3.1), is the tempered distribution associated
with the function Dν

−∞, and it gives us the validity of the generalization presented in Definition 3.1.

Example 3.2. Let 0 ∈ (0, 1), we have

Dν
−∞δ =

ν

Γ (1 − ν)
(−x)(ν+1) H (−x) ,

Dν
−∞vp =

√
2πΓ (1 + ν) cos (π (ν + 1))

1
|x|ν+1 ,

With δ,H, and vp defined in Example 2.1.

Remark 3.3. For all ν > 0, the integral Riemann-Liouville Iν
−∞+

[
1
x

]
does not exist. Therefore, we

cannot calculate the fractional Riemann-Liouville derivative of order ν, as a function, but we can
calculate it as a tempered distribution.

Remark 3.4. Let ν > 0, and n ∈ N, such that n − 1 ≤ ν < n; then deducing the Riemann-Liouville
derivative of order ν for the T ∈ S ′ (R) is given by:〈

Dν
−∞T, ϖ

〉
= (−1)n 〈

T,Dν
−∞ [ϖ]

〉
, for all ϖ ∈ S (R) . (3.7)

Lemma 3.6. Let 0 < ν ≤ 1 and T ∈ S ′ (R), then

Dν
−∞T = − lim

ε→0
F (iξ + ε)ν F−1T.

Proof. Let T ∈ S ′ (R) and ϖ ∈ S (R), we have〈
Dν
−∞T, ϖ

〉
= −

〈
T,Dν

−∞ [ϖ]
〉

= lim
ε→0

〈
T,Dν,ε [ϖ]

〉
= − lim

ε→0

〈
F (iξ + ε)ν F−1T, ϖ

〉
.

The following lemma is the generalization of the derivative of the convolution product of the
distribution.

Lemma 3.7. Let ν > 0 and S ,T ∈ S ′ (R), then

Dν
−∞ (S ∗ T ) =

(
Dν
−∞S

)
∗ T = S ∗ Dν

−∞T.
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Proof. Let n ∈ N, such that n − 1 ≤ ν < n, for all ϖ ∈ S (R), we have〈
Dν
−∞ (S ∗ T ) , ϖ

〉
= (−1)n 〈

S ∗ T,Dν
−∞ [ϖ]

〉
= (−1)n 〈

S t,
〈
Tx,Dν

−∞ [ϖ] (x + t)
〉〉

=
〈
S t,

〈
Dν
−∞Tx, ϖ (x + t)

〉〉
=

〈
S ∗ Dν

−∞T, ϖ
〉
.

As S ∗ T = T ∗ S , we find Dν
−∞ (S ∗ T ) = S ∗ Dν

−∞T .

The following lemma is the generalization of the two-derived fractional composition.

Lemma 3.8. Let ν, β > 0 and T ∈ S ′ (R), then

Dβ
−∞

(
Dν
−∞T

)
= (−1) jν,β Dν+β

−∞T.

where jν,β =
[
ν + β

]
− [ν] −

[
β
]
∈ {0, 1}.

Proof. Let n,m ∈ N, such that n − 1 ≤ ν < n, m − 1 ≤ β < m, for all ϖ ∈ S (R), we have〈
Dβ
−∞

(
Dν
−∞T

)
, ϖ

〉
= (−1)m

〈
Dν
−∞T,Dβ

−∞ [ϖ]
〉

= (−1)m+n
〈
T,Dν

−∞Dβ
−∞ [ϖ]

〉
= (−1)m+n

〈
T,Dν+β

−∞ [ϖ]
〉

= (−1)m+n−k
〈
Dν+β
−∞T, [ϖ]

〉
,

with k − 1 ≤ ν + β < k, as k − (m + n) = jν,β, then〈
Dβ
−∞

(
Dν
−∞T

)
, ϖ

〉
= (−1) jν,β

〈
Dν+β
−∞T, ϖ

〉
.

Remark 3.5. The Riemann-Liouville fractional derivative of a tempered distribution is commutative,
i.e., let ν > 0, β > 0, T ∈ S

′ (R), then

Dβ
−∞

(
Dν
−∞T

)
= Dν

−∞

(
Dβ
−∞T

)
.

3.3. Fractional integral of tempered distribution

The Fourier transform by the fractional derivative presented in Lemma 3.2 indicates that the function
(ix)ν does not belong to OM (R); for this end, we will introduce a sequence of functions (ix + ϵ)ν that
belongs to OM (R), such that (ix + ϵ)ν → (ix)ν.

Lemma 3.9. Let ν, ε ∈ (0, 1); we consider the operator Iν,ε from S (R) to S (R) given by:

Iν,εu = F−1 (ix + ε)−ν F (u) ,

then the operator Iν,ε is a bijection of S (R) and

lim
ε→0

Iν,ε = Iν−∞.
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Proof. The proof of this lemma is simulated using the same steps as the proof of Lemma 3.4.

Remark 3.6. By lemma 3.9, we deduce I∗ν,ε : S ′ (R) → S ′ (R) is a bijection, where I∗ν,ε (T ) = T ◦ Iν,ε,
that is to say 〈

I∗ν,ε (T ) , ϖ
〉
=

〈
T, Iν,ε [ϖ]

〉
, for all T ∈ S ′ (R) , ϖ ∈ S (R) .

By the continuity of T , we find

lim
ε→0

〈
I∗ν,ε (T ) , ϖ

〉
=

〈
T, Iν−∞ [ϖ]

〉
, for all ϖ ∈ S (R) .

From the last equation, we conclude that the Riemann-Liouville fractional integral can be
generalized in a space S ′ (R).

From Remark 3.6 and Lemma 3.9, we can give the new concept that presents the fractional integral
of the Riemann-Liouville distribution S ′ (R).

Definition 3.2. Let ν ∈ (0, 1); the right Riemann-Liouville ν-fractional integral of T ∈ S ′ (R) is defined
by 〈

Iν−∞T, ϖ
〉
=

〈
T, Iν−∞ [ϖ]

〉
, for all ϖ ∈ S (R) . (3.8)

Example 3.3. Let 0 ∈ (0, 1), we have

〈
Iν−∞δ,ϖ

〉
=

1
Γ (ν)

∫ 0

−∞

(−x)ν−1 ϖ (x) dξ,

then
Iν−∞δ =

H (−x)
Γ (ν)

(−x)ν−1 .

with δ and H defined in example 2.1.

Example 3.4. Let ν ∈ (0, 1); we consider the following problem:

Iν−∞ [u] (x) =
H (x)

x
, ∀x ∈ R.

Since Dν
−∞

(
H
x

)
does not exist, we are looking for the solution in the distribution sense, then

Dν
−∞Iν−∞ [u] (x) = Dν

−∞

(H
x

)
,

by example 3.2, we have

u (x) =
√

2πΓ (1 + ν) cos (π (ν + 1))
1
|x|ν+1 , ∀x ∈ R. (3.9)

Lemma 3.10. Let ν ∈ (0, 1) and T ∈ S ′ (R), then

Dν
−∞Iν−∞T = T.

Proof. Let ϖ ∈ S (R), we have〈
Dν
−∞Iν−∞T, ϖ

〉
=

〈
T, Iν−∞Dν

−∞ [ϖ]
〉
= ⟨T, ϖ⟩ ,

then Dν
−∞Iν−∞T = T .
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3.4. An application and discussions

For all ν > 0, we present the following problem:

Dν
−∞Tν = δ, Tν ∈ S ′ (R) . (3.10)

Theorem 3.1. Let ν > 0; we define Tν by

Tν =


H (−x)
Γ (ν)

(−x)ν−1 , if ν < 1

H (x)
Γ (ν − n + 1)

xν−n, if ν ≥ 1,
(3.11)

with n = [ν], then Tν is the solution of the problem (3.10).

Proof. Let ν < 1 and T0 ∈ S ′ (R), such that Dν
−∞T0 = δ, from Lemma 3.10, we will find

T0 =
H (−x)
Γ (ν)

(−x)ν−1 .

Let T0 ∈ S ′ (R), such that Dν+1
−∞T1 = δ, since δ = H

′

, then Dν
−∞T = H, hence〈

Dν+1
−∞T1, ϖ

〉
= −

〈
Dν
−∞T1, ϖ

′
〉
= ⟨H′, ϖ⟩ = − ⟨H, ϖ′⟩ ,

On the other hand, we have

〈
Iν−∞H, ϖ

〉
=

〈
H, Iν−∞ϖ

〉
=

1
Γ (ν)

∫ ∞

0
xν−1

∫ ∞

0
ϖ (ξ + x) dξdx.

Then 〈(
Iν−∞H

)′
, ϖ

〉
=

1
Γ (ν)

∫ ∞

0
xν−1ϖ (x) dx,

that is to say,
(
Iν−∞H

)′
=

H(x)
Γ(ν) xν−1, any Iν−∞H = H(x)

Γ(ν+1) xν. Consequently, we obtain Dν
−∞T1 = H, which

means
T1 = Iν−∞H =

H (x)
Γ (ν + 1)

xν.

Let n = [ν] ≥ 2 and Tn ∈ S
′ (R), such that Dν

−∞Tn = δ, we pose Hn =
xn

n! H (x), then H(n+1)
n = δ. For

all ϖ ∈ S (R), we have 〈
Dν
−∞Tn, ϖ

〉
=

〈(
Dν−n
−∞Tn

)(n)
, ϖ

〉
=

〈
H(n)

n−1, ϖ
〉
,

then
(
Dν−n
−∞Tn

)(n)
= H(n)

n , what does it mean

Dν−n
−∞Tn = H,

since ν − n < 1, as a result

Tn = Iν−n
−∞H =

H (x)
Γ (ν + 1 − n)

xν−n.
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For all ν > 0 and f ∈ L1
loc (R), we present the following problem

Dν
−∞Tν = f , Tν ∈ S ′ (R) . (3.12)

Corollary 3.1. For all ν > 0 and f ∈ L1
loc (R), we have then T = Tν ∗ f is the solution of the

problem (3.12).

Proof. From Theorem 3.1 and Lemma 3.7, we have

Dν
−∞ (Tν ∗ f ) = Dν

−∞ (Tν) ∗ f = δ ∗ f = f .

3.4.1. Riemann-Liouville ν-fractional

We may define the fractional derivative and the integral Riemann-Liouville for tempered
distributions at∞ in the same manner.

Definition 3.3. Let ν > 0, T ∈ S ′ (R); we will define

a) The left Riemann-Liouville ν-fractional derivatives of T ∈ S ′ (R) as〈
Dν
+∞T, ϖ

〉
= (−1)n 〈

T,Dν
+∞ [ϖ]

〉
, for all ϖ ∈ S (R) .

b) The left Riemann-Liouville ν-fractional integral of T ∈ S ′ (R) as〈
Iν+∞T, ϖ

〉
=

〈
T, Iν+∞ [ϖ]

〉
, for all ϖ ∈ S (R) .

where n = [ν].

Lemma 3.11. Let ν, β > 0 and T ∈ S ′ (R), we have

1. Dβ
−∞

(
Dν
−∞T

)
= (−1) jν,β Dν+β

−∞T.
2. Dν

+∞Iν+∞T = T.
3. Dν

+∞ (S ∗ T ) =
(
Dν
+∞S

)
∗ T = S ∗ Dν

+∞T.

where
jν,β =

[
ν + β

]
− [ν] −

[
β
]
∈ {0, 1} .

3.4.2. Caputo ν-fractional

For tempered distributions at +∞ or −∞, we may define the Caputo derivative and integral in the
same manner.

Definition 3.4. Let ν > 0, T ∈ S ′ (R), we will define

1. The right Caputo ν-fractional derivatives of T ∈ S ′ (R) as〈
CDν
−∞T, ϖ

〉
= (−1)n

〈
T,C Dν

−∞ [ϖ]
〉
, for all ϖ ∈ S (R) .
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2. The left Caputo ν-fractional derivatives of T ∈ S ′ (R) as〈
CDν
+∞T, ϖ

〉
= (−1)n

〈
T,C Dν

+∞ [ϖ]
〉
, for all ϖ ∈ S (R) .

3. The right Caputo ν-fractional integral of T ∈ S ′ (R) as〈
CIν−∞T, ϖ

〉
=

〈
T,C Iν−∞ [ϖ]

〉
, for all ϖ ∈ S (R) .

4. The left Caputo ν-fractional integral of T ∈ S ′ (R) as〈
CIν+∞T, ϖ

〉
=

〈
T,C Iν+∞ [ϖ]

〉
, for all ϖ ∈ S (R) .

Lemma 3.12. Let ν, β > 0 and T ∈ S ′ (R), we have

1. CDβ
−∞

(
Dν
−∞T

)
= (−1) jν,β Dν+β

−∞T.
2. CDβ

+∞

(
Dν
+∞T

)
= (−1) jν,β Dν+β

+∞T.
3. CDν

−∞

(
CIν−∞T

)
= T.

4. CDν
+∞

(
CIν+∞T

)
= T.

5. CDν
+∞ (S ∗ T ) =

(
CDν
+∞S

)
∗ T = S ∗C Dν

+∞T.

6. CDν
−∞ (S ∗ T ) =

(
CDν
−∞S

)
∗ T = S ∗C Dν

−∞T.

where jν,β =
[
ν + β

]
− [ν] −

[
β
]
∈ {0, 1}.

4. Conclusions

In this paper, we define the fractional derivatives of Riemann–Liouville and Caputo for temperate
distributions using the Fourier transform and inverse. The most important contributions we
presented were:

The sufficient and necessary condition for calculating the fractional derivative (see Lemma 3.3).
Provided instruction for calculating the fractional derivative in the space S ′ (R) (see Lemma 3.5

and Definition 3.1).
By definition 3.1, we can calculate the fractional derivative in the distribution sense for functions

in L1 (R), as an example,
H
x
< Hν (R), for all ν > 0, by Lemma 3.3, we have Dν

−∞

(H
x

)
does not exist in

any sense function, but in the distribution sense, see (3.9).
We can solve fractional differential equations in the space S ′ (R); see problems (3.10) and (3.12).

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at
Qassim University for financial support (QU-APC-2025).

Networks and Heterogeneous Media Volume 20, Issue 3, 868–884.



883

Conflict of interest

The authors declare there is no conflict of interest.

Authors contribution

A. Benaissa Cherif, F-Z. Ladrani: writing—original draft preparation. D. Alhwikem, A. Hammoudi
and K. Bouhali: writing—review and editing, visualization. Kh. Zennir: visualization, supervision.

References

1. J. Machado, V. S. Kiryakova, F. Mainardi, A poster about the old history of fractional calculus,
Fract. Calc. Appl. Anal., 13 (2010), 447–454. Available from: http://hdl.handle.net/10525/1666.

2. K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

3. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, translated from
the 1987 Russian original, Gordon and Breach, Yverdon, 1993.

4. M. D. Ortigueira, Fractional Calculus for Scientists and Engineers, Springer Science & Business
Media, Dordrecht, 2011.

5. T. Kaczorek, D. Idczak, Cauchy formula for the time-varying linear systems with Caputo
derivative, Fract. Calc. Appl. Anal., 20 (2017), 494–505. https://doi.org/10.1515/fca-2017-0025

6. D. Idczak, Riemann–Liouville derivatives of abstract functions and Sobolev spaces, Fract. Calc.
Appl. Anal., 25 (2022), 1260–1293. https://doi.org/10.1007/s13540-022-00058-8

7. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr.
Fract. Diff. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201

8. A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular
kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769.
https://doi.org/10.2298/TSCI160111018A

9. C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-Order Systems and Controls:
Fundamentals and Applications, London: Springer London, 2010.
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